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Abstract: Elastic laminae, an elastin-based, layered extracellular matrix structure in the media of
arteries, can inhibit leukocyte adhesion and vascular smooth muscle cell proliferation and migra-
tion, exhibiting anti-inflammatory and anti-thrombogenic properties. These properties prevent
inflammatory and thrombogenic activities in the arterial media, constituting a mechanism for the
maintenance of the structural integrity of the arterial wall in vascular disorders. The biological basis
for these properties is the elastin-induced activation of inhibitory signaling pathways, involving the
inhibitory cell receptor signal regulatory protein α (SIRPα) and Src homology 2 domain-containing
protein tyrosine phosphatase 1 (SHP1). The activation of these molecules causes deactivation of cell
adhesion- and proliferation-regulatory signaling mechanisms. Given such anti-inflammatory and
anti-thrombogenic properties, elastic laminae and elastin-based materials have potential for use in
vascular reconstruction.
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1. Introduction

The wall of arteries consists of extracellular matrix components, including collagen
matrix and elastic laminae. The essential functions of the extracellular matrix are to organize
vascular endothelial cells, smooth muscle cells, and fibroblasts into the intima, media, and
adventitia of the arterial wall, respectively; provide mechanical strength and elasticity to the
arterial wall; and participate in cell signal transduction involved in vascular development
and pathogenic processes such as inflammation, thrombosis, and atherosclerosis. Elastic
laminae work with the collagen matrix in an antagonistic manner to control vascular cell
and leukocyte adhesion, proliferation, and migration, which are cell activities directly
influencing inflammatory, thrombogenic, and atherogenic processes [1–4]. Whereas the
collagen matrix stimulates these cell activities, enhancing inflammatory, thrombogenic,
and atherogenic processes [5–7], the elastic laminae exert an opposite effect, suppressing
these pathogenic processes [8–21]. The antagonistic action of the elastic laminae helps
prevent excessive inflammatory responses and vascular disorders [8,9,11–21]. In arterial
reconstruction, these elastic lamina properties can prevent intimal hyperplasia, a process
leading to restenosis and failure of arterial grafts. This paper reviews the role of the
arterial elastic laminae in controlling inflammatory responses, thrombosis, and neointima
formation in reconstructed arteries.

Inflammation in reconstructed arteries is a series of processes activated in response
to surgery, mechanical injury, and exposure to biomaterials [1,22–26]. In the host artery
near the junction with a reconstructed artery, several inflammatory processes can occur,
including elevation in the endothelial permeability, interstitial edema, cytokine expression
and secretion, leukocyte adhesion to injured endothelial cells, smooth muscle cell and
fibroblast proliferation, extracellular matrix overproduction, and fibrosis. At the junction of
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the host artery and the reconstructed artery, blood coagulation may be induced in response
to injury and hemorrhage. These processes contribute to thrombosis and intimal hyper-
plasia, resulting in the formation of neointima. In reconstructed arteries, inflammation
and thrombosis occur during the early phase with the level dependent on the material at
the blood-contacting surface [27–29]. For instance, in autologous vein grafts, the causes
and pathological processes described above for the host artery occur. In synthetic material-
based arterial grafts, blood coagulation can be induced rapidly, resulting in thrombosis
(note that synthetic grafts can only be used under high flow conditions, which reduce
the rate of thrombogenesis, and it is necessary to use anti-coagulants to minimize the risk
of thrombus development). Following this phase, smooth muscle cells can proliferate
and migrate from the host artery into the thrombus of the reconstructed artery, contribut-
ing to the development of neointima, which can cause restenosis of the reconstructed
artery [30–38]. In autologous vein-based arterial constructs, smooth muscle cells in the
venous wall can also proliferate and migrate into the thrombus to form neointima. Thus,
a critical concern in arterial reconstruction is how to prevent inflammatory responses,
thrombosis, and neointima formation. As the arterial elastic laminae exert an inhibitory
effect on inflammatory responses, thrombosis, and smooth muscle cell proliferation and
migration [8,9], this extracellular matrix and elastin-based materials can potentially be used
as a surface material for arterial reconstruction.

2. Molecular Structure of Elastic Laminae
2.1. Elastin Gene

Elastin is a polymer, and its precursor, tropoelastin, is a protein encoded by the
ELN gene in humans [39]. The ELN gene is a 45 kb segment within chromosome 7q11.1.
It is comprised of 34 exons and nearly 700 introns [40]. Elastin consists of alternating
hydrophobic and hydrophilic domains. The hydrophobic domains are rich in hydrophobic
amino acids such as glycine and proline. These domains are important for the self-assembly
of supramolecular structure. The hydrophilic domains are rich in lysine residues. These
domains are important for crosslinking to form a highly stable, insoluble structure.

