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Abstract: Spectral computed tomography (spectral CT) is a promising medical imaging technology
because of its ability to provide information on material characterization and quantification. However,
with an increasing number of basis materials, the nonlinearity of measurements causes difficulty in
decomposition. In addition, noise amplification and beam hardening further reduce image quality.
Thus, improving the accuracy of material decomposition while suppressing noise is pivotal for
spectral CT imaging. This paper proposes a one-step multi-material reconstruction model as well as an
iterative proximal adaptive decent method. In this approach, a proximal step and a descent step with
adaptive step size are designed under the forward-backward splitting framework. The convergence
analysis of the algorithm is further discussed according to the convexity of the optimization objective
function. For simulation experiments with different noise levels, the peak signal-to-noise ratio (PSNR)
obtained by the proposed method increases approximately 23 dB, 14 dB, and 4 dB compared to those
of other algorithms. Magnified areas of thorax data further demonstrated that the proposed method
has a better ability to preserve details in tissues, bones, and lungs. Numerical experiments verify
that the proposed method efficiently reconstructed the material maps, and reduced noise and beam
hardening artifacts compared with the state-of-the-art methods.

Keywords: spectral computed tomography; image reconstruction; one-step material decomposition;
iterative proximal adaptive descent

1. Introduction

Spectral computed tomography (spectral CT) has promising potentials in wide appli-
cations due to its ability to discriminate quantitative material for diagnostics and therapy
evaluation in medical imaging [1,2]. Pieces of evidence are being found indicating that
spectral CT can help improve the diagnosis of coronavirus disease (COVID-19) [3,4]. As
one of the typical implementations of spectral CT, the principle of dual-energy CT (DECT)
has been studied for a long time. Recent developments in energy-selective detectors have
spurred research in this area, especially the improvement of photon-counting detectors
(PCDs) [5]. However, the low signal-to-noise ratio (SNR) measurements, caused by pile-up,
fluorescence effect, charge sharing, and photon scattering, affect the image quality and the
precision of material decomposition [6]. Therefore, how to improve the accuracy of material
decomposition while maintaining image quality is crucial to the field of medical imaging.

In recent years, there are two categories of methods for reconstructing material-specific
images: two-step methods and one-step methods. Furthermore, the two-step methods can
be divided into image domain- and projection domain-based methods. The image domain-
based approaches [7-10] first reconstruct CT images from the polychromatic projection
data and then obtain the corresponding material images by a decomposition step on
CT images. Unfortunately, the quality of material results is always severely affected by
beam-hardening artifacts and noise explosions caused by direct matrix inversion-based
decomposition, especially when there are more than two materials to be separated [11]. On
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the other hand, for projection domain-based methods, multi-energy projections are first
separated or decomposed into material-specific projections and then reconstructed through
traditional algorithms [12-14]. However, it requires the projection to be in multi-energy,
measured under strictly consistent and identical imaging geometry (i.e., the same source,
object, and detector positions), which limits its application in fast kVp switching [15] or
multi-source-multi-detector [16] systems. In addition, the material-specific results of two-
step methods are dependent on the quality of the first step, and it is difficult for the second
step to compensate for the errors caused by the first step.

To avoid these problems for dual material imaging in dual spectral CT, several meth-
ods have been proposed, aimed at directly obtaining material-specific images from the
nonlinear observation measurements, called the abovementioned one-step methods. All
these one-step methods are iterative, combing forward models of the reconstruction with
the material separation process. For example, Zhao et al. utilized the first-order Taylor
expansion of nonlinear observations and proposed an extended algebraic reconstruction
technique (EART) [17] for DECT. For the consideration of the convergence efficiency, couple
variants of EART have been proposed, e.g., the simultaneous EART (ESART) [18], the
oblique projection modification technique [19], and the monochromatic images guided
iteration method [20] in recent years. In addition, as the photons emitted by the X-ray
source contain continuous energy distribution, and it is empirically assumed that the
attenuated photons received by the detector follow the Poisson distribution, different
statistical-based iterative methods have emerged. Xu et al. [21] developed a penalized
likelihood algorithm to implement the decomposition of the basis materials for DECT. Long
et al. [22], Weidinger et al. [23], and Mechlem et al. [24] designed the separable quadratic
surrogates of spectral CT statistical models to achieve the one-step material decompositions.
Barber et al. [25] applied a primal-dual prototype framework [26] to the material imaging
of spectral CT. Very recently, they further proposed investigating the convergence theory of
the non-convex alternating direction of multipliers method (NcADMM) [27] and conducted
the reconstruction of the PCD system to reduce beam hardening and metal artifacts [28].

Moreover, due to the inherent ill-conditioning of the CT inverse problem, it is often
necessary to incorporate prior knowledge as a regularization term to suppress the noise
of basis material images. To further enhance the quality of reconstruction, sparsity-based
methods have been employed. For example, Cai et al. [29] adopted the Huber function [30]
as the regularization term in a Bayesian approach. Chen et al. [31,32] applied the convex
indicator function of the gradient image to enforce an upper bound on the material images
and the monochromatic images. Zhang et al. [33] proposed a direct material reconstruction
method that combined a total variation (TV) term with block matching and a 3D filtering
term for DECT. However, for the above one-step iterative method, the convergence of
algorithms based on the primal-dual framework is not satisfying, and some methods are
even susceptible to noise due to a lack of the ability of noise suppression or the need to
adjust the parameters of the regularization terms manually when the number of materials
increases. Direct extensions and applications of the abovementioned one-step methods to
multi-material reconstructions are unstable or will even cause failure, due to the increase
in the ill-posedness from dual material to multi-material applications. Therefore, it is a
key issue to design an efficient and accurate one-step method based on an appropriate
optimization model for multi-material imaging in spectral CT.

