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Abstract: Walking stability is considered a necessary physical performance for preserving inde-
pendence and preventing falls. The current study investigated the correlation between walking
stability and two clinical markers for falling risk. Principal component analysis (PCA) was ap-
plied to extract the three-dimensional (3D) lower-limb kinematic data of 43 healthy older adults
(69.8 ± 8.5 years, 36 females) into a set of principal movements (PMs), showing different movement
components/synergies working together to accomplish the walking task goal. Then, the largest
Lyapunov exponent (LyE) was applied to the first five PMs as a measure of stability, with the in-
terpretation that the higher the LyE, the lower the stability of individual movement components.
Next, the fall risk was determined using two functional motor tests—a Short Physical Performance
Battery (SPPB) and a Gait Subscale of Performance-Oriented Mobility Assessment (POMA-G)—of
which the higher the test score, the better the performance. The main results show that SPPB and
POMA-G scores negatively correlate with the LyE seen in specific PMs (p ≤ 0.009), indicating that
increasing walking instability increases the fall risk. The current findings suggest that inherent
walking instability should be considered when assessing and training the lower limbs to reduce the
risk of falling.

Keywords: gait; neuromuscular control; movement synergy; overground walking; principal compo-
nent analysis (PCA); largest Lyapunov exponent (LyE)

1. Introduction

Falls have been linked to a loss of function and independence in older people, leading
to injury-related hospitalizations in the aging population worldwide [1]. They usually
occur according to degenerative changes of postural reflex impairment accompanied by
the inherent aging process [2]. Approximately one-third of older adults (>65 years) living
in the community fall yearly [3], leading to several types of injuries (e.g., pain, soft tissue
injuries, fractures, dislocations, and functional impairment [4]) and impacting the quality
of life [2]. As previously reported [5,6], several internal risk factors for falling have been
reported, e.g., previous history of falls, balance impairment, functional limitations, visual
impairment, gait impairment, decreased muscle strength, arthritis, diabetes, pain, using
polypharmacy or psychoactive drugs, depression, dizziness, age over 80 years, female
sex, and cognitive impairment. Analyzing the main fall risk factors, which is crucial for
prevention, has frequently been performed [1,2,4,5].

One of the physical performances necessary for preserving independence and min-
imizing the risk of falls is the ability to walk successfully and safely on both stable and
unstable surfaces [7]. Walking instability has been recognized as one of the leading con-
tributors [5,6] among the several risk factors for falls. Commonly, stability is described as
the intrinsic ability of a motor system to retain or recover to its initial condition in the face
of internal (e.g., neuromuscular) and external (e.g., environmental) perturbations [8,9]. In
this sense, stability measures yield relevant information on the intrinsic noise in motor task
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performance and directly quantify the performance of dynamic error correction [8,9]. Alter-
natively, variability measures have also been used to indirectly quantify how stable a person
performs locomotion tasks due to inherent noise in the motor tasks or the environment that
can bring an individual’s dynamic state closer to their stability limits [8–10]. Furthermore,
since human movement is believed to result from nonlinear interactions between multiple
neuromuscular elements and internal and external factors [11], the largest Lyapunov ex-
ponent (LyE), one of the nonlinear methods to assess local dynamic stability, is frequently
used to analyze the capacity to manage for small internal or external perturbations in order
to maintain functional locomotion (i.e., used to measure walking stability) [9,12–14].

In order to complete any given motor activity (e.g., walking), the cooperative con-
tribution of multi-body segments is needed, typically seen as different movement com-
ponents/synergies forming together to accomplish the task goal [10,15,16]. Principal
component analysis (PCA), one of the methods for reducing the number of dimensions, has
widely been used on kinematic marker data to extract movement components or synergies,
which have been called “principal movements” (PM), from the original, whole postural
movements [15,17]. This method helps by minimizing the number of features (i.e., redun-
dancy issues in motor apparatus) needed to finish the given task goal by forming fewer new
variables, which still contain the most information regarding how people move or generate
motions from the original feature set of postural movements [15,17–19]. Moreover, informa-
tion about the position and acceleration of individual PMs reveals their direct association
with system forces and myoelectric activity [20,21], confirming that PCA-based variables
have an adequate probability of assessing neuromuscular control of individual movement
components/strategies [15,20–22]. Regarding local dynamic stability as measured by the
LyE, walking stability can be referred to as the neuromuscular system’s ability to man-
age infinitesimal perturbations during locomotion [9,12–14]. Therefore, the LyE applied
to individual PM positions can aid in quantifying the stability of individual movement
components/strategies that come together to achieve locomotion tasks [10,16,23].

Several functional motor tests have been developed to assess physical performance,
since poor physical performance, balance impairment, and gait alterations are among the
leading causes of falls in older individuals [24]. When focusing on gait ability, functional
motor tests assessing gait ability are commonly used to determine the risk of falling. For
example, the Short Physical Performance Battery (SPPB) is a well-established tool for
quantifiably assessing the lower extremity physical performance based on three tasks:
repeated chair stand, standing balance, and walking speed [25]. Unlike the SPPB, the Gait
Subscale of Performance Oriented Mobility Assessment (POMA-G) assesses the quality
of walking by considering gait initiation, step length, step height, step symmetry, step
continuity, path, trunk movement, and walking stance [26]. The results of these two
tests are represented as ordinal scores, ranging from 0 to 12, considered the worst-to-best
performance [25,26]. Both tests are reported to accurately discriminate between fallers
and non-fallers in a large group of frail older adults [27]. Practically, fall risks are usually
predicted using multi-item or functional motor assessment tools [28]. For example, it has
been reported that SPPB [29] and POMA-G [30] have the practical ability to predict falls. In
this sense, since the ability to maintain stability while walking is critical for avoiding falls,
particularly in older adults [31], studying the relationship between falling risk and walking
stability by considering movement patterns (i.e., movement strategies) can help to identify
individuals who are at higher risk of falling and develop effective interventions to improve
walking stability and reduce the falling risk.