Elastin production occurs primarily during fetal development and postnatal growth
and is negligible by early adulthood [41–43]. ELN gene transcription is steady throughout
the lifespan and elastin production is primarily regulated by posttranscriptional destabi-
lization of tropoelastin mRNA in mature tissue [44,45]. The low synthesis and turnover of
elastin in adults has important implications in aging and disease.

There are at least 11 isoforms of elastin as a result of alternative splicing of the ELN
pre-mRNA [46,47]. These isoforms result in tissue-specific variants of elastin with unique
properties [48]. The structure and function of these isoforms are subjects of ongoing research.

2.2. Tropoelastin

Tropoelastin is the soluble protein precursor to elastin and has a molecular weight
of 60–70 kDa [49–51]. Once exported from the cell, tropoelastin molecules reversibly
self-assemble into globular aggregates of elastin. Self-assembly is caused by interactions
between the hydrophobic domains in a process known as coacervation [52–54]. This is
followed by irreversible crosslinking of lysine residues within the hydrophilic domains.
The crosslinking process involves the formation of desmosine and isodesmosine covalent
crosslinks by the enzyme lysyl oxidase (LOX) [55]. Both inter- and intra-chain crosslinks are
formed. Important for its mechanical characteristics, tropoelastin is sufficiently structured
to self-assemble, yet sufficiently flexible to maintain elasticity. Elastin’s remarkable extensi-
bility arises from the coil region near the N-terminus. This region acts like a spring, allowing
tropoelastin to stretch up to eight times its resting length when free of crosslinks [56].

2.3. Elastic Fibers and Elastic Laminae

Elastic fibers are composed of amorphous elastin and fibrous microfibrils (mainly
fibrillin-1 and/or -2) [57]. The microfibrils are attached to the cell surface via integrins and
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the elastin aggregates are integrated along the microfibril scaffold in a process known as
elastogenesis [58]. Once crosslinked, mature elastic fibers are insoluble and highly durable,
exhibiting a half-life of 74 years [59].

Elastic fibers in the medial layer of arteries are primarily produced by vascular smooth
muscle cells [60]. These elastic fibers orientate circumferentially and organize into fen-
estrated sheets called elastic laminae. The internal elastic lamina defines the boundary
between the intima and the media, and the external elastic lamina defines the boundary
between the media and the adventitia. Larger arteries have multiple concentric layers of
elastic laminae between the internal and external laminae.

3. Mechanical Properties of Elastic Laminae

Elastin is highly elastic and imparts unique mechanical properties to elastic laminae
within the arterial wall. Elastic laminae will stretch circumferentially when a load is applied
and then return to their original configuration when the load is removed. Energy loss is
minimal during the loading and unloading cycle, estimated to be 15–20% [61]. The elastic
laminae allow for pressure wave propagation in arteries to help the flow of blood. The
strain energy stored during systole allows blood to continue flowing downstream during
diastole as the elastic arteries recoil. This is especially important for the coronary circulation,
which is perfused during diastole.

Atomic force microscopy (AFM) measurements have determined that single elastic
fibers have Young’s moduli in the range of 0.3–1.5 MPa [62,63]. Elastin from aortic tissue
has a Young’s modulus in the range of 0.1–0.8 MPa and ultimate strain in the range of
100–120% [64,65]. Elastin is several orders of magnitude more compliant than collagen,
which has a Young’s modulus in the range of 300–1200 MPa [66,67].

Elastic fibers in the aorta of rabbits are oriented circumferentially (i.e., perpendicular to
blood flow) with the exception of the internal elastic lamina, where elastic fibers are oriented
longitudinally (i.e., parallel to blood flow) [68]. The circumferentially oriented elastic fibers
are able to support the circumferential mechanical stress that arteries experience during
systole. The longitudinally oriented elastic fibers are finer and more fenestrated to act as a
semi-permeable membrane.

The circumferential mechanical properties of elastin in the descending thoracic aorta of
pigs are position-dependent [69]. Elastin is 30% stiffer and 54% stronger near the diaphragm
compared to that near the aortic arch. This was explained by a progressive increase in
circumferential alignment of elastic fibers along the length of the aorta. The study has
also found that the circumferential strain of the aortic wall is relatively constant along the
aorta for a given pressure, indicating location-dependent variations in cellular and matrix
compositions, the arterial wall and lumen dimensions, and the distribution of arterial
wall stress.

