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Abstract: Early diagnosis and classification of arrhythmia from an electrocardiogram (ECG) plays
a significant role in smart healthcare systems for the health monitoring of individuals with cardio-
vascular diseases. Unfortunately, the nonlinearity and low amplitude of ECG recordings make the
classification process difficult. Thus, the performance of most traditional machine learning (ML) clas-
sifiers is questionable, as the interrelationship between the learning parameters is not well modeled,
especially for data features with high dimensions. To address the limitations of ML classifiers, this
paper introduces an automatic arrhythmia classification approach based on the integration of a recent
metaheuristic optimization (MHO) algorithm and ML classifiers. The role of the MHO is to optimize
the search parameters of the classifiers. The approach consists of three steps: the preprocessing of
the ECG signal, the extraction of the features, and the classification. The learning parameters of four
supervised ML classifiers were utilized for the classification task; support vector machine (SVM),
k-nearest neighbors (kNNs), gradient boosting decision tree (GBDT), and random forest (RF) were
optimized using the MHO algorithm. To validate the advantage of the proposed approach, several
experiments were conducted on three common databases, including the Massachusetts Institute
of Technology (MIT-BIH), the European Society of Cardiology ST-T (EDB), and the St. Petersburg
Institute of Cardiological Techniques 12-lead Arrhythmia (INCART). The obtained results showed
that the performance of all the tested classifiers were significantly improved after integrating the
MHO algorithm, with the average ECG arrhythmia classification accuracy reaching 99.92% and a
sensitivity of 99.81%, outperforming the state-of the-art methods.

Keywords: smart healthcare; patient health monitoring; ECG classification; IoT sensors; metaheuristic
algorithms; supervised learning

1. Introduction

The recent developments in biomedical sensors, the Internet of Medical Things (IoMT),
and artificial intelligence (AI)-based techniques have increased interest in smart healthcare
technologies [1,2]. Microelectronics, smart sensors, AI, 5G, and IoMT constitute the corner-
stone of smart healthcare [3,4]. A smart healthcare system does not suffer fatigue; hence,
it can process big data at a much higher speed than humans with greater accuracy [5].
With smart healthcare systems, the diagnosis and treatment of diseases have become more
intelligent. For instance, smart patient monitoring empowers the observation of a patient
outside the traditional clinical settings, which offers a lower cost through reducing visits to
physician offices and hospitalizations [6].

The human body is known as a complex electromechanical system generating several
types of biomedical signals, such as an electrocardiogram (ECG), which is a record of the
dynamic changes of the human body that need to be monitored by smart healthcare systems.
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For instance, the EKG sensor measures cardiac electrical potential waveforms. It is used to
create standard 3-lead electrocardiogram (EKG) tracings to record the electrical activity in
the heart or to collect surface electromyography (sEMG) to study the contractions in the
muscles of the arm, leg, or jaw. Simply, an ECG graphs heartbeats and rhythms. The clas-
sification of an ECG heartbeat plays a substantial role in smart healthcare systems [7,8],
where the presence of multiple cardiovascular problems is generally indicated by an ECG.
In the subsequent ECG waveform, diseases cause defects. However, early diagnosis via an
ECG allows for the selection of suitable cardiac medication and is thus very important and
helpful for reducing heart attacks [9]. The method of detecting and classifying arrhythmia
is not an easy task and may be very difficult even for professionals because sometimes it is
important to examine multiple pulses of ECG data, obtained, for example, during hours,
or even days, by a Holter clock. Furthermore, there is a possibility for errors by humans
during the ECG recording study due to fatigue. Building a fully automatic arrhythmia
detection or classification system is difficult. The difficulty comes from the large amount of
data and the diversities in the ECG signals due to the nonlinearity, complexity, and low
amplitude of ECG recordings, as well as the nonclinical conditions, such as noise [10].

Despite all these difficulties, methods for ECG arrhythmia classification have been widely
explored [11,12] but choosing the best technique for smart patient monitoring depends on
the robustness and performance of these methods. Several convolutional neural network
(CNN)-based approaches have been introduced for the task [13,14]. Bollepalli et al. [10] pro-
posed a CNN-based heartbeat detector to learn fused features from multiple ECG signals. It
achieved an accuracy of 99.92% on the MITBIH database using two ECG channels. In [15],
a subject-adaptable ECG arrhythmia classification model was proposed and trained with
unlabeled personal data. It achieved an average performance of 99.4% classification accu-
racy on the MIT-BIH database. In [16], an end to-end deep multiscale fusion CNN model
of multiple convolution kernels with different receptive fields was proposed, achieving an
F1 score of 82.8% and 84.1% on two datasets. Chen et al. [17] combined CNN with long
short-term memory to classify six types of arrhythmia and achieved an average accuracy of
97.15% on the MIT-BIH database. A recent approach by Atal and Singh [18] proposed using
the bat-rider optimization to optimally tune a deep CNN to achieve an accuracy of 93.19%
with a sensitivity of 93.9% on the MIT-BIH database. Unfortunately, most CNN-based
methods are effective only for small numbers of arrhythmia classes, are computationally
intensive, and need a very large amount of training data [13]. This is a great challenge for
using the CNN-based methods on real-time applications or wearable devices with limited
hardware [19].