In summary, the main purpose of the current study was to determine the correlation
between walking stability and the risk of falling. Walking stability was defined in terms of
individual PMs’ local dynamic stability (Lyapunov stability), and fall risk was determined
by two functional motor tests—SPPB and POMA-G. Since the stability of individual PMs
reflects the neuromuscular control of individual movement components or movement
synergies [10], it was hypothesized that the correlation between walking stability and the
risk of falling would appear in the specific relevant PMs to the gait cycle.
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2. Materials and Methods
2.1. Secondary Data Analysis

The lower-limb kinematic marker data of 43 healthy older adults (36 females and 7 males)
used in the current study was derived from a peer-reviewed open-access dataset [32]. All
participants had no neurological or musculoskeletal problems concerned with the risk
of falling or affecting walking ability. The Mini-Mental State Examination (MMSE) was
utilized to assess the mental status (i.e., mental health) to confirm that all participants could
understand the experiment protocol and complete the tasks. In addition, two functional
motor tests—SPPB and POMA-G—were performed on each participant by an experienced
physiotherapist. The Ethics Committee of the Escuela Colombiana de Ingeniería and
Clínica Universidad de la Sabana, Colombia, approved the study protocol in accordance
with the ethical principles of the Helsinki Declaration, and all participants provided written
informed consent before participation, as reported in Caicedo et al. [32]. The participant
characteristics are represented in Table 1.

Table 1. Descriptive characteristics of participants (n = 43).

Min Max Mean SD

Age (years) 54.0 87.0 69.8 8.5
Mass (kg) 41.8 104.4 67.6 11.2

Height (m) 1.4 1.7 1.6 0.1
Body Mass Index (kg/m2) 17.4 40.3 27.8 4.5

MMSE 22.0 30.0 26.6 2.5
SPPB 5.0 12.0 9.8 1.7

POMA-G 8.0 12.0 10.2 0.8
Walking speed (m/s) 0.6 1.2 0.8 0.2

Number of falls in the last
month (time) 0 1 0.1 0.3

Experimental measurement procedures were detailed and explained in Caicedo et al. [32].
In brief, each participant was equipped with 24 reflective markers, ten at each leg and
four around the hip, as shown in Caicedo et al. [32]. The optical motion capture system
comprised seven cameras (Vantage V5, Vicon Motion Systems, Ltd., Oxford, UK), with
the sample rate set at 100 Hz. Each camera was mounted on a tripod at 1.90 m above
the floor. For each walking trial, a C3D file is generated by Nexus movement analysis
software, version 2.9.3 (Vicon Motion Systems, Ltd., Oxford, UK), with an accuracy better
than 0.3 mm. Each participant was instructed to walk ten times at a self-preferred speed
between two points six meters apart, while one researcher walked beside them to ensure
their safety during walking. However, the data of the best five walking trials of each
participant were provided in the original data article. The current study selected only three
walking trials in which all participants walked in the same direction (e.g., walking from
point A to point B but not from point B to point A), as checked by running the C3D files for
further analysis.

2.2. Movement Synergy Extraction

All data processing for the current study was conducted in MATLAB version 2022a
(MathWorks Inc., Natick, MA, USA). For each dataset, 16 markers were placed on the
main anatomical landmarks (ASIS, PSIS, thigh, knee, tibia, lateral malleolus, heel, and toe)
of each leg. These markers gave 48 spatial coordinates (x, y, z), which were interpreted
as 48-dimensional posture vectors [15]. Each participant’s kinematic dataset of three
walking trials was pre-processed, centered by subtracting the mean posture vector [15],
and normalized to the mean Euclidean distance [15] before they were concatenated to form
one input matrix (3 trials × 43 participants) for further PCA. Supplementary Video S1,
an animated stick figure video, shows an example of the original overground walking
movement obtained from one female participant.
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PCA was carried out with a singular-value decomposition of the covariance matrix
through the PManalyzer software [15] to extract all lower-limb kinematic data into a set of
orthogonal eigenvectors, which has been called “principal components” (PCk; k indicates
the order of movement components). For each orthogonal eigenvector, an animated stick
figure called “principal movement” (PMk), can be created to characterize its movement
pattern [15]. The use of the term ”principal” in the variable names denotes that those
variables were derived from PCA, of which (t) indicates that these variables are functions
of time t [15]. Furthermore, the actual time evolution (i.e., time series) of each PM is
quantified by the PC scores (i.e., principal positions; PPk(t)), which represent the positions
in posture space or the vector space spanned by the PC-eigenvectors [15]. In analogy to
Newton’s mechanics, PMk-accelerations (i.e., principal accelerations; PAk(t)), a second-time
derivative, can be computed from the PPk(t) based on the conventional differentiation
rules [15]. As previously reported in a postural control study [20], PAk(t) have associations
with leg myoelectric activity, supporting the idea that PA-based variables could be used
to determine the neuromuscular control of individual PMk [21,33–35]. A Fourier analysis
was performed on the raw PPk(t) [35] to detect noise amplification that occurred in the
differentiation processes, showing that the highest power resided in a range of frequencies
between 2 and 5 Hz, but that the visible power was still seen in the frequency range between
5 and 10 Hz. Hence, the PCA-based time series were filtered with a 3rd-order zero-phase
10-Hz low-pass Butterworth filter before performing the differentiation step. In addition,
based on a previous study [15], leave-one-out cross-validation was performed to assess
the vulnerability of individual PMk and the PCA-based dependent variables that change
the input data matrix to address validity considerations. In this regard, the current study
selected the first five PCs that proved robust to test the hypotheses.