The micromechanics of elastic laminae in arteries are determined by reversible struc-
tural changes: the folding and unfolding of elastic fibers/elastic laminae at the micro-level
and stretching and recoiling of elastin at the nano-level [70]. At an arterial blood pressure
level, the elastic fibers and laminae are unfolded, whereas at zero blood pressure (when an
arterial specimen is removed), these structures are folded. Likewise, the elastin molecules
are elongated at an arterial blood pressure level, whereas these molecules recoil at zero
blood pressure. Interestingly, the elastic laminae near the inner portion of the arterial wall
are wavier than those in the outer portion of the arterial wall and can therefore unfold to a
larger degree when blood pressure increases because of the presence of a more negative
stress (a higher compressive stress) in the inner portion. This is a mechanism to accom-
modate the larger circumferential stretch experienced by the inner portion of the wall in
response to an increase in arterial blood pressure. This results in approximately even stretch
of the elastic laminae and even stress distribution throughout the arterial wall, avoiding
inner-wall stress concentration, which is a condition that potentially causes inner-wall cell
injury. These findings were confirmed by a subsequent study using synchrotron-based
phase-contrast imaging [71].
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A study of biaxial mechanical properties of human arteries demonstrated that most
common carotid arteries, subclavian arteries, thoracic aortas, abdominal aortas, and com-
mon iliac arteries are stiffer in the longitudinal direction, while most renal arteries are
stiffer in the circumferential direction [72]. Elastic fibers were primarily circumferentially
oriented and localized to the medial layer in the common carotid artery, subclavian artery,
thoracic aorta, and abdominal aorta, reflecting the higher elasticity in the circumferential
direction. Elastic fibers were primarily longitudinally oriented and localized to the external
elastic lamina in the renal artery, reflecting the higher elasticity in the longitudinal direction.
Interestingly, the elastic fibers were also primarily longitudinally oriented and localized
to the external elastic lamina in the common iliac artery, opposing the higher elasticity
in the circumferential direction. The authors speculated that the longitudinally aligned
elastic fibers in the common iliac artery may be necessary to accommodate bending and
compression as the hip moves.

A study of human left anterior descending (LAD) coronary arteries found that the
intimal and adventitial layers are stiffer in the longitudinal direction compared to the
circumferential direction, whereas the reverse is true for the medial layer [73]. These
findings are consistent with the predominantly longitudinal orientation of collagen and
elastin fibers in the adventitial layer of coronary arteries, whereas these fibers have a more
complicated three-dimensional structure without a preferred orientation in the medial
layer [74].

4. Fundamental Pathogenic Processes in Reconstructed Arteries
4.1. Inflammation

Inflammation is a series of processes activated in response to surgical and mechanical
injury in reconstructed arteries. Inflammation can be divided into three phases: acute,
sub-acute, and chronic phases [1,22–26]. The acute phase starts immediately following an
injury and lasts several days. This phase is characterized by the activation of inflammatory
mediators, elevation in the endothelial permeability, and leukocyte activation and adhesion.
Inflammatory mediators include bradykinin, histamine, and cytokines. Bradykinin is a
peptide generated by kallikrein protease-mediated cleavage of plasma kininogen expressed
primarily in hepatic cells [75,76]. In blood vessels, bradykinin can cause vascular smooth
muscle cell relaxation, resulting in vasodilation and elevation in blood flow to injured areas,
and can induce an increase in endothelial permeability, facilitating inflammatory mediator
transport across the endothelium and leukocyte adhesion [77]. Bradykinin also causes pain,
swelling, and diuresis [78]. Histamine is an amino acid derivative from histidine under the
action of histidine decarboxylase in primarily mast cells and basophils [79] and is primarily
generated and stored in mast cells and basophils [80]. Upon inflammatory stimulation,
histamine can be released to act on vascular endothelial cells to open the tight junction,
resulting in an increase in endothelial permeability, a change causing edema. Cytokines
are a superfamily of small proteins, expressed and released from primarily leukocytes in
response to injury [1,81]. The majority of cytokines, such as interleukin 1α (IL1α), IL2,
IL3, IL6, IL12, and chemokines, induce leukocyte activation, adhesion, and extravasation,
although several cytokines such as IL10, IL27, and IL35 exert an opposite effect [1]. Overall,
during the acute phase, the inflammation-stimulating cytokines are dominant to accelerate
inflammatory responses.