On the other hand, many research efforts have been devoted to ECG arrhythmia
classification using ML classifiers, such as SVM, RF, kNN, linear discriminants, multilayered
perceptron, and regression tree [20,21]. It is well known that the SVM classifier does not
become trapped in the well-known local minima points, requires less training data, and is
faster than CNN-based methods [22]. In [23], wavelet transform and ICA were used for
the morphological features description of the segmented heartbeats. The features were
fed into an SVM to classify an ECG into five classes. In [24], least square twin SVM and
kNN classifiers based on features’ sparse representation were used for cardiac arrhythmia
recognition. The experiments were carried out on the MIT-BIH database in category
and personalized schemes. A method based on improved fuzzy C-means clustering and
Mahalanobis distance was introduced in [25], while in [26], abstract features from abductive
interpretation of the ECG signals were utilized in heartbeat classification. Borui et al. [27]
proposed a deep learning model integrating a long short-term memory with SVM for
ECG arrhythmia classification. Martis et al. [28] evaluated the performance of several ML
classifiers and concluded that the kNN and higher-order statistics features achieved an
average accuracy of 97.65% and sensitivity of 98.16% on the MIT-BIH database. In [29],
the RF classifier was utilized with CNN and PQRST features for arrhythmia classification
from imbalanced ECG data. The major drawback of ML classifiers (e.g., SVM) is their
deficiency in interpreting the impact of ECG data features on different arrhythmia patterns
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for extracting the optimal features. Further, the performance of most ML classifiers is
questionable because the interrelationship between the learning parameters is not well
modeled, especially for data features with high dimensions.

Despite the large amount of previous studies in the field, ECG arrhythmia classification
has not been completely solved and remains a challenging problem. Consequently, there
is room for improvement in several aspects, including classification, feature extraction,
preprocessing, and ECG data segmentation. Most ML classifiers have some limitations; for
example, SVM does not perform well with noisy data, while random forest (RF) suffers
from interpretability issues and fails to determine the significance of variables. In addition,
these ML classifiers have many parameters, and tuning such parameters has a crucial
influence on the efficiency of the classification. Motivated by the advantages of the ML
classifiers compared to the CNN-based methods, although they face a major challenge with
a low classification accuracy, in this work, we focus on enhancing the classification accuracy
of the ML classifiers. To this end and to develop an efficient classifier model, we propose to
optimize the learning parameters of these classifiers using a naturally inspired metaheuristic
algorithm called the marine predators optimization algorithm (MPA). The parameters of the
classifier are gradually optimized using the MPA algorithm, which introduces an optimal
classifier model that can classify the ECG features efficiently. Four different machine
learning classifiers are considered, namely SVM, GBDT, RF, and kNN. The performance
of these classifiers without learning parameter optimization and with optimization (i.e.,
MPA-SVM, MPA-GBDT, MPA-RF, and MPA-kNN) are compared. The experiments are
validated on the three common benchmarking databases: the MIT-BIH, EDB, and INCART.

The remainder of this paper is organized as follows. Section 2 presents the methodol-
ogy proposed to classify the ECG arrhythmia based on the optimization of the parameters
of the ML classifiers. The experimental results and analysis as well as a comparison with
the state of the art are presented in Section 3. Finally, the paper is concluded in Section 4.

2. Methodology

A complete smart healthcare system consists of several parts, such as sensors for
heartbeat recordings, dry electrodes sensing of heartbeats, interpretation of the heartbeat
signals, a personalized system for heartbeat monitoring, and incorporation of the heartbeat
monitoring system into healthcare. The overview of an early diagnosis and classification of
ECG arrhythmia healthcare system is illustrated in Figure 1. It consists of three main steps:
data preprocessing, feature extraction, and classification. Detection or classification is the
vital step in the system; thus, the contribution of this work is mainly in the classification
step as explained in the following.

2.1. Data Preprocessing and Feature Extraction

Denoising and reliable segmentation increase the efficiency of the classifiers [30],
where the frequency of an ECG is between 0.5 Hz and 50 Hz [31]. To eliminate disturbances
from the digital ECG signal, an FIR band-pass filter [32] designed with cutoff frequencies
was utilized for this task. For the segmentation task of the ECG, the R-peaks annotations
described by the MIT-BIH, EDB, and INCART datasets were considered as an indication of
the beats segmentation, and for every beat, we centered a patch of size 200 ms around its
R-peak within 75 ms before the R-peak and 110 ms after the R-peak.