In this work, for multi-material reconstruction, a direct one-step method is proposed,
which combines material image regularization and data fidelity. A proximal step and an
adaptive descent step are designed under the operator splitting framework. The conver-
gence of the iterative algorithm is further analyzed to illustrate the theoretical effectiveness
and stability of the new method. In order to verify the practical performance of the pre-
sented method, a series of numerical experiments have been conducted and shown that the
proposed algorithm has improved results of noise suppression and beam-hardening elimi-
nation compared with image-domain based decomposition method and the state-of-the-art
one-step material reconstruction methods.
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The organization of this paper is as follows. Section 2 introduces the physical model,
and describes the proposed reconstruction theory, as well as the convergence analysis of
the established algorithm. Section 3 presents the numerical verifications of the proposed
method and experimental comparisons with typical competing methods. The discussions
and conclusions are subsequently presented in Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Multi-Material, Non-Linear forward Projection Model

The photon intensity of the rays emitted from the X-ray source measured by the
detector will be attenuated when passing through the unknown object. The attenuation
coefficients of the object f for the photon with energy E at position x can be expressed
as f(x, E). The measurements can be simplified to Beer’s law under the assumption of a
monochromatic beam s; = S;(E) along the j-th ray as

pj = s; exp(—/[f(x,E)dE), (Gj=1,....]), @

where S;(E) is the spectrum distribution of the photon intensity with energy E, ¢; is the
integral line indexed by j, and ] is the total counts of measured rays. First, represent the
discretization of f(x, E) as fr = [fi,e, fo,5/- - -, fI,E]T, where I is the total number of voxels
and []T denotes the transpose of a vector. With the discretization of the variables, the
measurements of (1) can be further expressed in a discretized form as

pj:sjexp(f[AfE]j)' (jzl,...,]), (2)

where [Af] i= Y, aji fi represents the j-th line integral. Matrix A = [a;] € R/*! repre-
sents the X-ray transform, and its element a;; denotes the contribution of the i-th pixel to
the projection along the j-th X-ray path.

The unknown image f; often contains multiple materials (saying K kinds of mate-
rials), where the spatial distribution of the fraction of each material is of interest. In the
presented work, the X-ray spectrum S(E) is equally discretized into M segments with
an energy interval of dg such that S,,, = S(m - dg), m = 1,2,..., M. The monochromatic
image f,, at a specific energy E = m - g can be decoupled into energy-dependent terms
ok = Hmk(E), k =1,2,...,K, and spatial-dependent terms by = by(x) € R!. Therefore, the
monochromatic image f,, can be expressed by the linear combination of energy-dependent
and spatial-dependent terms as

K
fm(b) = Z mGbk/ (Wl =12,... ,M), (3)
k=1

where y,,; are the known attenuation coefficients of the basis material by at energy m.
Concatenating the K kinds of basis materials in the form of b = (b; T v,T,..., bKT)T, the
image f, (m = 1,2,... M) to be reconstructed is tantamount to that of the basis images b.
For spectral CT imaging, consider that there are S energy spectra in total, and the
expected number of photon counts p;(b) at spectrum s after the j-th ray penetrating the un-

known object is given by the following non-linear model when taking the negative logarithm

M K
psj(b) =—In 21 Ssjm eXp(_kZl Hmk [Abk}j)/
m= =

s=12...,S, @)
i=12...,],
where Sgj;;, = S (E) - O is the normalized X-ray spectrum s at energy m for the j-

th ray, ie., Y2, Ssjm = 1. For compact forms, rearrange the measured data and the
non-linear data term into the form of the vectors PM = (PM;phs. . pé/f) € R/S and
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W) = (@l +9G) " (ab™ — ATKTy(™) = argmin{G(u) + &

P(b) = (py(b); p,(b);...;ps(b)) € RI®, respectively, where pM, p_(b) denote the vectors of
size J, with elements of pé\f and ps;(b), respectively.

2.2. Optimization Model and Algorithm

The ill-posedness of Equation (4) will increase as the number of materials grows.
Moreover, noise and inconsistency in the measurements also increase the difficulty of
solving Equation (4) directly. Therefore, the sparsity-based prior is introduced into the
one-step reconstruction model

o1 2
min || P(b) —PM|3+ Al Vb, @)

where A = [Aq, ..., Ak] denote the regularization parameters of different basis materials.

To make the following statements more concise, here we use some symbols to rep-

resent the fidelity and regularization terms in the model, i.e.,, G(b) = %HP(b) — PM||§

and B(Kb) = ||Kb||;, where K is related to the finite difference operator—in this model.
However, the function G(b) is non-convex with respect to the variable b, and the relevant
algorithms of convex optimization cannot be applied directly. Therefore, P(b) is linearized
by using the first-order Taylor expansion such that G(b) is convex about b. Furthermore,
the regularization term B(Kb) is a non-smooth function, and the first derivation of the
objective function in the problem (5) does not exist at some point. Based on these concepts,
we design a new iterative algorithm according to the first-order optimality condition of the
optimization problem. The algorithm consists of two main steps: the proximal step and the
descent step. The former is used to obtain the reconstructed material images, and the latter
determines the direction of the updating.