In order to describe the coordinative structure of PM1–5, the compositions of over-
ground walking movements were assessed based on their principal position (PPk(t)) and
acceleration (PAk(t)) [35]. First, the participant-specific relative explained variance of PPk(t)
(PPk_rVAR) was computed to investigate the percentage of the contribution of each PM
to the total variance in postural positions, quantifying how important each PMk is for the
overall coordinative movement structures of the overground walking movements [17,33].
Second, the relative explained variance of the PAk(t) (PAk_rVAR) was computed, which
quantifies the percentage of the contribution of each PM to the total variance in postural ac-
celerations [20,22,36]. A greater PAk_rVAR value reflects that a given movement component
is performed fast enough to impact accelerations and forces acting in the system [36].

2.3. Investigating Walking Stability

Each PPk(t) was normalized to an individual’s walking speed [23,37]. Then, the
participant-specific largest Lyapunov exponent (LyE) of PP1–5(t) or PPk_LyE was used to
investigate walking stability by computing the rate of divergence of close trajectories in
state space (i.e., the ability of the motor system to attenuate small perturbations revealed
by the divergence of the trajectories in state space) [10,16,23,38].

PPk_LyE was computed by applying Wolf’s algorithm [39], with the time delay (τ = 10)
and embedding dimension (m = 4) determined using the average mutual information
(AMI) [10,38] and the false nearest neighbor algorithms [40], respectively. A greater
PPk_LyE value indicates the inability of the motor system to reduce infinitesimal per-
turbations [13], resulting in a greater divergence of state space trajectories. In other words,
a higher PPk_LyE value reflects a lower individual’s walking stability [16,23]. For statistical
analysis, the current study used the average of individual PPk_LyE values calculated from
three walking trials.

2.4. Statistical Analysis

All statistical analyses were performed using the IBM SPSS Statistics software, version
26.0 (SPSS Inc., Chicago, IL, USA), with the alpha level set at a = 0.05. A Shapiro–Wilk
test was used to determine the data’s normality, suggesting using a Spearman’s rho test
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to determine the correlation between participants’ demographic data (age, BMI, MMSE,
walking speed (WS), SPPB, and POMA-G) and individual PP1–5_LyE. Pearson correlation
was used to examine the relationship between individual PP1–5_LyE. The correlation
coefficient (r), which varies between −1 and +1, represents the strength of the relationship
between the two variables in positive or negative directions, respectively. The absolute
correlation (|r|) in the range of 0 to 0.4 is interpreted as a weak correlation, 0.4 to 0.8 as a
moderate correlation, and 0.8 to 1 as a strong correlation [41].

3. Results
3.1. Movement Synergies

Table 2 shows the descriptive characteristics of the first five principal movements
(PM1–5), which together explained 99.9% of the total position variance (PPk_rVAR) and
70.9% of the acceleration variance (PAk_rVAR). In addition, the example visualizations of
PM2–5 are shown in Figure 1.

Table 2. The relative explained variances (mean ± SD) of the principal positions (PPk_rVAR) and the
principal accelerations (PAk_rVAR) of the first five principal movements (PM1–5), amended with a
qualitative description of the main features of each movement component. Note: k indicates the order
of principal movements, and animated stick figures of PM2−5 are represented in Supplementary
Video S2.

PMk Descriptive Characteristics PPk_rVAR PAk_rVAR

1 Movements of the lower extremities in the
direction of walking 98.91 ± 0.33 4.90 ± 1.12

2
Resemble swing phase movement of the

gait cycle: the anti-phase lower-limb
movements in the anteroposterior direction

0.90 ± 0.25 31.67 ± 2.94

3

Movements of the lower extremities in the
mediolateral direction (i.e., mediolateral
sway) combined with anti-phase knee

flexion and extension movements in the
vertical direction

0.07 ± 0.12 0.43 ± 0.17

4 Both ankle and knee flexion and extension
movements in the vertical direction 0.05 ± 0.01 24.65 ± 1.95

5
Resemble the mid-stance phase movement
of the gait cycle: the anti-phase lower-limb

movements in the vertical direction
0.04 ± 0.01 9.22 ± 1.95

As shown in Table 2, the highest value of PAk_rVAR is observed for PM2, resembling
the swing phase movement, followed by PM4, representing ankle and knee flexion and
extension movements in the vertical direction; and PM5, resembling the mid-stance phase
movement, respectively.

3.2. Relationship between Walking Stability and Risk of Falls

As shown in Table 3, the main results show that correlations appear in specific pairs
of two variables. Regarding the demographic data, the age of participants is negatively
correlated with MMSE (r = −0.449 (moderate correlation), p = 0.003), POMA-G (r = −0.450
(moderate correlation), p = 0.002), and PP3_LyE (r = −0.306 (weak correlation), p = 0.046).
The BMI of participants is negatively correlated with SPPB (r = −0.355 (weak correlation),
p = 0.020), but positively correlated with two walking stability variables: PP2_LyE (r = 0.343
(weak correlation), p = 0.024) and PP4_LyE (r = 0.506 (moderate correlation), p = 0.001). The
MMSE value is positively correlated with POMA-G (r = 0.379 (weak correlation), p = 0.012).
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Figure 1. Example visualizations of (A) PM2, (B) PM3, (C) PM4, and (D) PM5 extracted from the
overground walking movement and their corresponding space-time representation for computed
largest Lyapunov exponent (LyE) of individual PPk. Note: LyE data are derived from the first trial of
one female participant. The dashed line indicates the left limb. Only PM3 is shown in the back view.

