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Abstract: Segmentation of the prostate gland from magnetic resonance images is rapidly becoming a
standard of care in prostate cancer radiotherapy treatment planning. Automating this process has
the potential to improve accuracy and efficiency. However, the performance and accuracy of deep
learning models varies depending on the design and optimal tuning of the hyper-parameters. In this
study, we examine the effect of loss functions on the performance of deep-learning-based prostate
segmentation models. A U-Net model for prostate segmentation using T2-weighted images from
a local dataset was trained and performance compared when using nine different loss functions,
including: Binary Cross-Entropy (BCE), Intersection over Union (IoU), Dice, BCE and Dice (BCE
+ Dice), weighted BCE and Dice (W (BCE + Dice)), Focal, Tversky, Focal Tversky, and Surface
loss functions. Model outputs were compared using several metrics on a five-fold cross-validation
set. Ranking of model performance was found to be dependent on the metric used to measure
performance, but in general, W (BCE + Dice) and Focal Tversky performed well for all metrics
(whole gland Dice similarity coefficient (DSC): 0.71 and 0.74; 95HD: 6.66 and 7.42; Ravid 0.05 and
0.18, respectively) and Surface loss generally ranked lowest (DSC: 0.40; 95HD: 13.64; Ravid −0.09).
When comparing the performance of the models for the mid-gland, apex, and base parts of the
prostate gland, the models’ performance was lower for the apex and base compared to the mid-gland.
In conclusion, we have demonstrated that the performance of a deep learning model for prostate
segmentation can be affected by choice of loss function. For prostate segmentation, it would appear
that compound loss functions generally outperform singles loss functions such as Surface loss.

Keywords: prostate cancer; prostate segmentation; U-Net; mp-MRI; loss function; medical imaging

1. Introduction

Multiparametric magnetic resonance imaging (mp-MRI) is increasingly being used in
the computer-aided diagnosis, computer-assisted surgery and radiation therapy planning
for prostate cancer [1,2]. Accurate prostate segmentation for radiation therapy treatment
planning is necessary to ensure the prostate receives an adequate amount of radiation for
tumor control whilst minimizing the amount of dose received by other organs, such as
the bladder and rectum [3]. Manual segmentation has been shown to demonstrate a high
degree of intra- and inter-variability, particularly at the base and apex of the prostate [4].
Additionally, manual segmentation is subjective, time-consuming and can be affected by
level of experience. In comparison, automatic segmentation is fast and can decrease human
bias and errors [5–7].

The U-Net [8] architecture has been successfully applied in prostate segmentation in
several studies [9–11]. However, applying deep neural networks for this task can result
in variable outcomes, as multiple factors can influence the model outcome. Firstly, per-
formance of auto-segmentation models are highly dependent on training dataset features,
quality and number of samples [9]. In particular, the small sample size typically used in
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prostate segmentation models makes automatic segmentation very challenging. Prostate
shape and texture may vary widely between different patients and the heterogeneity of
the prostate tissue presents additional challenges for automated segmentation. In addition,
design and configuration of a deep-learning-based segmentation model requires careful
consideration. There are many parameters and hyper-parameters that need to be optimized
to achieve acceptable model performance. These include network architectures, training
schedules, data pre-processing, data augmentation (if used), data post-processing, and
several essential hyper-parameter tuning steps such as learning rate, batch size, number of
epochs, or class sampling [2]. In addition, hardware availability for training and inference
of these models should be considered in advance [12,13]. Model performance varies sub-
stantially with the training dataset’s properties and its size. Therefore, the applicability of
trained public models for unseen datasets is limited [2], and training a model from scratch
or retraining other models are popular solutions in medical image segmentation tasks.