After the segmentation phase, the features were extracted around the regions of
the segmented ECG signal. In this work, different techniques were used for the feature
extraction phase, including the 1D-local binary pattern (LBP) [33], higher-order statistics
(HOS) [34], discrete wavelet transform (DWT), the Hermite basis function (HBF) [35],
the central moment (CM), and the R-R intervals. Table 1 outlines the number of extracted
features by each descriptor from the MIT-BIH, EDB, and INCART databases.
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Figure 1. Overview of an early diagnosis and classification of ECG arrhythmia healthcare system.

Table 1. Total number of features extracted from the MIT-BIH, EDB, and INCART datasets.

Datasets LBP HOS + CM HBF DWT RR Total Number of Features

MIT-BIH 60 12 + 1 16 32 10 131

EDB 60 12 + 1 16 26 10 125

INCART 60 12 + 1 16 26 10 125

2.2. Classification

The supervised machine learning classifiers considered for detecting rhythm diseases
with a number of parameters optimized using the proposed artificial intelligence meta-
heuristic optimization (MHO) algorithm were the SVM, random forest (RF), gradient
boosting decision trees (GBDT), and K-nearest neighbor (kNN).

2.2.1. Support Vector Machine

The SVM offers strong insight for practical applications and contributes to high effi-
ciency [36]. It works by transforming input data from the basic domain P into a new higher
dimension feature space; thereafter, it searches in this space for the optimal hyperplane. It
aims to split the training data into groups in order to find a maximum marginal hyperplane.
Mathematically, an instance xi is connected with a label yi ∈ {+1,−1}. The hyperplane
divides the multidimensional space into negative and positive instances induced by the
kernel function with the maximum margin and the minimum classification [37]. Suppose
z = ϕ(x) is a feature space vector, and wi maps ϕ from P to the feature space Z ; then,
the hyperplane is

w · z + b = 0, (1)

defined by the pair (w, b), which is obtained by separating the point Xi, such that

f (xi) = sign(w · zi + b) =
{

1, if xi = 1
−1, if xi = −1

, (2)
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where w ∈ Z and b ∈ P . S is linearly separable, if there is (w, b) with{
(w · zi + b) ≥ 1, if xi = 1
(w · zi + b) ≤ −1, if xi = −1,

, where i = 1, . . . , l (3)

is applicable for each element on S. If S is not linearly separable, the SVM formulation
must allow for classification violations. The ideal with a hyperplane is a solution to

minimize 1
2 w ·w + C ∑l

i=1 ξi,

such that yi(w · zi + b) ≥ 1− ξi, , where ξi ≥ 0, i = 1, . . . , l.
(4)

2.2.2. Gradient Boosting Decision Tree

In decision trees, every internal node is labeled with a distinctive input. The arcs
derived from the node marked with a certain feature are labeled with each of the possible
feature values. Every tree leaf is classified as having a class or distribution of probability
over classes. The basic concept of the decision tree for gradient boosting is to combine
a series of weak base classifiers into one strong classifier. Unlike traditional methods
of boosting samples that weigh positive and negative, the GBDT uses global algorithm
convergence by following the negative gradient direction. The weak learner estimates the
error at every splitting node based on a test function κ : Rn → R considering a threshold τ

for the returns ηl and ηr. The optimal split is achieved by identifying the triplet
(

τ, ηl , ηr
)

that minimizes the error after the split, where

ε(τ) = ∑
i:κ(xi)<τ

wj
i

(
rj

i − ηl
)2

+ ∑
i:κ(xi)≥τ

wj
i

(
rj

i − ηr
)2

. (5)

The weight wj
i and response rj

i of xi at an iteration j are

wj
i = exp

(
−yi f j−1(xi)

)
,

rj
i = g(xi)/wj

i = −yi exp
(
−yi f j−1(xi)

)
/wj

i = −yi.
(6)

2.2.3. Random Forests

RF is close to the Bayesian method and is used to recognize an ensemble with a combi-
nation of hierarchical tree structure predictors [38]. The basic concept behind the RF is that
a set of learning tree models may perform well compared to single decision trees if they
make uncorrelated mistakes. In this context, we develop several trees instead of a single
tree, where each tree is constructed upon values of random vectors sampled independently
following the whole forest distribution. Consequently, the RF is an ensemble classifier con-
sisting of many random decision trees. A single classification output of these decision trees
is taken, and the values are collected to produce the final result of the classifier [39]. The RF,
once constructed, is very fast, as it requires little computation. It has clear interpretability,
which provides a natural way to incorporate prior knowledge. Employing appropriate
randomness produces precise regressors and classifiers. Moreover, some studies have
shown that random input features result in a high classification performance [40].