Specifically, the concept of sub-differential is further applied to obtain the first-order
optimal condition of the optimization problem above as follows:

0 € 3G(b) + ATKTOB(AKbD), (6)

where the symbol “€” means the sub-gradient g of a closed proper convex function Q
that satisfies 0Q(x) := {q: Q(x) — Q(y) > (9, x —y),Vy}. In addition, if Q(-) is further
continuously differentiable, then there is only one gradient in the set of sub-differential
dQ(x), that is 9Q(x) = {VQ(x)}. Then, introduce an auxiliary variable y to split the
condition (6) in the following form:

0 € 9G(b) + ATKTy, .
{ 0 € IB(AKb) — y. @

Assuming the current iteration points (b(”),y(”)) are known, we use the idea of
forward-backward splitting to obtain the iterative scheme

ab™ — ATKTy(") e (aI 4 0G)(b),
Y0 4 BAKD™ € (BI + 9B)(v) v = AKb,

where «, B are nonnegative parameters. The unique solution exists due to the linearization
of G(-) and the properties of B(-). In addition, to maintain the stability of the algorithm,
the new iteration is combined with the results of the previous step. Therefore, the designed
proximal step contains the following three equations:

2

|2 ®)

2

« )\TKTy(n)

o

u+ —p™

7 = (1—6)b" + ™, )
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ol = (BI+0B) " (y™) + pAKY™)

v — AKy™ il H 1, (10)

= argmin{B(v) + 5 £
4

where t is the parameter introduced to ensure that no abnormal point occurs.

The proximal step is one of the key steps in the material reconstruction model. It
contains the forward transmission and the back projection in Equation (8). This paper
utilized the multi-material ESART algorithm [18,33] to solve the proximal step and adopt
the ordered subsets (OS) technique [34] to accelerate the algorithm; the detailed formulas
are given in the Appendix A. Equation (10) is solved by a soft-shrinkage operator

y(ﬂ) 1)
BB

o = shrink(AKy™ + (11)
where shrink(v,r) = sign(v)max{ lv| — %,O}.
Regarding the descent step, there are two variables in conditions (7) that need to be

updated, i.e.,
B = b — s, (12)

y =y — o dy) ™, (13)

where 7(,,) denotes the step size to update the new iteration point adaptively, and its
calculation is expressed as

&b — a3 ¢ /3<M<b<n> — o, Ak — v(n)>
0

=0 / =
Yy = 0711,0)/ T2, (m) ldy (3 + (|2 |3

where 6 is a nonnegative scaling factor, and

A1 = w(d™ —uM) 4 BATKT (AKH™ — o),

d, " = o) — AKu™).

In conclusion, the proposed method is summarized in Algorithm 1.

Algorithm 1 Iterative Proximal Adaptive Descent Algorithm (IPAD)

Input: choose « > B > 0, € R, 0 € (0,2) such that the constant

c=1-t/B|AK]||,/2v/a > 0.

Initialization: u?,b°,4° y
While 1 < tmax or B — "D, /|[b1 V|, <,

1. (Proximal step). Comput e (ul, ( ),0(M) via (8)=(11).
2. (Descent step). Compute (b(”“) (”+1))via (12)-(13).
Setn =n+1.

End while

Output: b(")

Remark 1. The constant c satisfies c > 0 in Algorithm 1 and is the constraint of the parameters
and operator; its derivation is demonstrated in the convergence analysis subsection in detail.

2.3. Convergence Analysis

This subsection establishes the global convergence of the proposed Algorithm 1. Note
that global convergence means that the generated iterative sequence converges to a critical
point, which follows the usage of global convergence for the extended splitting method in
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monotone inclusion problems [35]. Meanwhile, in order to facilitate the derivation process,
the regularization parameter A is incorporated into the operator K, i.e., K := AK. According
to the update of variables (#("), ("), they satisfy the following conditions:

ab™ — KTy — ay(m) € 3G (u™)
’ . (15)
m 4 BK§™) — o™ € ab(v(M)

Then, we introduce the necessary lemma 1 for deriving convergence theorem 1, whose
proofs are given in Appendices B and C.

Lemma 1. Let (b(”),y(”))} be the sequence generated by Algorithm 1, the following
inequality holds:

(890 ) ()50
t K n 2 :
> (1 W PRI ) (@) — )3 + 1K™ — o),

where (b*,y*) is the critical point of the objective function in problem (5).

Theorem 1. Let {(b("),y("))} be the sequence generated by Algorithm 1. For any given

t>0,a>p6>0,if1— t\/f\%qlz > 0and 0 < 8 < 2, then the sequence globally converges to a
critical point (b*,y*) of the objective function.

3. Results

In this section, a simulated phantom and a more realistic thorax dataset are used to
assess the performance of the proposed method. The comparison methods chosen are the
filtered back projection (FBP) reconstruction with a subsequent direct matrix inversion
(Directdecom), the three-material ESART algorithm with OS acceleration (OSesart), and
the nonconvex ADMM (NcADMM) method. To further clarify the effectiveness of the
proposed IPAD algorithm, the root mean square error (RMSE), the peak signal-to-noise
ratio (PSNR), and the structural similarity index (SSIM) [36] are employed for quantitative
assessment. In addition, the initial guess is chosen as zero for iterative methods and the OS
number is set to 90. The number of iterations for the OSesart and IPAD methods are set to
100 for both simulation data and thorax data. The number of iterations for the NcADMM
method are set to 1000 and 100 for simulation data and thorax data, respectively. All the
methods in our experiments are implemented on the workstation equipped with an Intel(R)
Xeon(R) Gold 6234 @3.30GHz CPU and NVIDIA Quadro RTX 6000 GPU.