Table 3. Correlation coefficients (r) between participants’ demographic data (age, BMI, MMSE, SPPB,
and POMA–G) and individual PP1–5_LyE. Note: p-values smaller than 0.05 are printed in bold (n = 43;
* p < 0.050; ** p < 0.01; and *** p ≤ 0.001 (two-tailed)).

Variable 1 2 3 4 5 6 7 8 9 10 11

1. Age 1
2. BMI −0.063 1
3. MMSE −0.449 ** −0.290 1
4. WS 0.242 0.206 −0.122 1
5. SPPB −0.205 −0.355 * 0.142 −0.556 *** 1
6. POMA-G −0.450 ** −0.051 0.379 * −0.356 * 0.146 1
7. PP1_LyE 0.178 0.173 −0.086 −0.001 −0.100 0.043 1
8. PP2_LyE 0.102 0.343 * −0.145 0.516 *** −0.164 −0.249 0.032 1
9. PP3_LyE −0.306 * 0.145 0.030 0.099 −0.097 0.003 0.066 0.075 1
10. PP4_LyE 0.145 0.506 *** −0.186 0.635 *** −0.402 ** −0.417 ** 0.160 0.718 *** 0.050 1
11. PP5_LyE 0.266 0.091 −0.097 0.428 ** −0.046 −0.396 ** 0.021 0.443 ** −0.056 0.386 * 1

In addition, walking speed is negatively correlated with both two functional motor
tests: SPPB (r = −0.556 (moderate correlation), p < 0.001) and POMA-G (r = −0.356 (weak
correlation), p = 0.019), but is positively correlated with specific walking stability vari-
ables: PP2_LyE (r = 0.516 (moderate correlation), p < 0.001), PP4_LyE (r = 0.635 (moderate
correlation), p < 0.001), and PP5_LyE (r = 0.428 (moderate correlation), p = 0.004).

Regarding the functional motor tests, SPPB negatively correlates with the specific
walking stability variable, PP4_LyE (r = −0.402 (moderate correlation), p = 0.008). In
addition, POMA-G negatively correlates with the specific walking stability variables:
PP4_LyE (r = −0.417 (moderate correlation), p = 0.005) and PP5_LyE (r = −0.396 (weak
correlation), p = 0.009).

Moreover, correlations within the individual PPk_LyE are observed in the specific
pairs of PPk_LyE. Specifically, PP2_LyE is positively correlated with PP4_LyE (r = 0.718
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(moderate correlation), p < 0.001), and PP5_LyE (r = 0.443 (moderate correlation), p = 0.003).
PP4_LyE is positively correlated with PP5_LyE (r = 0.386 (weak correlation), p = 0.011).

4. Discussion

The current study determined the correlation between walking stability and fall risk
in healthy older adults. Walking stability defined in terms of local dynamic stability was as-
sessed through the largest Lyapunov exponent (LyE) of individual movement components
or movement synergies (i.e., called “principal movements,” PMs) extracted by applying
principal component analysis (PCA) to overground walking movements. The fall risk
was determined by two functional motor tests—the Short Physical Performance Battery
(SPPB) and the Gait Subscale of Performance-Oriented Mobility Assessment (POMA-G).
The main results show that negative, small-to-moderate correlations between PPk_LyE and
two functional motor tests (SPPB and POMA-G) appear in the specific PMs, suggesting that
the lower the PP4-Lyapunov stability, the greater the risk of falling. Based on the empirical
findings, two main points can be discussed.

First, the lower performance of the lower extremities possibly influences walking
instability, especially in movement components resembling the ground contact phases of
the gait cycle (PM4–5). Walking instability can be caused by a degenerative change in the
lower-limb muscle–tendon neuromechanics (e.g., a decline in muscle strength [42] and a
degenerative muscle [43] and tendon [44] property), which usually happens as a normal
part of the inherent aging process [45]. This degenerative physical decline could make
it harder to control body weight while walking [46]. For example, in the PM4, which
represents the ankle and knee flexion and extension movements, the declining calf muscle
strength (e.g., the gastrocnemius, as the two joint muscles associated with both ankle and
knee movements) may be involved in the instability of this movement component. A
previous review article reported age-related declines in the contribution of the Achilles
tendon in recoiling to ankle power output during walking, leading to an increase in the
metabolic cost of walking because of less economical calf muscle contractions and increased
work of the proximal joint (e.g., the hip joints) [44]. This point is of interest and may
need further analysis. In addition, in the PM5, which resembles the mid-stance phase,
the hamstring muscles are an essential group of muscles that play the main role in the
weight-bearing and takeoff phases of the gait cycle for three functions [46]: (I) decelerating
the knee extension through an eccentric contraction at the end of the swing phase to
stabilize the weight-bearing knee dynamically; (II) facilitating the hip extension through an
eccentric contraction at foot strike to stabilize the weight-bearing leg; and (III) supporting
the gastrocnemius muscles through an eccentric contraction in extending the knee during
the takeoff phase.

Second, since SPPB [29] and POMA-G [30] have the potential to predict the risk of falls
in terms of measuring lower-limb physical performance, walking instability should be con-
sidered a potential fall risk. Although SPPB and POMA-G assess lower limb performance,
they focus on different aspects. For example, the SPPS measures lower-limb performance in
terms of time spent performing standing balance, walking speed, and chair stand tests [47].
Unlike the SPPB, the POMA-G focuses on the quality of walking, e.g., the ability of gait
initiation, step length, step height, step symmetry, step continuity, walking path, trunk
movement, and walking stance [26]. In this sense, the SPPB is one of the functional tests
practically used to assess lower extremity strength [29] and used as a predictor of mortality
in older adults by all causes [47].