2.2.4. K-Nearest Neighbor

The kNN is one of the straightforward and simplest machine learning schemes based
on supervised learning. It is a non-parametric technique, which means that the underlying
data do not need any assumptions during data classification. It implies the similarity
between the new class and available instances and puts the new class in the category
that is most closely related to the available categories. Generally, the estimation that
can be obtained with the kNN scheme is prone to local noise and not very satisfactory.
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The larger the value of k, the smoother the classification boundary, while a smaller k is more
convoluted to the boundary. An advantage of the kNN is that there is no training required.

2.3. Marine Predator Algorithm (MPA)

The MPA is a naturally inspired metaheuristic algorithm that imitates the behavior
of predators to catch their victim or prey, employing two techniques when targeting their
prey (Brownian and Lévy) [41].

2.3.1. Initialization

Similar to all the metaheuristic schemes, the algorithm begins with an initial solution
uniformly distributed over the search space such that

Y0 = YL + rand (YU −YL), (7)

where YU and YL are the minimum and maximum boundary limits of the search
spaces, respectively.

2.3.2. Elite and Prey Matrix Construction

It is employed to construct an n× d Elite matrix E with

E =


Y I

1,1 Y I
1,2 . . . Y I

1,d
Y′2,1 Y I

2,2 . . . Y′2,d
...

...
...

...
Y I

n,1 Y I
n,2 . . . Y I

n,d

, (8)

where n refers to the number of search space agents, and ~yI symbolizes the superior
predator vector iterated n times to create the matrix. The prey matrix with the same
dimensions d as the Elite is

Py =



Y1,1 Y1,2 . . . Y1,4
Y2,1 Y2,2 . . . Y2,d
Y3,1 Y3,2 . . . Y3,d

...
...

...
...

...
...

...
...

Yn,1 Y1,2 . . . Yn,d


. (9)

The optimization process in the MPA is mainly based on these two metrics, where the
initialization generates the starting prey, from which the optimal fit builds this elite matrix.

2.3.3. Optimization Process

The most critical step in which the predators seek to find the optimal fit or solution is
the optimization cycle. In the discovery phase, which is the starting point, the predators
attempt to move faster before they detect the prey such that:

For t < 1
3 ∗ tmax

~stepsizej =
~RL ⊗

(
~Ej − ~RL ⊗ ~pyj

)
(10)

−→
Py j =

−→
Py j + P · R⊗ stepsizej, (11)

where the vector ~RL consists of the random values computed by the Lévy distribution,
which represents the Lévy movements. Meanwhile, the process of the multiplication of the
~RL and elite symbolizes the movements of the predators in the Lévy scheme, while utilizing
the phase size for the elite position mimics the movements of the predators updating the
position of the prey.
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In the middle stage, the algorithm divides the population into two portions to distin-
guish the difference between exploration and exploitation. In this stage with
1
3 ∗ tmax < t < 2

3 ∗ tmax, the half population is

−−−−−→
stepsizej = ~RL ⊗

(
~Ej − ~RL ⊗−→pyj

)
(12)

−→pyj =
−→pyj + P ∗ ~R⊗−−−−−→stepsizej, (13)

while in the second half, it is

−−−−−→
stepsizei = ~RB ⊗

(
~RB ⊗ ~Ej − ~Pj

)
(14)

−→pyj = ~Eij + P ∗ CF⊗−−−−−→stepsizej, (15)

and

CF =

(
1− t

tmax

)(2 t
tmax )

. (16)

The population is modified using Lévy flight with t > 2
3 ∗max-iter

~stepsizej =
~RL ⊗

(
~RL ⊗ ~Ej −−→pyj

)
(17)

−→pyj = ~Ej + P ∗ CF⊗ ~stepsizej. (18)

The predators accurately remember the previous locations of successful foraging
because of their good memory. Using memory saving, the MPA algorithm simulates this
ability of remembering successful foraging places, which can increase the quality of the
solutions with the increase in iterations. Solution fitness at the present iteration is matched
with its counterpart in the previous one. The new one replaces the solution if it is more
suitable. The steps of the MPA are summarized in Algorithm 1.

2.3.4. Parameters Optimization

Using the MPA algorithm, four optimized versions of the ML classifiers were intro-
duced for ECG signal classification, namely the MPA-SVM, MPA-GBDT, MPA-RF, and MPA-
KNN. The fitness function acts according to each classifier and its parameters. Tuning
parameters has a crucial influence on the efficiency of the classification. Thus, a diverse
set of parameters for each classifier was considered to optimize the classification stage.
To fine-tune the best value for the parameters, the holdout strategy was considered with
80% for the training set, and the remaining 20% was used to test the performance. The list
of parameters considered in the experiments for each classifier is provided in Table 2.