The acute inflammatory phase is followed by the sub-acute phase, which lasts for
several weeks. This phase is characterized by growth factor upregulation, endothelial
cell proliferation and angiogenesis, vascular smooth muscle cell proliferation and migra-
tion from the host artery to the reconstructed artery, and over-generation of extracellular
matrix components, primarily including the collagen matrix and proteoglycans. Several
growth factors, including vascular endothelial growth factors (VEGFs), platelet-derived
growth factors (PDGFs), and fibroblast growth factors (FGFs), are commonly expressed
and released from vascular cells in response to injury [1]. These growth factors regulate
vascular cell proliferation and migration via autocrine and paracrine mechanisms. VEGFs
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can induce vascular endothelial cell proliferation, an essential process for the repair of lost
endothelial cells and angiogenesis. PDGFs and FGFs promote vascular smooth muscle
cell proliferation and migration from the host artery to the reconstructed artery [1,82]. In
autologous vein-based arterial constructs, smooth muscle cells can also migrate from the
venous media to the sub-endothelial space, contributing to neointima formation [32,35].
The growth-factor-activated vascular cells can express and release extracellular matrix
components, especially collagen, causing matrix accumulation and fibrosis. The chronic
phase of inflammation is characterized by the continuous generation of extracellular matrix
from the activated smooth muscle cells and fibroblasts, contributing to the advancement
of fibrosis.

4.2. Thrombosis

Thrombosis is an acute process initiated in response to endothelial injury, hemorrhage,
and exposure to biomaterial- and matrix-based arterial constructs. Thrombosis can start
with blood coagulation caused by the formation of insoluble fibrin gels from its soluble
precursor fibrinogen. This process requires the formation and action of thrombin, a pro-
teinase that can cleave fibrinogen to generate fibrin. Thrombin arises from its precursor
prothrombin, an inactive soluble plasma protein expressed and released from the liver [83],
under the action of the proteinase prothrombinase. Injured endothelial cells and fibroblasts
can express and release this proteinase [84], thus inducing blood coagulation.

Although blood coagulation is a process necessary to stop hemorrhage in the event of
trauma, it causes the formation of thrombi, which are pathological structures composed of
fibrin and blood cells, including erythrocytes, leukocytes, and platelets, and are found on
the surface of reconstructed arteries [1,85,86]. The fibrin gel established during coagulation
can attract and entrap blood cells. The entrapped leukocytes can upregulate and release
cytokines that can continuously activate and attract leukocytes from the circulatory system
to the fibrin gel [87,88]. This process, together with continuous fibrin gel development and
blood cell entrapment, contributes to thrombus development [1,87,88]. An extreme case of
endothelial injury in the host artery is endothelial denudation, resulting in the exposure of
the supporting extracellular matrix. Platelets can adhere to selected matrix components,
facilitating blood coagulation and thrombosis [89,90]. In mild injury, a thrombus grows
slowly and can be covered by endothelial cells that are regenerated from surrounding
endothelial cells. This endothelialization process prevents fibrin formation, blood cell
entrapment, and enlargement of the thrombus. A small thrombus usually does not signifi-
cantly interfere with blood flow. However, in severe injury, rapid fibrin gel formation and
blood cell entrapment can occur, resulting in the formation of massive thrombi that can
partially or completely obstruct blood flow and cause acute failure of reconstructed arteries.
Furthermore, thrombi are not stable and can detach from the base to form emboli, resulting
in blockade of distal arteries and ischemic injury [1].

4.3. Intimal Hyperplasia

Intimal hyperplasia in reconstructed arteries is cell proliferation to increase the cell
density within the intima, primarily involving smooth muscle cells, a process resulting
in the formation of neointima [30,91,92]. Neointima is focal in nature, often localized to
the junction of the host artery with the reconstructed artery, where anastomosis causes
injury, and regions exposed to vortex blood flow, where the level of fluid shear stress is
low [32,35,93]. In structure, neointima is composed of leukocytes, platelets, smooth muscle
cells, and extracellular matrix (primarily collagen and proteoglycans) with endothelial
cells on the surface [1,32,57]. In reconstructed arteries, neointima develops from thrombi,
involving smooth muscle cell migration from the host artery (and the vascular wall in
the case of vein-based arterial constructs) and endothelialization. The consequence of
neointima formation is restenosis and failure of reconstructed arteries.
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5. Anti-Inflammatory and Anti-Thrombogenic Activities of Elastic Laminae
5.1. Elastic Laminae-Based Protection against Arterial Inflammation

The arterial media experience much reduced inflammatory activity compared with
the arterial intima in response to a given level of injury. The arterial intima is susceptible
to leukocyte infiltration, erythrocyte and platelet deposition, and smooth muscle cell
hyperplasia, resulting in inflammation, thrombosis, and intimal hyperplasia, whereas the
arterial media are rarely inflicted by these pathological processes. The arterial medial
resistance to inflammation, thrombosis, and cell hyperplasia can possibly be attributed to
the presence of elastic laminae. Key evidence that supports this concept is the capability of
the elastic laminae to suppress leukocyte activities.