3.1. Algorithm Investigation

The simulated phantom with 256 x 256 pixels is composed of three basis materials,
i.e., tissue, bone, and iodine, as shown in Figure 1(al-a4), where the bone contains 12 circles,
increased from a radius of 0.2 mm to 2.4 mm with an increment of 0.2 mm. Iodine consists
of eight circles with a radius increased from 0.2 mm to 1.6 mm and the concentration of
the corresponding circles decreases from 12 mg/mL to 5 mg/mL. The attenuation curves
of three materials are shown in Figure 1b, which are provided by the National Institute
of Standards and Technology (NIST). The distances from the source to the object and
detector are 300.0 and 600.0 mm, respectively. Projections are obtained through 360 views
on average distributed in 360° via fan beam scanning, and the number of detector units
is 512 with a size of 0.124 mm. The source spectrum is simulated at 120 kVp through
SpekCalc software [37] with 1.2 mm aluminum filtration and the three energy thresholds
are set to 25, 51, and 66 keV. To make the simulation more realistic, the three spectra (shown
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in Figure 1c) are obtained by combing the energy bins with the detector response model
utilized in reference [14].

Tissue
—Bone ||
Todine | |

—_ First spectrum

E Second spectrum
2 0.4 —— Third spectrum | |
5]

(]

203

=]

(5]

NO0.2

E \

ol ‘

o Y- 1
“ \1,|\J~_\\
0 -

0 20 40 60 80 100 120

keV

Figure 1. (al-a4) Simulation phantom that consists of (al) tissue, (a2) bone, and (a3) iodine, and
(a4) represents the simulated object. (b) Attenuations of different materials. (c) Three normalized
spectrums were used in the simulation experiments.

3.1.1. Noise-Free Simulation

First, the ideal, noise-free simulated data are applied to verify the accuracy of the
proposed IPAD method. Figure 2 shows the images of the proposed method, where columns
(a) to (c) indicate the ground truth (GT), the IPAD method, and their differential images,
respectively. According to the results shown in Figure 2, the material maps reconstructed
by the IPAD method are close to the given phantom maps in most areas. The differential
images (Diff) of tissue, bone, and iodine are displayed on a grayscale of 0.1%, 0.01%, and
0.01% in Figure 2, respectively. Further, the regions of interest (ROls) marked by the red
box in the last column of Figure 2 further indicate the effectiveness of the proposed method.
In addition, the convergence performance of the IPAD method is shown in Figure 3, where
(a) represents the RMSE reduction curves of the three basis materials with the increasing
iteration number. It can be seen that the orders of magnitude that these materials can
achieveare1 x 107%,1 x 107%, and 1 x 1079, respectively. Further, (b) indicates that the
total RMSE of the IPAD method has reached about 1 x 10> at 100 iterations. In addition
to the RMSE curves, the third figure in Figure 3 further plots the convergence behavior of
the objective function in the reconstructed model and its downward trend also indicates
that the algorithm can continuously converge with the increase in iterations.

Furthermore, there are two factors t, 0 that affect the convergence of the proposed
IPAD algorithm, where ¢ is designed to balance the current point and the former point, and
6 is used to modify the adaptive descent step. According to the convergence analysis of the
algorithm, the value of t is chosen from the set {0.02,0.2,2,20,200}, and 6 is selected from
the set {0.2,0.4,0.6,0.8,1,1.2,1.4,1.6,1.8}. Finally, the values of t and 6 are set to 0.02 and
0.2 according to the RMSEs convergence behaviors plotted in Figure 4, respectively.
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Figure 2. Results of the noise-free simulation dataset obtained by the proposed IPAD method. (al-a3),
(b1-b3), and (c1-c3) represent the tissue, bone, and iodine obtained by the GT, the proposed IPAD
method, and their differential images, respectively, where the display windows of the first two
columns are [0.01 1], [0.01 1], and [0.01 0.5], respectively. The corresponding differential maps are
shown in a 0.1% grayscale window [—0.005 0.005] for tissue and a 0.01% grayscale window [—0.0001
0.0001] for bone and iodine.

(2) (b)

10%¢ 10°
£ —Tissue
—Bone
Todine m
1L | «
107" b=
[ o~
E
o
=
2|
10
=
3 107 L . i
czﬂ 0 20 40 60 80 100
E Iterations
5107
4 s ©)
‘g 10°
(-4
4L J
10 ”
Z
S
2 10’
107 ¢ 1 3
£ =
o
5L 1
1076 | i 10 i i .
0 20 40 60 80 100 0 20 40 60 80 100
Iterations Iterations

Figure 3. Convergence behaviors of the proposed method, where (a) indicates the RMSEs of three
basis materials, (b) indicates the total RMSE of the proposed IPAD method, and (c) represents the
costs of the objective function.
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=12 60=0.6
10° 10°
=0.02 =0.02
=0.2 =0.2
=2 =2
=20 =20
=200 =200
10 102
0 50 100 50 100
Iterations Iterations
0=1.8 t=0.02
0.05
=0.02 H 6=0.2
t=0.2 0.04 ‘ ‘ 0=0.6
t=2 ‘ 0=1
=20 0.03 0=1.4
=200 6=1.8
0.02
0.01
0 50 100 0 50 100
Iterations Iterations

Figure 4. Convergence metrics of RMSEs of different values of £, 6.