Table 2. The parameters of each classifier optimized using the MPA algorithm.

Classifiers Parameters Range

SVM C [0.0001,1000]
Gamma [0.0001, 1]

GBDT Max_depth [1, 13]
Gamma [0.0001, 1]
Learning Rate [0, 1]

RF Max_depth [1,13]
Gamma [0.0001, 1]
Learning Rate [0, 1]

kNN K [1,13]
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Algorithm 1 Pseudo-code of MPA algorithm.

1: Initialization step, P, TP, TF, Pyi.
2: while t < tmax do
3: Compute the fitness value of each −→pyi, f

(−→pyi
)

4: Construct E
5: Implement the memory saving
6: Update CF using Equation (16)
7: for each pyi do
8: if

(
t < 1

3 ∗ tmax

)
then

9: Reposition the current −→pyi based on Equation (11)
10: else
11: if

(
1
3 ∗ tmax < t < 2

3 ∗ tmax

)
then

12: if
(

i < 1
2 ∗ n

)
then

13: Reposition the current −→pyl using Equation (13)
14: else
15: Reposition the current −→pyi using Equation (15)
16: end if
17: else
18: Reposition the current −→pyi using Equation (18)
19: end if
20: end if
21: end for
22: Compute the fitness value of each −→pyi, f

(−→pyi
)

23: Update TopPradatorPos, and TopPredatorFit.
24: Apply the memory saving
25: Apply the FADS for ∀ py i
26: t ++
27: end while

3. Experiments and Results
3.1. Database Descriptions

The main characteristics of the three ECG databases used in the evaluation process are
summarized in Table 3.

Table 3. Details of the ECG databases used in the evaluation process.

Database Subjects Records Leads Location of Electrodes Sample Rate Resolution Duration

MIT-BIH 48 48 12 Chest and limbs 360 HZ 11 30 min
EDB 79 90 2 Chest and limbs 250 HZ 12 120 min
INCART 32 75 12 Chest and limbs 257 HZ 12 30 min

3.1.1. The MIT-BIH Arrhythmia Dataset (MIT-BIH)

This is a public dataset showing the regular investigation content of cardiac rhythm
detection collected from 47 patients. It consists of 48 records, where each one is 30 min
in duration, with a 360 Hz sample rate. Moreover, the records have two signals: the first
is a bipolar limb lead named the modified lead (MLII), and the second one is related to
unipolar chest leads called V leads (V1, V2, V3, V4, V5, and V6). The MLII type is shareable
though all records because it provides an ideal view for the significant waves (e.g., Q-waves,
P-waves, R-Waves, T-waves, and S-waves) [42].
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3.1.2. The European ST-T Dataset (EDB)

The EDB was planned to be used to evaluate the performance of ST and T-wave
architectures. It is a collection of 90 annotated samples of patients’ ECG records taken from
79 subjects. Each record has a two hour duration with two signals recorded at 250 sps [43].

3.1.3. St. Petersburg INCART Dataset (INCART)

This is a 12-lead arrhythmia dataset containing 75 annotated recordings taken from
32 Holter records, each 30 min long. The INCART consists of 12 regular leads, and each
lead is sampled at 257 Hz. The main records were acquired from patients undergoing
coronary heart disease examinations [43].

3.2. Evaluation Criteria

As a strategy of classification, the holdout strategy was used to evaluate the perfor-
mance of the optimized ML classifiers against five standard criteria including accuracy
(Acc), precision (Pr), specificity (Sp), sensitivity (Sn), and the F1-score (F1). The performance
criteria typically rely on different major metrics (positive/negative/true/false) of a binary
classification test as follows:

Acc =
Tp + Tn

Tp + Fn + Fp + Tn
(19)

Sn =
Tp

Tp + Fn
(20)

Sp =
Tn

Fp + Tn
(21)

Pr =
TP

TP + FP
(22)

F1 =
TP

TP + FP
(23)

3.3. Performance Evaluation
3.3.1. Evaluation of the MPA-SVM

For the MPA-SVM classifier, two parameters, c and gamma, which had important
effects on the classification process, were optimized. According to Table 4, all measures
were higher than 98%. Looking at the class level, it is clear that the ACC and Sn were
high on three datasets, where the ACC > 99.14%, and Se > 98.11%. The accuracy of the
classification process by all models was remarkably enhanced and nearly balanced for
all classes. The best reported accuracy was obtained for the class F with 99.93%, and the
lowest performance was obtained for the class N with an accuracy of 99.86. Regarding
the misclassification, only ≤0.49% of the S class and ≤0.82% of the VEBs class were
not classified accurately. The results in the case of the S and VEBs classes were very
promising, signifying improvements over counterpart studies. These two classes are
important cases for the AAMI, which recommends that evaluation measures should focus
on the classification of the S and VEBs classes. The performance of the MPA-SVM classifier
was sufficient for these two classes on the three databases.
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Table 4. The performance of the MPA-SVM classifier on all the databases’ classes.