Regarding the characteristics of participants, age has negatively correlated with the
MMSE and POMA-G, indicating possible cognitive [48] and gait [26] impairments that may
occur with advancing age. The BMI negatively correlates with SPPB, indicating that individ-
uals with increasing body mass relative to height may have lower limb muscle strength [29]
and physical performance [25]. The MMSE positively correlates with the POMA-G, indi-
cating that individuals with possible cognitive impairment [48] may have been associated
with gait impairments [26]. In addition, walking speed negatively correlates with both
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SPPB and POMA-G, indicating that reduced walking speed reflects decreased physical
performance in individuals. Moreover, walking speed has a positive correlation with walk-
ing instability, reflecting that increased walking speed increases walking instability. Based
on these findings, it is suggested that individuals with an advancing age, an increasing
BMI, a decreasing MMSE, and a reduced walking speed are associated with lower physical
performance, possibly leading to an increased risk of falling.

When considering the correlation among the PPk_LyE, a positive interrelationship
between the walking stability variables is observed between PM2 (PP2_LyE) and PM4–5
(PP4–5_LyE), indicating that the higher the instability of the swing phase, the greater
the instability of the contact ground movements of the two legs. In addition, a positive
interrelationship between PM4 (PP4_LyE) and PM5 (PP5_LyE) indicates that the higher the
instability of the swing phase, the greater the instability of the mid-stance phase. Although
these three movement components (PM2,4–5) are movement components that are small in
positional amplitude (PP2,4–5_rVAR), they are performed fast enough (PA2,4–5_rVAR) to
influence accelerations considerably, and thus forces acting in the system [36]. In this sense,
fall prevention programs should take into account how unstable a person is during both
the swing and stance phases of a gait cycle.

In terms of practical application, the current study suggests that reducing walking Lya-
punov stability, specifically in the ground contact movement components (PP4–5), should
be considered for fall prevention and rehabilitation, for which task-specific gait training to
improve neuromuscular control of the lower extremities is recommended. For instance, the
three subtasks of the SPPB—chair stand, standing balance, and walking speed [25]—can be
applied as an exercise or training for fall prevention. Furthermore, exercising or training to
improve walking quality by considering the POMA-G components—gait initiation, step
length, step height, step symmetry, step continuity, walking path, trunk movement, and
walking stance [26]—is of interest and can be practical in clinical settings.

Limitations and Future Study

One limitation of the current study was that only the lower limb movements provided
by an open-access dataset were analyzed. Therefore, for future research, whole-body
movement analysis is suggested since the effective contribution of all the body segments is
required for achieving the given task goal [21], representing that the neuromuscular system
controls posture and movement through multiple muscles that produce relative movements
between multiple body segments [20]. Another limitation was that the characteristics of
participants enrolled in the current study were not generalized, but mostly female. In this
regard, considering the impact of the sexes [5,6] or investigating the age-related differences
in walking stability is suggested for future research.

Since, in the current study, only the correlation test was performed to study the rela-
tionship between walking stability and the risk of falling, applying the regression analysis
focused on modeling the relationship may be of interest. Moreover, the risk of falls is
considered highly correlated to lower extremity muscle strength and joint moments [49,50],
usually observed in frail, older adults [51] or individuals with neurological or musculoskele-
tal impairments [52]. Therefore, encouraging the collection of kinematics combined with
kinetic or electromyographic (EMG) data is suggested [20], since it is highly informative
and may offer insights into net muscle forces acting at the joints, especially during periods
of the single support phase of the gait cycle.

5. Conclusions

In healthy older adults, the negative small-to-moderate correlations are observed
between the Lyapunov instability of specific movement components (i.e., principal move-
ments, PMs) extracted from the lower limb movements during overground walking with
self-selected speed and the potential risk of falls assessed by two functional motor tests—the
Short Physical Performance Battery (SPPB) and the Gait Subscale of Performance-Oriented
Mobility Assessment (POMA-G), indicating the higher the LyE, the lower the physical



Bioengineering 2023, 10, 471 9 of 11

performance with possibly increased risk of falling. Based on the current findings, it is,
therefore, suggested that the inherent impacts of walking (Lyapunov) stability should
be considered for fall investigation, prevention, and rehabilitation, not particularly in
healthy older adults but also in frail, older adults and individuals with neurological or
musculoskeletal impairments, possibly increasing the risk of falls.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering10040471/s1, Video S1: An original walking
movement derived from one female participant, Video S2: Visualization of the PM2–5.

Author Contributions: Conceptualization, A.P. and P.F.; methodology, A.P.; software, A.P. and P.F.;
validation, A.P. and P.F.; formal analysis, A.P.; data curation, A.P.; writing—original draft preparation,
A.P.; writing—review and editing, A.P. and P.F.; visualization, A.P.; supervision, P.C. and P.F.; project
administration, A.P.; funding acquisition, A.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This work (Grant No. RGNS 65–136) was supported by the Office of the Permanent
Secretary, Ministry of Higher Education, Science, Research, and Innovation (OPS MHESI), Thailand
Science Research and Innovation (TSRI), and University of Phayao.

Institutional Review Board Statement: The experiment was conducted in accordance with the
Declaration of Helsinki, and approved by the Ethics Committee of both the Escuela Colombiana de
Ingeniería and Clínica Universidad de la Sabana, Colombia [32].

Informed Consent Statement: Informed consent was obtained from all participants involved in the
study [32].

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sturnieks, D.L.; St George, R.; Lord, S.R. Balance Disorders in the Elderly. Neurophysiol. Clin. 2008, 38, 467–478. [CrossRef]

[PubMed]
2. Khalaf, S.; Morris, C. Falls in the Elderly. Psychiatr. Bull. 1996, 20, 501. [CrossRef]
3. Gillespie, L. Preventing Falls in Elderly People. Br. Med. J. 2004, 328, 653–654. [CrossRef] [PubMed]
4. Karlsson, M.K.; Vonschewelov, T.; Karlsson, C.; CÃster, M.; Rosengen, B.E. Prevention of Falls in the Elderly: A Review. Scand. J.