The arterial elastic laminae resist leukocyte adhesion. In a cell-culture-based test, the
elastic-lamina-rich medial matrix and the collagen-rich adventitial matrix were prepared
from the mouse aorta, and the elastic lamina surface was exposed by NaOH treatment [8,9].
The prepared matrix specimens were placed on separate culture dishes. Mouse leukocytes
were isolated and cultured on the elastic-lamina-rich and collagen-rich matrix substrates.
At selected time points (3, 6, 12, and 24 h), the matrix specimens were removed from the
culture dishes and used for counting leukocytes. The density of leukocytes on the surface
of the collagen-rich adventitial matrix was about 50 to 105 times higher than that on the
elastic-lamina-rich medial matrix from 3 to 24 h of culture. These observations support the
concept that the elastic laminae prevent leukocyte adhesion.

The arterial elastic laminae prevent leukocyte migration. In a rat arterial reconstruction
model in vivo, allogenic aortic matrix scaffolds were prepared by removing cells and grafted
into the aorta [9]. Whereas dense leukocytes were found in the collagen-rich adventitia
of the aortic matrix scaffold at 1, 10, and 30 days following aortic grafting, leukocytes
were rarely present in the elastic-lamina-rich media of the aortic matrix scaffold. The
density of leukocytes within the collagen-rich adventitia was about 2000 to 4000 times
higher than that within the elastic-lamina-rich media of the aortic matrix scaffold. An
interesting observation was that, even at the end of the aortic matrix scaffold, leukocytes
were unable to migrate into the inter-elastic lamina gaps, which were considerably larger
than the leukocytes. These observations demonstrate the capability of the elastic laminae
to inhibit leukocyte migration.

It is important to note that the arterial elastic laminae and their degradation prod-
ucts, elastin-derived peptides, may behave differently in the regulation of inflammatory
responses. Whereas the elastic laminae prevent leukocyte adhesion and infiltration, elastin-
derived peptides exert the opposite effect [94]. Selected elastin-derived peptides may
induce inflammation-stimulating processes by activating the elastin receptor complex and
cathepsin A-neuraminidase 1 complex signaling systems, which contribute to inflamma-
tory responses and atherogenesis [94]. It is possible that the exposure of selected domains
of a complete 3D-folded elastin molecule is required for the anti-inflammatory action of
the arterial elastic laminae. Selected elastin-derived peptides, on the other hand, may
exhibit a pro-inflammatory action when the inhibitory domains are disassembled during
elastin degradation.

Another point to address is why the arterial media are more resistant to leukocyte
infiltration than the arterial intima. In addition to the difference in extracellular matrix
composition as discussed above, different cell types—endothelial cells in the intima and
smooth muscle cells in the media—may play distinct roles in the control of inflammatory
responses. Injured endothelial cells may facilitate leukocyte adhesion and infiltration,
whereas smooth muscle cells may hypothetically inhibit these inflammatory activities.
However, the following evidence does not support the anti-inflammatory role of smooth
muscle cells. First, when the internal elastic lamina was damaged mechanically, leukocytes
were able to migrate into the arterial media in the presence of smooth muscle cells in vivo [9].
Second, in decellularized arterial scaffolds, leukocytes were not able to migrate into the
gaps between the elastic laminae, even though the gap width was larger than the leukocyte
diameter [9]. Thus, the arterial elastic laminae, but not the smooth muscle cells, resist
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leukocyte adhesion and infiltration. It should be noted that elastic lamina fragmentation
occurs in aged arteries. This change often leads to smooth muscle cell migration from the
arterial media to the intima, contributing to neointima formation [95,96]. It remains to be
demonstrated whether leukocytes can migrate into the media of aged arteries.

5.2. Elastic Lamina-Mediated Prevention of Vascular Smooth Muscle Cell Proliferation and
Neointima Formation

The arterial elastic laminae suppress vascular smooth muscle cell proliferation be-
cause of the inhibitory action of elastin [13,15,16]. In mice with elastin gene deficiency
(Eln−/−), the arterial smooth muscle cells exhibit an over-proliferative phenotype [15].
Humans with elastin gene mutation and elastin deficiency, found in supravalvular aortic
stenosis and Williams–Beuren syndrome, express a similar phenotype in large arteries,
often associated with excessive smooth muscle cell proliferation and arterial hypertrophy
and stenosis, resulting in blood flow obstruction [12,14–16,19,21]. In experimental coro-
nary artery restenosis, administration of elastin peptides to the injured artery results in a
significant reduction in the rate of neointima formation [13].