3.1.2. Performance under Different Noise Levels

To illustrate the robustness of the proposed IPAD method, different Poisson noise
levels are considered to be added to the simulation datasets. In this work, Poisson noise is
generated and injected into the projections to simulate noisy measurements as

k

P = Iki!eflo,pi =P -exp(—py), (16)
where I stands for the number of incident X-ray photons, and p, p are the measured
projection data and the photons of adding noise collected by the detector unit i, respectively.
k is the index of the detector unit. Different noise levels of Iy =5 x 10°,1 x 10°,5 x 100
are considered to validate the performance of the proposed algorithm. The corresponding
results of material reconstruction are shown in Figure 5. Additionally, the regularization
parameters A = [Aq, Ay, A3] are also adjusted according to the different noise levels. In
other words, the regularization parameters of the three basis materials are also different.
Empirically, the parameters A1 and A, of water and bone materials are selected from the
same set {10’7, 107°,1075,10%,103 }, and the parameter A3 of iodine material is selected
from the set { 107%,107>,107%,1073, 10_2}. The relatively optimized values of the three
parameters are fixed at 107%,107%,10~° by enough trials. For different noise levels, the
proposed IPAD algorithm can also have a better performance in suppressing noise.

3.2. Comparison Experiments

In this subsection, comparisons with the state-of-art algorithms will be carried out to
further verify the performance of the proposed method. To make the data more realistic,
Poisson noise is added to the obtained projections to simulate image noises. In this work,
wesetlp =1 x 10° and Iy = 1 x 107 to validate the effectiveness of the proposed algorithm.

Figures 6 and 7 show the reconstruction results of different methods at two different
noise levels, where columns (a) to (e) represent the images of GT, Directdecom, OSesart,
NcADMM, and the proposed IPAD method, respectively. Compared to GT, the results of
the Directdecom method are relatively inaccurate, especially in the images of iodine, where
parts of the bone are misclassified as iodine. From the enlarged areas marked by the red
box in Figures 6(b1-b3) and 7(b1-b3) of the Directdecom method, it is further confirmed
that noise increases the difficulty of direct decomposition.
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Figure 5. Three material reconstruction results of the proposed IPAD method at different noise levels.
(al-a3), (b1-b3), and (c1-c3) represent the tissue, bone, and iodine ob-tained by the proposed IPAD
method at the noise Iy = 5 x 10%, 1 x 10°, 5 x 10°, respectively. The display windows of the three
materials are [0.01 1], [0.01 1], and [0.01 0.5], respectively.

GT Directdecom NcADMM OSesart IPAD

Figure 6. Results of the simulation dataset obtained by different methods with added noise
(Ip =1 x 107). (al-a3), (b1-b3), (c1-c3), (d1-d3), and (el-e3) represent the tissue, bone, and io-
dine obtained by the GT, Directdecom, NcADMM, OSesart, and the proposed IPAD method, and
their corresponding enlarged images, respectively. The display windows of the three materials are
[0.01 1], [0.01 1], and [0.01 0.5], respectively.
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NcADMM

Directdecom OSesart

GT

Figure 7. Results of simulation dataset obtained by different methods with adding noise
(Ip =1 x 10%). (al-a3), (b1-b3), (c1—c3), (d1-d3), and (el-e3) represent the tissue, bone, and io-
dine obtained by the GT, Directdecom, NcADMM, OSesart, and the proposed IPAD method, and
their corresponding enlarged images, respectively. The display windows of the three materials are
[0.01 1], [0.01 1], and [0.01 0.5], respectively.

The NcADMM method has the ability to obtain relatively fine structures of different
materials. However, obvious noise still can be observed on the maps of iodine material in
Figures 6(c3) and 7(c3). The OSesart and the proposed IPAD method have better perfor-
mance than the results of Directdecom and NcADMM methods. However, as shown in the
magnified regions of Figures 6(d1,d2) and 7(d1,d2), the noises remain in the reconstruction
results of OSesart due to its incapacity to denoise. Compared with the above methods, the
proposed IPAD algorithm has advantages in denoising while maintaining the accuracy of
the reconstructed basis materials, especially in the ROIs shown in Figures 6(e2) and 7(e2).

Quantitative evaluations are listed in Table 1. Taking the noise level Iy = 1 x 10° as
an example to illustrate the overall performance of different methods, it can be seen from
Table 1 that the averaged PSNR for three materials of the proposed IPAD algorithm is up to
42.555 dB, which increased PSNRs by 22.546 dB, 14.149 dB, and 4.072 dB compared with
those of the Directdecom, NcADMM, and OSesart methods, respectively. Further, the IPAD
method obtains the highest SSIM index of 0.908 while the SSIMs of other methods are below
0.9. In addition, the RMSE of the proposed IPAD algorithm converged to 0.0093, which
reduced the RMSEs by 92.79%, 76.21%, and 40.76% compared to those of the Directdecom,
NcADMM, and OSesart methods. The computation costs of three iterative algorithms are
listed in Table 2. It is evident that the proposed method outperforms NcADMM in terms of
computational efficiency, while the former is comparable to that of OSesart.

Figure 8 shows the convergence behaviors of the three iterative methods at different
noise levels. The first three columns denote the RMSEs of three different basis materials, and
the last column indicates the total RMSEs of the three iterative methods. The OSesart and
the proposed IPAD methods still keep a rapid downward trend within the first 20 iterations,
while the results of the OSesart method come down a little bit slower; the former is then
greatly affected by adding noise in subsequent iterations. It can be seen that the RMSE
curves of the OSesart method in Figure 8 have a rising state, which is because the OSesart
method lacks the ability to denoise, and noise leads to an increasing difference between the
reconstruction results and the true value. Over the total of 100 iterations, the proposed IPAD
method has been found to be convergently stable. As for the NcADMM method, it is also
convergent under 1000 iterations, but its decreasing speed is the slowest compared with
the other two iterative methods, and the final reconstruction accuracy does not improve
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with the increase in iterations when shown in the first 300 iterations. Therefore, it can be
observed in the total RMSE curves in Figure 8(a4,b4) that the proposed IPAD method is
relatively stable, while the OSesart method is prone to convergence under the influence of
noise, and the NcADMM method has disadvantages in descending accuracy and speed.
The line profiles, drawn from pixels along the white dashed line in Figures 5(al) and 6(al),
are further plotted in Figure 9. This demonstrates that the proposed IPAD method obtains

more accurate structures and details than the other compared methods.