Database MIT-BIH EDB INCART

Classes Acc Se Sp Pr F1 Acc Se Sp Pr F1 Acc Se Sp Pr F1

N 99.14 98.11 99.48 98.41 98.26 99.86 99.7 99.91 99.72 99.71 99.23 98.45 99.48 98.4 98.43
S 99.51 99.19 99.61 98.85 99.02 99.9 99.85 99.92 99.75 99.8 99.57 99.45 99.61 98.84 99.15
VEBs 99.51 98.4 99.89 99.67 99.03 99.18 97.93 99.61 98.83 98.38 99.9 99.58 100 100 99.8
F 99.78 99.9 99.74 99.21 99.55 99.93 99.97 99.92 99.75 99.86 99.92 99.9 99.93 99.77 99.84
Average 99.48 98.90 99.68 99.03 98.97 99.90 99.77 99.94 99.81 99.79 99.47 98.93 99.65 98.96 98.95

3.3.2. Evaluation of the MPA-GBDT

The MPA-GBDT was introduced to optimize three parameters, the max depth, gamma,
and learning rate. Table 5 lists the results of the optimized parameters for the MPA-GBDT
model for the AMMI classes (N, S, VEBs, and F). In addition to the high accuracy of
classification (≥99.45), the classification performance (sensitivity of ≥98.49% and positive
predictivity of ≥98.81%) for the S and VEBs classes were very high, where the positive
predictivity reached 100% for the classes of the MIT-BIH and EDB databases.

Table 5. The performance of the MPA-GBDT classifier on all the databases’ classes.

Database MIT-BIH EDB INCART

Classes Acc Se Sp Pr F1 Acc Se Sp Pr F1 Acc Se Sp Pr F1

N 99.45 98.97 99.61 98.81 98.89 99.89 99.67 99.96 99.87 99.77 99.6 99.33 99.69 99.04 99.18
S 99.7 99.4 99.79 99.39 99.4 99.91 99.94 99.91 99.73 99.83 99.77 99.74 99.78 99.35 99.55
VEBs 99.62 98.49 100 100 99.24 99.92 99.49 100 100 99.84 99.58 98.59 99.92 99.76 99.17
F 99.69 99.73 99.68 99.04 99.39 99.9 99.99 99.88 99.63 99.81 99.92 99.97 99.91 99.71 99.84
Average 99.61 99.15 99.77 99.31 99.23 99.91 99.77 99.95 99.85 99.81 99.72 99.41 99.82 99.47 99.44

3.3.3. Evaluation of the MPA-RF

The proposed MPA-RF optimized the same parameters as for the MPA-GBDT. Table 6
reports the obtained results on the same databases with the same validation scheme, and the
MPA-RF provided the highest accuracy Acc = 99.93 and sensitivity Sn = 100% in the recog-
nition of cardiac disorders. At the class level, the MPA-RF achieved a sensitivity of 100%
for class F on the EDB database and ≥99.75 on the other two databases, although the class
F had the minimum number of samples of ≤0.08% from the total number of class samples.

Table 6. The performance of the MPA-RF classifier on all the databases’ classes.

Database MIT-BIH EDB INCART

Classes Acc Se Sp Pr F1 Acc Se Sp Pr F1 Acc Se Sp Pr F1

N 99.52 99.11 99.66 98.96 99.04 99.91 99.72 99.98 99.92 99.82 99.62 99.37 99.7 99.07 99.22
S 99.74 99.49 99.83 99.49 99.49 99.93 99.94 99.93 99.78 99.86 99.78 99.71 99.8 99.4 99.55
VEBs 99.66 98.73 99.98 99.94 99.3 99.93 99.6 100 100 99.87 99.61 98.75 99.91 99.73 99.24
F 99.75 99.75 99.75 99.24 99.5 99.92 100 99.9 99.69 99.84 99.93 99.95 99.92 99.77 99.86
Average 99.67 99.27 99.8 99.41 99.34 99.92 99.81 99.96 99.88 99.85 99.73 99.45 99.83 99.49 99.47

3.3.4. Evaluation of the MPA-kNN

For the MPA-kNN classifier, the K parameter (number of nearest neighbors) was
optimized. The MPA-kNN provided the lowest classification performance compared to
the MPA-SVM, MPA-GBDT, and MPA-RF due to the characterization of the kNN as a lazy
classifier depending on the distance for the classification process. However, the optimized
version, MPA-kNN, performed well compared to the kNN itself. The detection accuracy
of the AMMI classes with the MPA-kNN classifier was 94.96%, 95.40% and 92.14% on
the MIT-BIH, EDB, and INCART database, respectively. As depicted in Table 7, it is clear



Bioengineering 2023, 10, 429 11 of 16

that the MPA-kNN achieved an average Acc of 94:96%. Approximately ≤6.97% of the S
class and ≤9.07% of the VEBs class were not classified correctly. Thus, according to the
experimental results, we can conclude that the MPA-kNN performed well in terms of the
classification accuracy.