One of the key parameters of deep-learning-based models that plays an important
role in model training and success of the segmentation model is the loss function, also
known as the cost function. The loss function is ultimately responsible for how the model’s
weights are adjusted for optimization goals, such as minimizing region mismatches between
predicted and ground truth segmentations. Various domain-specific loss functions have
been proposed and applied for segmentation of the prostate and other organs to improve
results for their datasets [9,14]. It can be challenging to know which loss function meets
the requirements of the task, and whether the right function for a specific dataset has been
chosen [14]. In the past ten years many loss functions have been proposed. Jadon [15], for
example, reported the performance of thirteen well known loss functions designed for fast
model convergence, and proposed a new loss function for skull segmentation from CT data.
Ma et al. [14] provided a comprehensive review of twenty loss functions based on four
CT-based publicly available data sets. For our study, we have chosen to complement these
works with a focus on nine loss functions, applied to a single MRI-based data set sourced
from an in-house study. This data set provides ground-truth prostate-gland segmentations
based on whole-mount histology (rather than clinician generated segmentations which
form the basis of many segmentation models). These nine loss functions are commonly
used in medical image segmentation models and are intended to be representative of the
many loss functions reported in the literature, and in particular, form a sub-set of those
reported by Ma et al. and Jadon [14,15] with at least one loss function from each of the four
categories defined in both studies and excluding those relevant to multi-class solutions that
are not relevant here. Whilst there are many applications of segmentation models, our study
was motivated by the need to develop a segmentation algorithm to analyze data collected as
part of a clinical trial investigating the ability of quantitative multiparametric MRI to assess
response to radiation therapy (ANZCTR UTN U1111-1221-9589). Our longitudinal data
set generated a large amount of data that required an objective delineation of the prostate
gland prior to the extraction of radiomic features to develop treatment response predictive
models. As part of this study we identified a lack of comprehensive comparisons of prostate
segmentation model performance using different loss functions. In this study, we compared
deep-learning-based prostate segmentations of T2-weighted (T2w) MR images, using nine
different loss functions for 2D U-Net with our locally acquired dataset.

2. Materials and Methods

Dataset: In vivo mp-MRI data were collected from 70 patients prior to radical prosta-
tectomy as part of a Human Research Ethics Committee (HREC)-approved project called
“BiRT” (HREC/15/PMCC125). These images were acquired using a 3T Siemens Trio Tim
machine (Siemens Medical Solutions, Erlangen, Germany). The first 37 cases imaged using
a standardized imaging protocol and free of major artifacts were available for analysis at
the time this study was performed [16]. Prostate segmentations were generated from the
whole-mount histology slides and subsequently co-registered with the mpMRI using a
sophisticated co-registration framework [16]. For quality control, the co-registered prostate
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masks were checked against an independent annotation by an experienced radiation oncol-
ogist (GS) on the in vivo 3D T2w images using RayStation v.8 (RaySearchLabs Stockholm,
Sweden). These contours were used as ground truth for automatic segmentation. Follow-
ing segmentation of the entire prostate gland, each prostate volume was mathematically
divided into sub-regions by thirds in the craniocaudal axis, with the most superior volume
labelled “base”, the inferior volume “apex” and the central volume “mid-gland”. T2w
images were acquired using a turbo spin echo sequence with two sets of resolutions. For
the first set, the in-plane resolution was 0.6 mm × 0.6 mm, the inter-plane distance was
6 mm. The volumes of the first set contained between 80 and 96 slices each, with each slice
resolution being 384 × 384 pixels. For the second set, the in-plane resolution was 0.8 mm ×
0.8 mm, and the inter-plane distance was 0.8 mm. The volumes of the second set contained
between 80 and 88 slices each, with each slice resolution being 256 × 256 pixels.

Pre-processing of the input data included bias field correction, resampling, and image
normalization. The intensity range of each image was normalized using minimum and
maximum intensity values of each single image before incorporation into the network. The
datasets were resampled into 128 × 128 × 64 voxels. A flow chart indicating the image
processing pipeline is shown in Figure 1. The full pelvic field of view was used without
cropping.
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Figure 1. The image pre-processing for T2-weighted images. After acquisition, bias field correction
was applied using the N4 algorithm to correct for the magnetic field inhomogeneity. The images were
then normalized using the min–max approach before entering the segmentation network.