Public Health 2013, 41, 442–454. [CrossRef] [PubMed]
5. Tinetti, M.E.; Kumar, C. The Patient Who Falls: “It’s Always a Trade-Off”. JAMA-J. Am. Med. Assoc. 2010, 303, 258–266. [CrossRef]
6. Tinetti, M.E. Preventing Falls in Elderly Persons. N. Engl. J. Med. 2003, 348, 42–49. [CrossRef]
7. Callisaya, M.L.; Blizzard, L.; Schmidt, M.D.; McGinley, J.L.; Srikanth, V.K. Ageing and Gait Variability—A Population-Based

Study of Older People. Age Ageing 2010, 39, 191–197. [CrossRef]
8. Hamacher, D.; Singh, N.B.; Van Dieën, J.H.; Heller, M.O.; Taylor, W.R. Kinematic Measures for Assessing Gait Stability in Elderly

Individuals: A Systematic Review. J. R. Soc. Interface 2011, 8, 1682–1698. [CrossRef]
9. Bruijn, S.M.; Meijer, O.G.; Beek, P.J.; Van Dieen, J.H.; van Dieën, J.H. Assessing the Stability of Human Locomotion: A Review of

Current Measures. J. R. Soc. Interface 2013, 10, 20120999. [CrossRef]
10. Federolf, P.; Tecante, K.; Nigg, B. A Holistic Approach to Study the Temporal Variability in Gait. J. Biomech. 2012, 45, 1127–1132.

[CrossRef]
11. Cavanaugh, J.T.; Guskiewicz, K.M.; Stergiou, N. A Nonlinear Dynamic Approach for Evaluating Postural Control: New Directions

for the Management of Sport-Related Cerebral Concussion. Sport. Med. 2005, 35, 935–950. [CrossRef] [PubMed]
12. Dingwell, J.B.; Cusumano, J.P.; Cavanagh, P.R.; Sternad, D. Local Dynamic Stability Versus Kinematic Variability of Continuous

Overground and Treadmill Walking. J. Biomech. Eng. 2001, 123, 27–32. [CrossRef] [PubMed]
13. Dingwell, J.B.; Marin, L.C. Kinematic Variability and Local Dynamic Stability of Upper Body Motions When Walking at Different

Speeds. J. Biomech. 2006, 39, 444–452. [CrossRef] [PubMed]
14. England, S.A.; Granata, K.P. The Influence of Gait Speed on Local Dynamic Stability of Walking. Gait Posture 2007, 25, 172–178.

[CrossRef] [PubMed]
15. Haid, T.H.; Zago, M.; Promsri, A.; Doix, A.-C.M.; Federolf, P.A. PManalyzer: A Software Facilitating the Study of Sensorimotor

Control of Whole-Body Movements. Front. Neuroinformat. 2019, 13, 24. [CrossRef] [PubMed]
16. Promsri, A. Assessing Walking Stability Based on Whole-Body Movement Derived from a Depth-Sensing Camera. Sensors 2022,

22, 7542. [CrossRef]

https://www.mdpi.com/article/10.3390/bioengineering10040471/s1
https://www.mdpi.com/article/10.3390/bioengineering10040471/s1
https://doi.org/10.1016/j.neucli.2008.09.001
https://www.ncbi.nlm.nih.gov/pubmed/19026966
https://doi.org/10.1192/pb.20.8.501-a
https://doi.org/10.1136/bmj.328.7441.653
https://www.ncbi.nlm.nih.gov/pubmed/15031213
https://doi.org/10.1177/1403494813483215
https://www.ncbi.nlm.nih.gov/pubmed/23554390
https://doi.org/10.1001/jama.2009.2024
https://doi.org/10.1056/NEJMcp020719
https://doi.org/10.1093/ageing/afp250
https://doi.org/10.1098/rsif.2011.0416
https://doi.org/10.1098/rsif.2012.0999
https://doi.org/10.1016/j.jbiomech.2012.02.008
https://doi.org/10.2165/00007256-200535110-00002
https://www.ncbi.nlm.nih.gov/pubmed/16271008
https://doi.org/10.1115/1.1336798
https://www.ncbi.nlm.nih.gov/pubmed/11277298
https://doi.org/10.1016/j.jbiomech.2004.12.014
https://www.ncbi.nlm.nih.gov/pubmed/16389084
https://doi.org/10.1016/j.gaitpost.2006.03.003
https://www.ncbi.nlm.nih.gov/pubmed/16621565
https://doi.org/10.3389/fninf.2019.00024
https://www.ncbi.nlm.nih.gov/pubmed/31024286
https://doi.org/10.3390/s22197542


Bioengineering 2023, 10, 471 10 of 11

17. Federolf, P.A. A Novel Approach to Study Human Posture Control: “Principal Movements” Obtained from a Principal Component
Analysis of Kinematic Marker Data. J. Biomech. 2016, 49, 364–370. [CrossRef]

18. Troje, N.F. Decomposing Biological Motion: A Framework for Analysis and Synthesis of Human Gait Patterns. J. Vis. 2002, 2,
371–387. [CrossRef]

19. Daffertshofer, A.; Lamoth, C.J.C.; Meijer, O.G.; Beek, P.J. PCA in Studying Coordination and Variability: A Tutorial. Clin. Biomech.
2004, 19, 415–428. [CrossRef]

20. Promsri, A.; Mohr, M.; Federolf, P. Principal Postural Acceleration and Myoelectric Activity: Interrelationship and Relevance for
Characterizing Neuromuscular Function in Postural Control. Hum. Mov. Sci. 2021, 77, 102792. [CrossRef]