Arterial elastic laminae could effectively prevent neointima formation in an arterial
matrix implantation model [8]. In this investigation, aortic extracellular matrix scaffolds
were harvested from donor rats and prepared to remove cells and expose the basal lamina,
internal elastic lamina, or adventitial collagen by NaOH treatment. Matrix scaffolds with
the three different surface components were implanted into the aortas of recipient rats and
examined at 5, 10, and 20 days. The rate of smooth muscle cell proliferation, evaluated by
the BrdU incorporation assay, differed substantially across the three allogenic aortic matrix
scaffolds with distinct surface components. The elastic lamina surface exhibited the lowest
BrdU index compared with the basal lamina and collagen surfaces at a selected time point.
The highest BrdU index was found at the collagen surface. In the same allogenic aortic
matrix scaffold implantation model, the elastic lamina surface was associated with the
lowest level of neointima compared with the basal lamina and collagen surfaces, whereas
the collagen surface was associated with the highest level of neointima. These observations
support the concept that the arterial elastic laminae inhibit smooth muscle cell proliferation
and neointima formation.

5.3. Elastin-Enhanced Actin Filament Generation in Vascular Smooth Muscle Cells

The coexistence of elastic laminae in the arterial media suggests a role for elastin in
the development and maintenance of the contractile phenotype of the vascular smooth
muscle cells. The building block of elastin, tropoelastin, has been demonstrated to cause
the generation of actin filaments in vascular smooth muscle cells [7,97]. One peptide
from tropoelastin, VGVAPG, has been suggested as a key element responsible for the
myofibrillogenesis of smooth muscle cells [97]. Mechanistically, this short peptide, as
well as tropoelastin, can induce actin polymerization by activating the G protein-coupled
receptor, i.e., the RhoA signaling pathway [97]. These observations support the concept
that the elastic laminae serve as a regulatory factor for the development and maintenance
of the contractile phenotype of vascular smooth muscle cells.

The arterial elastic laminae play a role in the development of vascular smooth muscle α
actin filaments in bone-marrow-derived CD34-positive cells [10]. Organ- and tissue-specific
environmental conditions have long been considered cues that induce stem cell differenti-
ation into specified functional cells. The arterial elastic laminae can create a condition in
favor of developing the smooth muscle cell contractile phenotype, characterized by the
presence of orderly aligned smooth muscle α actin filaments, which contrasts with the
proliferative and synthetic phenotype found in the neointima. In an in vitro test, bone-
marrow-derived CD34-positive cells developed smooth muscle α actin filaments when
cultured on the surface of the mouse arterial elastic laminae, but these cells did not form
smooth muscle α actin filaments when cultured on the adventitial collagen matrix [4].
These observations are consistent with the coexistence of smooth muscle cells with the
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elastic laminae in the arterial media, but not with the collagen matrix in the adventitia,
supporting a role for the elastic laminae in the induction of smooth muscle cells from stem
cells as well as in the maintenance of the contractile phenotype of the smooth muscle cells.

5.4. Mechanisms of the Inhibitory Action of Elastic Laminae

A fundamental question is how the arterial elastic laminae exert an inhibitory effect
on the adhesion, proliferation, and migration of vascular cells and leukocytes. A prior in-
vestigation demonstrated that an inhibitory signaling pathway, involving signal regulatory
protein α (SIRPα) and Src homology 2 domain-containing protein tyrosine phosphatase-1
(SHP1), potentially mediates the inhibitory action of the arterial elastic laminae [9]. The
elastic lamina component, elastin, can bind to and activate SIRPα, a transmembrane recep-
tor that can recruit and activate SHP1, an enzyme capable of dephosphorylating selected
substrate proteins, including growth factor receptor protein tyrosine kinases, focal adhesion
kinase, and Src homology 2 domain-containing protein tyrosine kinase (Figure 1). Growth
factor receptor protein tyrosine kinases transmit growth factor signals to cause cell prolifer-
ation and migration, and focal adhesion kinase and Src homology 2 domain-containing
protein tyrosine kinase relay matrix-dependent integrin signals to stimulate cell adhesion.
Dephosphorylation of protein tyrosine kinases usually suppresses the activity of these ki-
nases as well as the kinase-induced cell activities. Given such actions of the protein tyrosine
kinases, the deactivation of these kinases in response to SHP1 results in the inhibition of
vascular cell and leukocyte adhesion, proliferation, and migration [9]. In summary, the
inhibition of the growth factor protein tyrosine kinase activity by the SHP1 action may
promote the development of the contractile phenotype of vascular smooth muscle cells.
This concept is consistent with the observation that growth factor-activated proliferative
smooth muscle cells in injury-induced neointima (a structure without elastic laminae, but
with elevated growth factor signaling actions) exhibit much reduced and more irregularly
organized α actin filaments compared with healthy arterial medial smooth muscle cells that
reside within the gaps between elastic laminae and are subject to a minimal level of growth
factor activity [32,35,36]. However, the molecular regulatory mechanisms downstream to
SHP1 need further investigation.
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subject to a minimal level of growth factor activity [32,35,36]. However, the molecular 
regulatory mechanisms downstream to SHP1 need further investigation. 
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Figure 1. Mechanisms of the inhibitory action of elastin. SIRPα: Signal regulatory protein α. GFRPTK:
Growth factor receptor protein tyrosine kinases. FAK: Focal adhesion kinase. Src: Src homology
2 domain-containing protein tyrosine kinase. SHP1: Src homology 2 domain-containing protein
tyrosine phosphatase-1.