Table 1. Quantitative results of different methods.

Noisy (Ip =1 x 107)

Noisy (Ip =1 x 10°)

Algorithm Materials PSNR SSIM RMSE PSNR SSIM RMSE
Tissue 11.970 0.454 0.252 11.626 0.443 0.262
Directdecom Bone 23.009 0.269 7.07 x 1072 23.582 0.320 6.62 x 1072
Iodine 23.620 0.326 6.59 x 1072 24.818 0.371 5.74 x 1072
Averaged 19.533 0.350 0.130 20.009 0.378 0.129
Tissue 26.609 0.505 467 x 1072 26.611 0.505 467 x 1072
NcADMM Bone 31.546 0.618 2.65 x 1072 31.472 0.614 2.67 x 1072
Todine 27.213 0.357 436 x 1072 27.134 0.353 44 x 1072
Averaged 28.456 0.493 3.89 x 102 28.406 0.491 391 x 1072
Tissue 29.836 0.669 3.22 x 1072 29.819 0.668 3.23 x 1072
OSesart Bone 41.236 0.968 8.72 x 1073 41.176 0.967 8.74 x 1073
Todine 44.609 0.983 591 x 1073 44455 0.983 6.02 x 1073
Averaged 38.560 0.873 1.56 x 1072 38.483 0.873 1.57 x 1072
Tissue 34.846 0.787 1.81 x 1072 34.818 0.787 1.82 x 1072
IPAD Bone 45.287 0.951 5.41 x 1073 45.420 0.950 542 x 1073
Todine 47.643 0.986 411 x 1073 47.426 0.987 431 %1073
Averaged 42.592 0.908 9.2 x 1073 42.555 0.908 9.3 x 1073
Table 2. Computation costs of three iterative algorithms for one iteration.
Computation Costs NcADMM OSesart IPAD
Time (unit: second) 64.898 24451 25.520
Tissue Bone Todine N Total )
10° NcADMM | NcADMM ‘ NcADMM 10 NcADMM
.’\: —— OSesart ,’g I(l" | ——OSesart .’i 107! ——OSesart .’\: ——OSesart
T IPAD T IPAD —\ IPAD T IPAD
s IL L g s < '
I~ 2 10 = 10 I~ |
2l (al) | I\ (a2)] i (a3) 102 | (ad)|
10 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Iterations Iterations Iterations Iterations
Tissue Bone Todine o Total
10° NcADMM | NcADMM ‘ NcADMM 10 NcADMM
:_3‘ —— OSesart :3‘ 107! ——OSesart %\ 107! ——OSesart C,:\ ——OSesart
T IPAD | \— IPAD —\ IPAD T IPAD
:;: 107! 1 E: ?: ?: 10"
z oz z 2 L
[ e 10 1 &~ 10 ~
2l ®1) | L ay ! (b3) .| (b4)|
10 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Iterations Iterations Iterations Iterations

Figure 8. Convergence behaviors of the three iterative algorithms under different noise levels, where
the first row represents the RMSEs of noisy data (Ip = 1 x 107), and the second row represents the
RMSEs of noisy data (Ip =1 x 10%). (al-a4), and (b1-b4) represent the RMSEs of tissue, bone, iodine,
and total of different methods at two noise levels.
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Figure 9. Profiles of different methods at different noise levels. (al-a3), and (b1-b3) represent the
profiles of tissue, bone, and iodine of different methods at two noise levels.

3.3. Thorax Dataset Verification

The thorax dataset (https:/ /www.ircad.fr/research/data-sets/respiratory-cycle-3d-
ircadb-02/, accessed on 1 July 2018); downloaded to verify the performance of the algorithm
in clinical experiments (The dataset is publicly available, and no ethical statements are
involved). The public dataset contains 167 slices in total. We extract the 160th slice to
implement our method with a more complex phantom. The selected slice is segmented
into three components by the labels given in the dataset, i.e., tissue, bone, and lungs,
where the lungs are supposedly injected with iodine and the concentration of iodine is
set at 15 mg/mL. The corresponding attenuation coefficients of the three basis materials
are obtained by NIST. Then, the projections are determined by the forward transmission
model (4) with three energy bins. Similar to the simulation, the spectrum is derived from
a tube voltage of 120 kVp and a 12 mm aluminum filter, and the three energy windows
are separated by the thresholds 30, 56, and 70 keV, respectively. The distances of the
source to the object and source to detector are 1000.0 mm and 1500.0 mm, respectively. The
reconstructed image pixel is 512 x 512 with each pixel size of 0.961 mm, and the number of
photon-counting detector units is 1024 with each size of 0.7208 mm. Projection views are
also set to 360 in the 360° range. Similarly, it is assumed that the measured projection data
are contaminated by Poisson noise with level Iy = 1 x 10°.