21. Promsri, A.; Haid, T.; Federolf, P. Complexity, Composition, and Control of Bipedal Balancing Movements as the Postural Control
System Adapts to Unstable Support Surfaces or Altered Feet Positions. Neuroscience 2020, 430, 113–124. [CrossRef]

22. Promsri, A.; Longo, A.; Haid, T.; Doix, A.-C.M.; Federolf, P. Leg Dominance as a Risk Factor for Lower-Limb Injuries in Downhill
Skiers—A Pilot Study into Possible Mechanisms. Int. J. Environ. Res. Public Health 2019, 16, 3399. [CrossRef]

23. Promsri, A. Sex Difference in Running Stability Analyzed Based on a Whole-Body Movement: A Pilot Study. Sports 2022, 10, 138.
[CrossRef] [PubMed]

24. Enderlin, C.; Rooker, J.; Ball, S.; Hippensteel, D.; Alderman, J.; Fisher, S.J.; McLeskey, N.; Jordan, K. Summary of Factors
Contributing to Falls in Older Adults and Nursing Implications. Geriatr. Nurs. 2015, 36, 397–406. [CrossRef] [PubMed]

25. Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A Short Physical
Performance Battery Assessing Lower Extremity Function: Association with Self-Reported Disability and Prediction of Mortality
and Nursing Home Admission. J. Gerontol. 1994, 49, M85–M94. [CrossRef]

26. Abbruzzese, L.D. The Tinetti Performance-Oriented Mobility Assessment Tool. Am. J. Nurs. 1998, 98, 16J. [CrossRef]
27. Lauretani, F.; Ticinesi, A.; Gionti, L.; Prati, B.; Nouvenne, A.; Tana, C.; Meschi, T.; Maggio, M. Short-Physical Performance Battery

(SPPB) Score Is Associated with Falls in Older Outpatients. Aging Clin. Exp. Res. 2019, 31, 1435–1442. [CrossRef] [PubMed]
28. Perell, K.L.; Nelson, A.; Goldman, R.L.; Luter, S.L.; Prieto-Lewis, N.; Rubenstein, L.Z. Fall Risk Assessment Measures: An Analytic

Review. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, 761–766. [CrossRef]
29. Veronese, N.; Bolzetta, F.; Toffanello, E.D.; Zambon, S.; De Rui, M.; Perissinotto, E.; Coin, A.; Corti, M.C.; Baggio, G.;

Crepaldi, G.; et al. Association between Short Physical Performance Battery and Falls in Older People: The Progetto Veneto
Anziani Study. Rejuvenation Res. 2014, 17, 276–284. [CrossRef]

30. Faber, M.J.; Bosscher, R.J.; Van Wieringen, P.C.W. Clinimetric Properties of the Performance-Oriented Mobility Assessment. Phys.
Ther. 2006, 86, 944–954. [CrossRef]

31. Menz, H.B.; Lord, S.R.; Fitzpatrick, R.C. Age-Related Differences in Walking Stability. Age Ageing 2003, 32, 137–142. [CrossRef]
[PubMed]

32. Caicedo, P.E.; Rengifo, C.F.; Rodriguez, L.E.; Sierra, W.A.; Gómez, M.C. Dataset for Gait Analysis and Assessment of Fall Risk for
Older Adults. Data Br. 2020, 33, 106550. [CrossRef] [PubMed]

33. Promsri, A.; Haid, T.; Federolf, P. How Does Lower Limb Dominance Influence Postural Control Movements during Single Leg
Stance? Hum. Mov. Sci. 2018, 58, 165–174. [CrossRef]

34. Promsri, A.; Haid, T.; Werner, I.; Federolf, P. Leg Dominance Effects on Postural Control When Performing Challenging Balance
Exercises. Brain Sci. 2020, 10, 128. [CrossRef] [PubMed]

35. Promsri, A.; Federolf, P. Analysis of Postural Control Using Principal Component Analysis: The Relevance of Postural Accelerations
and of Their Frequency Dependency for Selecting the Number of Movement Components. Front. Bioeng. Biotechnol. 2020, 8, 480.
[CrossRef]

36. Longo, A.; Haid, T.; Meulenbroek, R.; Federolf, P. Biomechanics in Posture Space: Properties and Relevance of Principal
Accelerations for Characterizing Movement Control. J. Biomech. 2019, 82, 397–403. [CrossRef]

37. Ó’Reilly, D.; Federolf, P. Identifying Differences in Gait Adaptability across Various Speeds Using Movement Synergy Analysis.
PLoS ONE 2021, 16, e0244582. [CrossRef]

38. Longo, A.; Federolf, P.; Haid, T.; Meulenbroek, R. Effects of a Cognitive Dual Task on Variability and Local Dynamic Stability in
Sustained Repetitive Arm Movements Using Principal Component Analysis: A Pilot Study. Exp. Brain Res. 2018, 236, 1611–1619.
[CrossRef]

39. Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov Exponents from a Time Series. Phys. D Nonlinear Phenom.
1985, 16, 285–317. [CrossRef]

40. Kantz, H. A Robust Method to Estimate the Maximal Lyapunov Exponent of a Time Series. Phys. Lett. A 1994, 185, 77–87.
[CrossRef]

41. Akoglu, H. User’s Guide to Correlation Coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [CrossRef] [PubMed]
42. Cappellini, G.; Ivanenko, Y.P.; Poppele, R.E.; Lacquaniti, F. Motor Patterns in Human Walking and Running. J. Neurophysiol. 2006,

95, 3426–3437. [CrossRef] [PubMed]
43. Yasuda, T.; Ota, S.; Yamashita, S.; Tsukamoto, Y.; Onishi, E. Association of Preoperative Variables of Ipsilateral Hip Abductor