6. Application of Elastic Laminae and Elastin-Based Materials to Arterial Reconstruction

Autogenous vein- and arterial graft-based arterial reconstruction is an effective ap-
proach for the treatment of occlusive arterial disorders. Autogenous venous and arterial
grafts have been considered the most reliable graft types because of their natural properties
and performance, although these grafts are prone to thrombosis, inflammation, and inti-
mal hyperplasia, resulting in graft stenosis and failure [98–103]. However, due to limited
quantity, vascular disease, or prior harvests, suitable autogenous grafting materials are



Bioengineering 2023, 10, 424 9 of 16

often unavailable. Consequently, researchers have been working intensively over the past
several decades to develop reliable tissue-engineered and synthetic-material-based grafts
for vascular reconstruction.

A major challenge in the development of effective tissue-engineered and synthetic
vascular grafts is the prevention of inflammatory and thrombogenic responses [104–107].
Numerous synthetic vascular graft types have been developed, but are not suitable for
small diameter artery reconstruction due to host inflammatory and thrombogenic responses.
Synthetic materials possess poor blood compatibility, often activating leukocytes and
causing blood coagulation, which are fundamental processes that lead to inflammation and
thrombosis [108].

Tissue-engineering approaches have been used to develop patient-matching cellu-
larized vascular constructs with natural properties [107,109], which are efficacious for
replacing failed small diameter arteries. Although few tissue-engineered vascular grafts
have attained widespread clinical acceptance, several vascular tissue-engineering strategies
have been promoted for developing arterial constructs. In particular, cell-sheet-based
approaches have been used to produce natural blood-vessel-like constructs, some of which
have been tested in clinical trials with excellent results [108]. For example, long-term
results from a recent human study with a cell-sheet-derived graft for hemodialysis access
showed great promise as an alternative to synthetic grafts [109,110]. However, these ap-
proaches require tedious and complex culture and maturation processing. They also require
a patient-matching cell harvest and expansion phase. The need for patient-matching cells
extends the preparation time, increases the cost, and shortens the shelf-life, all of which
precludes the feasibility of meeting the urgent needs of patients who require off-the-shelf
grafts. Furthermore, it may not be possible to reproduce the exquisite material properties
inherent to native arterial tissue.

Decellularized arterial matrix scaffolds hold greater promise as implant materials for
small-diameter arterial reconstruction [111,112]. These scaffolds possess ideal mechani-
cal properties, porosity, and cell adhesive and regenerative properties. However, native
arteries that are decellularized to avoid immunogenic responses no longer have an en-
dothelium, displaying an exposed thin collagen-rich matrix layer (from the basal lamina) to
the circulating blood, promoting potent thrombosis and inflammation upon engraftment.
Decellularization approaches therefore typically require a patient-matching endothelial
layer on the luminal surface of arterial constructs before engraftment [107]. However,
endothelial cells grown on arterial constructs are not stable and can detach rapidly when
exposed to the arterial blood flow. The field of vascular engineering has not developed
an effective arterial construct with an intact native endothelium despite many decades of
intensive effort [113]. Furthermore, this approach requires cell harvesting, seeding, and
expansion, precluding urgent uses.

To date, materials used for vascular graft engineering, including synthetic polymers
and collagen matrices, can cause profound inflammatory and thrombogenic responses
when placed in blood contact [104,107,114], contributing to intimal hyperplasia and graft
stenosis. Since the arterial elastic-lamina-dominant matrix can effectively prevent leukocyte
adhesion and transmigration in matrix-based arterial reconstruction and reduce inflam-
mation and thrombosis [115,116], this matrix may be used to establish a blood contacting
layer, as a substitute for an intact endothelium, to alleviate inflammatory and thrombogenic
responses in engineered vascular grafts. Several vascular graft-engineering approaches
have been developed to exploit the anti-inflammatory and anti-thrombosis properties of
elastin [117]. One approach incorporates synthetic elastin or the tropoelastin precursor
into engineered materials [118–125]. This approach can produce a synthetic graft with
thrombogenic and immunogenic suppressive properties; however, the elastin-containing
material lacks the mechanical properties of the native artery that has been optimized
through evolution for cell and tissue regeneration/remodeling.