Figure 10 shows the results of the reconstructed thorax data by different methods, where
columns (a) to (e) represent the reconstructed maps of the Directdecom, NcADMM, OSesart,
and the proposed IPAD algorithms, respectively. The rows from top to bottom indicate the
three basis materials: tissue, bone, and lungs. As shown in Figure 10(al,a3), the tissue and
parts of the lungs are indistinguishably obtained by the Directdecom method. The results of
NcADMM show that its tissue map is relatively accurate, while it contains some noise on the
bone map and some bones are misclassified on the lung map. Furthermore, there are obvious
streak-like artifacts in the tissue image reconstructed by OSesart, as marked in the purple
arrow in Figure 10(c1). Compared with the abovementioned two methods, the proposed
IPAD algorithm has better performance in material decomposition accuracy, artifacts, and
noise suppression. Furthermore, as indicated by the yellow arrows in the first and third
rows of magnified areas, the IPAD method reconstructs a clear texture, while the other two
methods contain a large amount of noise and the textures are not so clear.

To further illustrate the effectiveness of the one-step method in eliminating beam-
hardening artifacts, virtual monochromatic images are shown in Figure 11. Notice that
the first column in Figure 11 represents the reconstructions of FBP through three energy
bins. The last three columns of Figure 11 display the results of virtual monochromatic
images between the three iterative methods at single energy 40, 65, and 90 keV, respectively.
Compared to the results reconstructed by FBP, the three iterative one-step methods greatly
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eliminate the influence of beam-hardening artifacts, as can be observed from the ROIs
marked by the yellow arrows in Figure 11. However, the NcADMM method still has
ambiguous structures due to noise. In addition, it is obvious that the proposed IPAD
algorithm has advantages in noise suppression compared to the OSesart method.

Directdecom NcADMM

OSesart

IPAD

o wre

Figure 10. Results of the thorax dataset obtained by different methods with added noise (Ip =1 x 106).
(a1-a3), (b1-b3), (c1-c3), and (d1-d3) represent the tissue, bone, and iodine obtained by Directdecom,
NcADMM, OSesart, and the proposed IPAD. And the corresponding display windows are [0.01 0.8],
[0.01 0.65], and [0.01 0.6], respectively.

NcADMM OSesart

Figure 11. Virtual monochromatic images of thorax dataset at energy 40, 65, and 90 keV. (al-a3),
(b1-b3), (c1-¢3), and (d1-d3) represent the virtual monochromatic images of FBP, NcADMM, OSesart,
and the proposed IPAD method, respectively. Note that the “FBP” means there are the results

reconstructed by FBP in three energy bins. The corresponding display windows are [0 0.08], [0 0.04],
and [0 0.025], respectively.
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4. Discussion

In this paper, we consider that the ill-condition of the multi-material reconstruction
problem increases with the increase in the number of materials, especially in the case that
each energy spectrum has a consistent scanning path. It is more difficult to obtain accurate
distributions of basis materials based on one-step methods. Aiming at this situation, a new
iterative one-step multi-material reconstruction method is developed, in which an adaptive
proximal descent step is designed to constantly modify the direction of the algorithm
during the update process. The proposed method further combines sparsity-based TV
regularization to integrate the noise suppression in each iteration of material reconstruction,
which enables us to obtain a more stable solution. Moreover, convergence analysis under
some mathematical assumptions is derived that the proposed algorithm is guaranteed by
theory according to its update scheme. In addition, several numerical experiments are
carried out to verify the effectiveness of the proposed IPAD method. The results show
that the practical performance is consistent with the original design, and it can obtain
a relatively stable solution while suppressing noise. The monochromatic image results,
as shown in Figure 11, further indicate the proposed method has the ability to eliminate
beam-hardening artifacts.

Although the proposed algorithm proves that it is convergent in theory, model-driven
methods based on certain assumptions cannot fully express the physical mechanism for the
realistic application of CT imaging; for example, the response of detector units is different
for certain spectrum, and noise in the measured projections is easily multiple amplified
in the reconstructed process of basis materials. Noise disturbance is a huge instability
factor for the convergence of the algorithm. As a result, data-driven methods for material
reconstruction have also been developed, such as a butterfly network by Zhang et al. [38]
to realize material decomposition based on an image domain under dual energy. Fang et al.
applied the unsupervised denoising method called Noise2Noise [39] as prior knowledge to
estimate the material maps directly from the raw projection data [40]. In addition, other
researchers have also found the deep learning-based method has certain advantages in
spectral CT imaging [41,42]. These methods also encourage us to combine model-driven
and data-driven methods to achieve accurate decomposition of materials by eliminating
the influence of beam-hardening artifacts while suppressing noise in the future.

5. Conclusions

This paper proposes a one-step basis material reconstruction algorithm based on
proximal function. First, the reconstruction model consists of a data fidelity function and a
TV regularization term. Then, we design an iterative proximal adaptive descent algorithm
to solve this optimization model. Moreover, the convergence analysis is established to
support that the iterative sequence generated by the proposed algorithm converges to a
critical point of the original optimization model. Furthermore, an ordered subset technique
is applied to accelerate the algorithm. The simulation and thorax experiments verify
the effectiveness of the proposed method in basis material reconstruction and also the
capabilities in suppressing beam hardening and Poisson noise.
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Appendix A. Solving Scheme for Proximal Step

We will describe the details of the solving scheme for the proximal step in Algorithm
1. First, rewrite the first-order Taylor expansion of the forward projection model (4) at the
current point #(") for the s-th spectrum and omit the high-order remainder; the non-linear
measurements can be expressed as
71
s k,j j
qs[]