Table 7. The performance of the MPA-kNN classifier on all the databases’ classes.

Database MIT-BIH EDB INCART

Classes Acc Se Sp Pr F1 Acc Se Sp Pr F1 Acc Se Sp Pr F1

N 94.03 80.78 98.37 94.18 86.97 94.73 81.29 99.13 96.83 88.38 89.82 73.63 95.11 83.11 78.09
S 96.36 97.57 95.96 89.04 93.11 96.66 99.19 95.8 88.95 93.79 93.03 98.58 91.17 78.95 87.68
VEBs 96.99 92.14 98.65 95.9 93.98 97.85 95.46 98.65 95.96 95.71 91.93 75.4 97.56 91.31 82.59
F 98.39 99.72 97.95 94.13 96.85 99.02 99.9 98.73 96.3 98.07 99.24 99.85 99.04 97.19 98.5
Average 96.44 92.55 97.73 93.31 92.73 97.07 93.96 98.08 94.51 93.99 93.51 86.87 95.72 87.64 86.72

For more investigation, the convergence curves are presented for each optimized
classifier on the MIT-BIH, EDB, and INCART datasets in Figure 2. The MPA-SVM higighted
a high-speed convergence on the MIT-BIH database compared to the other models, while
the MPA-kNN was in last place. On other two databases, the MPA-GBDT and MPA-RF
had the highest speed convergence, and the MPA-kNN still had the least convergence.
Moreover, the MPA-GBDT and MPA-RF had close convergence on the three databases.
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Figure 2. The convergence curves of the optimized classifiers on the three databases.
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In order to higight the improvement in the performance of the classifiers after opti-
mization using the MPA algorithm, Tables 8–11 show the improvements in the performance
of each classifier with optimization (i.e., the classifier and its optimized version). The re-
ported performance criteria were the average values of the Acc, Sn, Sp, Pr, and F1 on the
three databases. The highest improvement was in the performance metrics of the SVM.
Moreover, the improvement on the INCART database was higher than on the other two
databases. Thus, it is clear that utilizing the proposed optimization algorithm improved
the performance of these four ML classifiers significantly.

Table 8. The performance comparison of the SVM and its optimized version, the MPA-SVM.

Database MIT-BIH EDB INCART

Average SVM MPA-SVM Improvement % SVM MPA-SVM Improvement % SVM MPA-SVM Improvement %

Acc 91.79 99.48 7.69 91.31 99.90 8.59 87.36 99.47 12.11
Sn 83.73 98.90 15.17 82.63 99.77 17.14 75.0 98.93 23.93
Sp 94.55 99.68 5.13 94.23 99.94 5.71 91.61 99.65 8.04
Pr 89.41 99.03 9.62 89.65 99.81 10.16 87.21 98.96 11.75
F1 84.20 98.97 14.77 82.18 99.79 17.61 72.62 98.95 26.33

Table 9. The performance comparison of the GBDT and its optimized version, the MPA-GBDT.

Database MIT-BIH EDB INCART

Average GBDT MPA-GBDT Improvement % GBDT MPA-GBDT Improvement % GBDT MPA-GBDT Improvement %

Acc 96.93 99.61 2.68 97.65 99.91 2.26 97.44 99.72 2.28
Sn 93.38 99.15 4.79 94.80 99.77 4.97 95.13 99.41 4.28
Sp 98.12 99.77 1.65 98.60 99.95 1.35 98.38 99.82 1.44
Pr 94.36 99.31 4.95 95.82 99.85 4.03 94.6 99.47 4.87
F1 93.84 99.23 5.39 95.29 99.81 4.52 94.88 99.44 4.56

Table 10. The performance comparison of the RF and its optimized version, the MPA-RF.

Database MIT-BIH EDB INCART

Average RF MPA-RF Improvement % RF MPA-RF Improvement % RF MPA-RF Improvement %

Acc 96.90 99.67 2.77 97.65 99.92 2.27 97.5 99.73 2.23
Sn 93.37 99.27 5.9 94.83 99.81 4.98 94.75 99.45 4.7
Sp 98.09 99.8 1.71 98.86 99.96 1.1 98.42 99.83 1.41
Pr 94.26 99.41 5.15 98.61 99.88 1.27 95.27 99.49 4.22
F1 93.79 99.34 5.55 95.3 99.85 4.55 94.99 99.47 4.48

Table 11. The performance comparison of the kNN and its optimized version, the MPA-kNN.