Another approach relies on decellularized arterial elastic laminae. In this approach, the
elastic laminae are either completely purified from a donor artery or left interconnected with
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a portion of the native collagen matrix. In the case of complete elastic lamina purification,
a synthetic scaffold is required to support the purified native elastic lamina layer due to
the loss of the mechanical strength from the removal of the collagen matrix [126]. In the
other case, if the elastic laminae remain interconnected with the native collagen matrix, it
is necessary to deplete the basal lamina to expose the internal elastic lamina as the blood-
contacting surface while maximizing the preservation of the mural collagen matrix and
other native constituents to retain the natural regenerative properties. One approach is to
incubate the native artery in an acidic or basic solution for varying times to completely
deplete the basal lamina from the blood-contacting surface while reducing the dissolution
of mural collagen matrix [8].

All materials developed so far for vascular graft engineering have critical limitations
that preclude their widespread clinical acceptance. There is a pressing need to develop
clinically feasible, universally applicable, and shelf-stable vascular grafting materials.
An ideal vascular graft should match the mechanical characteristics of the native artery.
Concurrently, viable vascular grafts must re-establish the properties of a native endothelium
at the blood-contacting surface, avoid provoking inflammatory responses, remain shelf-
stable over extended time periods prior to use, be easy to handle, and be commercially
and clinically feasible. The main challenges have been mimicking a confluent endothelium
on the luminal surface of grafting materials and difficulties in generating biocompatible
arterial constructs. A future direction is to use decellularized native matrix materials
with a uniform elastic lamina blood-contacting surface while retaining the outstanding
mechanical properties, porosity, and cell-interaction capability of native arteries. We
have made considerable progress in engineering such a vascular grafting material by
selective surface collagen depletion in decellularized porcine internal mammary arteries
(Figure 2). Once the approach is optimized, the elastin-rich grafts may be used for arterial
reconstruction without the need for endothelialization. Acellular grafting materials with
a luminal elastic lamina surface are shelf-stable and can be stocked and used to meet the
urgent needs of patients.
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Figure 2. Preparation of arterial matrix scaffolds with a luminal elastic lamina surface. (A,B) Porcine
mammary artery cross section (A) and close-up (B) showing collagen matrix (red) and abundant
elastic laminae (black) in the arterial wall. The thin layer of native luminal surface collagen is
identified by arrows. (C–E) Arterial matrix specimens processed by using high-viscosity acidic
gels ((C), control gel; (D), 2 h treatment in glycolic acid gel; (E), 2 h treatment in lactic acid gel).
These treatments can selectively remove the internal collagens while preserving the mural collagens.
Additional work is required to optimize this approach.
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It is important to address the technical aspect of preparing arterial matrix scaffolds
with a luminal elastic lamina surface. We have used a high viscosity acidic gel to restrict
matrix depletion activity to the artery luminal surface. The gel (made from polylactic acid
or polyglycolic acid) is of sufficient molecular weight to reduce acid diffusion into the
arterial wall. Thus, the natural matrix composition and structure of native arteries can
be preserved, including mechanical and remodeling properties. Future work along this
direction could produce commercially and clinically feasible small-diameter vascular grafts
that can be mass-produced at low cost by using donor specimens. These strategies will
potentially establish a basis for the development of matrix material-based grafts for small
artery reconstruction.

Another potential application for elastin-based materials is to coat arterial stents for
preventing in-stent thrombosis and neointima formation. Similar to biomaterial-based
arterial constructs, stents can cause thrombosis rapidly following placement, resulting in
neointima formation and arterial restenosis [127,128]. This has long been a challenging
problem. Coating stents with various agents, such as anticoagulants, biomaterials, an-
timitotic substances, and corticosteroids [127], has been considered a potentially effective
approach for reducing stent-induced neointima formation. However, the current coating
agents may cause substantial inflammatory responses (biomaterials) or may only exert anti-
thrombogenic and anti-hyperplastic effects for a short period (anticoagulants, antimitotic
substances, and corticosteroids). Elastin is an insoluble stable polymer that, if able to firmly
adhere to stents, may exert anti-inflammatory, anti-thrombogenic, and anti-hyperplastic
effects for a longer time.

7. Concluding Remarks

The elastin-based extracellular matrix exhibits an inhibitory effect on leukocyte and
vascular smooth muscle cell proliferation, adhesion, and migration. Given that these cell
activities contribute to neointima formation in reconstructed arteries, this feature renders
the elastin matrix a potential material for constructing the blood-contacting surface of
arterial constructs. Preliminary experimental investigations have provided promising
results. However, the mechanisms of the inhibitory elastin action remain to be investigated,
and it is challenging to coat the luminal surface of an arterial construct with an elastin-
based matrix.
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