K
psj( u) = pS] Z (A1)

where

K n
psj(u™) = ~In z Soimexp(— L.t 4],
_§ _ Au™
qs,] E s;mexp( kgll/lmk[ u, ]j)’

m:& . (n)
sk] X_; Ssjm Kk - eXP(*k; ]/‘mk[Auk ]j)’

el = [AGw — )]

Therefore, the errors e}? (k =1,...,K) can be computed directly by rewriting the

Equation (A1) at the current ray j, i.e.,

o) Lo M ()
‘it 7 L e
e ,1605,521,...,5. (AZ)
;';g o B | \pg —psia™)
() (n)
qS] ‘75]

Then, the OS technology further divides the rays j € Q)s into L subsets {Q,,...,Qs, }
and updates the residuals indexed by one of the subsets each time in this paper. Fi-
nally, these residuals in one of the subsets are applied to update the next new estimates

(HH) (k=1,...,K) via the following formula:
(")

Ui ]r
— 1y A (k=1,2,...,K), (A3)
ZjEQsl Afj»ez()sl ! Zl —0 %jn

u]((nJrl) _ 'ﬁ](:l) +

where ﬁ]((") = a(u™ —b") + ATKTy(" is the first-order derivation with respect to u of
the second term in the proximal step. A; = [a;1, 4}, ..., a;1] represents the contributions of
each pixel to the projection along the j-th X-ray path.

Appendix B. Proof of Lemma 1

Proof. The function G(b) is convex with the linearization process by the first-order Taylor
expansion. Combing the fact that the sub-differential of any closed proper convex function
in an infinite dimensional space is maximal monotone [43], thus, we use the monotonicity
of dG together with (15) to obtain

<u(n) _ b*,txb(”) _ KTy(”) —au ¢ KTy*> > 0.
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Further, let (™ — b* = b(") —b* — (b") — u(")), then
(b — b, ab™ — ™) — (Ku® — Kp*,y") — y*) > b — ") . (A4)
Meanwhile, using the monotonicity of 0B, we obtain
(o) — Kb,y ™ + pKY") — pol") — y*) > 0.
Together with v(") — Kb* = Kb'") — Kb* — (Kb — (")), it implies

(b —b*, BKTKG™ — Ko™ ) + (o) — Kb, y") — y*)

> <Kb(”) — o, BKH" — o) (A5)

Summing up Inequalities (A4) and (A5), we have

(6 b,y ) + () —y, dz(n>>

> af|p™ — u |5+ <Kb(”) ol 51<y ~ o)

— a[p — 4 ||§ + BJIKp™ — |2 — t/3<1<b<”> — o K™ _ Ku(")> (A6)
2 n n n n

> “Hb( ||2 +/3||Kb n)”z - t,8||K||2||I<b( ) — ol )H2||b( - )”2

(1- tf PR o Hz+ﬁ\|1<b<”> — o3,

v

The last inequality in (A6) holds by using 2ab < ca? + b? /o for any a,b and any ¢ > 0.
We choose o = /a/ B here, and the proof is completed. [J

Appendix C. Proof of Theorem 1
Proof. According to the updated Formulae (12) and (13) in Algorithm 1, we obtain
n )2 n *12
U+ —b I+ Iy —y2||z
= 160 = b* [y + [y = y*[l; = 25 (b — b", a1 ()
2 2
+{y) =y, o)) + (@ [ + d2]15) (A7)
n * 2 * 2 n 2
< [0 =% |3 + ly™ —y* [l — 27 () (]|’ )—u(z”)l\z )
(Kb — o), B — o)) 21 + 2.

Combining the definition of 7, in Equation (14), we have

273 (a b ">—u<">||§ + (K" — 0, Ky — po )) + 0, 2l M]3 + 1o 3)

(2= 0)y) (@b — ™) 3 + (Kb — 0", Ky — pol >).
(A8)
By (A7) and (AS8), together with Lemma 1, we further obtain
n " n w2 n 2 n w112
1B — b7 + [y —y o = 8™ ="+ ly™ —y* |3
—(2 =)y (a]|b™ — w5 + (Kb — o), gKg") — ()
(2= 0)7(u) (2 2+ BKy™ — po())) "

o2 o112
< 80 = b7l + [y ™ —y* 5

(2= )7 (1~ L) (o) — w3+ KD — o)),
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Therefore, if 1 — %\/HEKH > 0and 0 < 0 < 2, it is not difficult to confirm that Y(n) is

bounded below by some positive number.
Consequently, by the above derivation in (A9), we obtain that the limits of monotoni-

cally decreasing nonnegative sequence {(b(”) Ly — (b7, y*)} exists, thus the sequence

{(b("), y(”))} is bounded and
16 — 4™, — 0, Kb — o™, — 0. (A10)

According to the boundedness of sequence {(b(”), y() }, we know that some subse-

quence {(b(”’),y(”l))} converges to some limit (b™, y*) (strong convergence due to the

dimension of the space being finite). Combing (A10) with the boundedness of the operator
K implies that limnKyf(”) —o =0, limnlu("l) =b", limn]/%(Ky<”l) — v("l)) + y(”l) = y*.
From (15), we further obtain

ab™ — au® — KTy 4 BKT (y() + pKy(") — Bo(™)
o) — K™ < A
AG(u™) + K (y") + pKy") — o)
ob(Ku™) — (y( + K" — po(n)) :
When taking the limit along 7;, (A11) means

(o) = (arcatf ")

This means that (b™, y®) is a critical point of the objective function. Together with the
fact that the limit of {(b(”),y(”)) - (b°°,y°°)} exists, so its limit is also equal to (b*,y®),

ie., lim,b(™ = p™, limny(”) =y®(n —c0). O
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