Database MIT-BIH EDB INCART

Average kNN MPA-kNN Improvement % kNN MPA-kNN Improvement % kNN MPA-kNN Improvement %

Acc 94.96 96.44 1.48 95.40 97.07 1.67 92.14 93.51 1.37
Sn 89.17 92.55 3.38 90.35 93.96 3.61 83.83 86.87 3.04
Sp 96.9 97.73 0.8 97.06 98.08 1.02 94.94 95.72 0.78
Pr 91.3 93.31 2.01 92.16 94.51 2.35 86.88 87.64 0.76
F1 89.71 92.73 7.14 90.56 93.99 3.43 83.83 86.72 2.89

3.4. Comparison with Other Methods

The classification performance of the four optimized ML classifiers was compared to 16
of the state-of-the art methods, and the obtained results are reported in Table 12. In contrast,
the results achieved by the previous other works were obtained for only five classes,
of which four were known classes, and only one was unknown. The current proposed
approaches accomplished average accuracies of 99.67%, 99.91%, 99.92%, and 97.07% on
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the EDB dataset for the MPA-SVM, MPA-GBDT, MPA-RF, and MPA-kNN, respectively.
The MPA-SVM, MPA-GBDT, and MPA-RF achieved the highest percentages in terms of the
ACC and Sn. Even the MPA-kNN, which was based on the lazy classifier kNN, performed
well against the SVM, CNN, and kNN models in [44–46]. It can be concluded from Table 12
that the proposed method yielded a significantly improved classification performance in
terms of the overall measurement factors compared to the other methods, which confirms
the effectiveness of the proposed optimized classifiers.

Table 12. Classification performance comparisons between the proposed method and other methods.

Methods #Classes #Beats Classifier Acc % Sn %

Roshan et al. [44] 5 34,989 SVM 93.50 99.30
Li et al. [47] 5 1800 SVM 97.30 97.40
Taiyong and Min [48] 4 100,688 RF 94.60 98.51
Serkan et al. [49] 5 83,648 CNN 99.10 93.91
Acharya et al. [45] 5 109,449 CNN 94.03 96.71
Yang et al. [50] 15 104986 KNN 97.70 -
Rishi et al. [46] 4 109,449 KNN 98.00 85.33
Shu-Lih et al. [51] 5 16,499 LSTM-CNN 98.10 97.50
Li et al. [52] 4 94,013 ResNet 99.06 93.21
Yildirim et al. [53] 13 833 1D-CNN 95.20 93.52
Oh et al. [54] 5 94,667 Modified U-Net 97.32 94.44
Marinho et al. [55] 5 100467 Bayes 94.30 -
Yang et al. [56] 15 3350 DL-CCANet 98.31 90.89
Plawiak et al. [57] 17 774 FGE 95.00 94.62
Patro et al. [58] 5 3551 PSO-GA-SVM 95.30 94.00
Qihang et al. [14] 8 6877 ATI-CNN 81.20 80.10

The proposed method

4 80,000 MPA-SVM 99.48 98.90
4 80,000 MPA-GBDT 99.61 99.15
4 80,000 MPA-RF 99.67 99.27
4 80,000 MPA-kNN 96.42 92.55

4. Conclusions

This paper proposed an automatic arrhythmia classification method based on a new
AI metaheuristic optimization algorithm and four ML classifiers for IoT-assisted smart
healthcare systems. Multiclassifier models including the MPA-SVM, MPA-GBDT, MPA-RF,
and MPA-kNN were introduced for classification with parameter optimization. The average
classification accuracies achieved by the MPA with the SVM classifier were 99.48% (MIT-
BIH), 99.90% (EDB), and 99.47% (INCART). The accuracies achieved by the MPA with the
GBDT were 99.61% (MIT-BIH), 99.91% (EDB), and 99.72% (INCART); meanwhile, the MPA
with the RF achieved 99.67% (MIT-BIH), 99.92% (EDB), and 99.73% (INCART), while the
MPA with the kNN achieved 96.44% (MIT-BIH), 97.07% (EDB), and 93.51% (INCART). It
is clear that the RF showed the most accurate results of these methods. Hence, it can be
concluded that incorporating the MPA scheme can effectively optimize the ML classifiers,
even a lazy one, such as the kNN. The achieved performance by the optimization step was
ranked among the highest reported to date.

In future works, to enhance the ability to predict heart problems, other optimization
algorithms can be investigated. For efficient methods to extract features and perform
classification, it is necessary to incorporate the real-time surveillance of cardiac patients.
Using powerful classification models (e.g., deep learning) is the possible next step of this
research. To have meaningful classification outcomes with greater accuracy, these powerful
classification models can be combined with the MPA algorithm, as it performed very well
and enhanced the accuracy of the classification process.
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