Muscles with Gait Function after Total Hip Arthroplasty: A Retrospective Study. Arthroplasty 2022, 4, 23. [CrossRef]
44. Krupenevich, R.L.; Beck, O.N.; Sawicki, G.S.; Franz, J.R. Reduced Achilles Tendon Stiffness Disrupts Calf Muscle Neuromechanics

in Elderly Gait. Gerontology 2022, 68, 241–251. [CrossRef]

https://doi.org/10.1016/j.jbiomech.2015.12.030
https://doi.org/10.1167/2.5.2
https://doi.org/10.1016/j.clinbiomech.2004.01.005
https://doi.org/10.1016/j.humov.2021.102792
https://doi.org/10.1016/j.neuroscience.2020.01.031
https://doi.org/10.3390/ijerph16183399
https://doi.org/10.3390/sports10090138
https://www.ncbi.nlm.nih.gov/pubmed/36136393
https://doi.org/10.1016/j.gerinurse.2015.08.006
https://www.ncbi.nlm.nih.gov/pubmed/26343008
https://doi.org/10.1093/geronj/49.2.M85
https://doi.org/10.2307/3471705
https://doi.org/10.1007/s40520-018-1082-y
https://www.ncbi.nlm.nih.gov/pubmed/30515724
https://doi.org/10.1093/gerona/56.12.M761
https://doi.org/10.1089/rej.2013.1491
https://doi.org/10.1093/ptj/86.7.944
https://doi.org/10.1093/ageing/32.2.137
https://www.ncbi.nlm.nih.gov/pubmed/12615555
https://doi.org/10.1016/j.dib.2020.106550
https://www.ncbi.nlm.nih.gov/pubmed/33294534
https://doi.org/10.1016/j.humov.2018.02.003
https://doi.org/10.3390/brainsci10030128
https://www.ncbi.nlm.nih.gov/pubmed/32106392
https://doi.org/10.3389/fbioe.2020.00480
https://doi.org/10.1016/j.jbiomech.2018.11.031
https://doi.org/10.1371/journal.pone.0244582
https://doi.org/10.1007/s00221-018-5241-3
https://doi.org/10.1016/0167-2789(85)90011-9
https://doi.org/10.1016/0375-9601(94)90991-1
https://doi.org/10.1016/j.tjem.2018.08.001
https://www.ncbi.nlm.nih.gov/pubmed/30191186
https://doi.org/10.1152/jn.00081.2006
https://www.ncbi.nlm.nih.gov/pubmed/16554517
https://doi.org/10.1186/s42836-022-00126-7
https://doi.org/10.1159/000516910


Bioengineering 2023, 10, 471 11 of 11

45. Keller, K.; Coldewey, M.; Engelhardt, M. Muscle Mass and Strength Loss with Aging. Gazz. Med. Ital. Arch. Sci. Med. 2014, 173,
477–483.

46. Fredericson, M.; Moore, W.; Guillet, M.; Beaulieu, C. High Hamstring Tendinopathy in Runners Meeting the Challenges of
Diagnosis, Treatment, and Rehabilitation. Physician Sportsmed. 2005, 33, 32–43. [CrossRef]

47. Pavasini, R.; Guralnik, J.; Brown, J.C.; di Bari, M.; Cesari, M.; Landi, F.; Vaes, B.; Legrand, D.; Verghese, J.; Wang, C.; et al.
Short Physical Performance Battery and All-Cause Mortality: Systematic Review and Meta-Analysis. BMC Med. 2016, 14, 215.
[CrossRef]

48. Creavin, S.T.; Wisniewski, S.; Noel-Storr, A.H.; Trevelyan, C.M.; Hampton, T.; Rayment, D.; Thom, V.M.; Nash, K.J.E.; Elhamoui,
H.; Milligan, R.; et al. Mini-Mental State Examination (MMSE) for the Detection of Dementia in Clinically Unevaluated People
Aged 65 and over in Community and Primary Care Populations. Cochrane Database Syst. Rev. 2016, 2016, CD011145. [CrossRef]

49. Pijnappels, M.; van der Burg, J.C.E.; Reeves, N.D.; van Dieën, J.H. Identification of Elderly Fallers by Muscle Strength Measures.
Eur. J. Appl. Physiol. 2008, 102, 585–592. [CrossRef]

50. Pijnappels, M.; Reeves, N.D.; Maganaris, C.N.; van Dieën, J.H. Tripping without Falling; Lower Limb Strength, a Limitation for
Balance Recovery and a Target for Training in the Elderly. J. Electromyogr. Kinesiol. 2008, 18, 188–196. [CrossRef]

51. Torpy, J.M.; Lynm, C.; Glass, R.M. Frailty in Older Adults. JAMA 2006, 296, 2280. [CrossRef] [PubMed]
52. Larson, S.T.; Wilbur, J. Muscle Weakness in Adults: Evaluation and Differential Diagnosis. Am. Fam. Physician 2020, 101, 95–108.

[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/23263660.2005.11675757
https://doi.org/10.1186/s12916-016-0763-7
https://doi.org/10.1002/14651858.CD011145.pub2
https://doi.org/10.1007/s00421-007-0613-6
https://doi.org/10.1016/j.jelekin.2007.06.004
https://doi.org/10.1001/jama.296.18.2280
https://www.ncbi.nlm.nih.gov/pubmed/17090776
https://www.ncbi.nlm.nih.gov/pubmed/31939642

	Introduction 
	Materials and Methods 
	Secondary Data Analysis 
	Movement Synergy Extraction 
	Investigating Walking Stability 
	Statistical Analysis 

	Results 
	Movement Synergies 
	Relationship between Walking Stability and Risk of Falls 

	Discussion 
	Conclusions 
	References