U-Net architecture and Loss Functions: The effect of various loss functions on the
performance of a basic 2D U-Net architecture [8] was investigated using the T2-weighted
MR images. Loss functions were selected from traditional distribution-based and region-
based categories, as well as more recent compound and boundary-based loss functions.
Most of the loss functions used in this study were selected based on their suitability for use
with strongly and mildly imbalanced data sets in segmentation tasks and those commonly
used in medical image segmentation models [14]. These include Binary Cross-Entropy
(BCE), Intersection over Union Loss (IoU), Dice Loss, combination of Dice and BCE loss
functions (BCE + Dice), weighted BCE and Dice Loss (W (BCE + Dice)), Focal Loss, Tversky
Loss, Focal Tversky Loss and Surface [9,14,17]. Table 1 summarizes the loss functions used
in this paper with loss function definitions based on those of Ma et al. [14], with details
included in Appendix A.

The U-Net architecture contains two main components: the encoder or contracting
path, which extracts the features of the image by applying a stack of convolutional and
max pooling layers (Figure 2, left), and the decoder or expanding path (Figure 2, right).
The U-Net architecture is an end-to-end fully convolutional network (FCN) and contains
only convolutional layers without any dense layers. This allowed the network to accept
images of any size.

The encoder of the network used in the current study had five convolutional layers
to extract high-level feature maps. In each convolutional layer, the input feature map was
convolved with a set of trainable filters, kernels of size 3 × 3 and a 2 × 2 max pooling
operation with a stride of 2. Max pooling operations or down-sampling reduced the feature
map size by a factor of 2 in each dimension. Then, a batch normalization operation was
applied, followed by rectified linear unit (ReLU) activation functions. ReLU performed the
thresholding operation (max (x,0)), used to introduce nonlinearity to the trained network.
The number of feature channels started at 16 for the first stage, and doubled after each
stage of the decoder to 32, 64, 128, and finally 256.

A decoder reverses the operations of the encoder to recover the original input size
and enable the network to perform a voxel-wise classification. Each stage of the decoder
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included two types of operations. Firstly, layers were up-sampled to increase the size of
the feature map gradually until it reached the size of the original input image. Secondly,
deconvolutional layers reduced the number of feature channels to half at each stage of the
decoder to match the number of channels with the corresponding encoder layers. Features
extracted from earlier stages were added to the encoder side (Figure 2) using short-circuit
layers to help recover the spatial information from the convolutions in the encoder.

The U-Net model applied in this study had nine convolutional layers. Model param-
eters, except the loss function, were fixed for all models. The Adam optimizer [18] was
selected as the optimization algorithm, with an initial learning rate α = 0.0001, a learning
rate drop factor of 0.1, and a patience of 10 (meaning that the learning rate dropped by a
factor of 0.1 when the validation loss did not improve for 10 epochs). The training was
performed for 10,000 epochs with an early stopping strategy and a batch size of 2 to avoid
overfitting. Model training was stopped when the validation loss did not improve for
10 epochs. Dropout was applied for each convolutional layer at a rate of 10% to avoid over-
fitting. Batch normalization was applied after each convolution layer to prevent gradient
vanishing/exploding [19]. The results for each model reported the best epoch based on
the validation set. The number of model parameters was 1,189,264, of which 1,187,792
were trainable. Sigmoid activation was used as the output layer for binary predictions. A
threshold value of 0.5 for the probability was applied to obtain the segmentation mask, this
value was found to be the optimal value that gave the highest Dice coefficient (DSC) and
fewer false positives.

Five-fold cross-validation was used to validate the results [20]. For model selection,
the best model was determined based on performance of the validation datasets [14]. Our
proposed network was implemented in Keras v2.3.1 [21], using TensorFlow v2.0.0 [22]
backend with Python. For each loss function, the network was trained by performing
a five-fold cross-validation using all 37 cases from the BiRT dataset. All calculations
were performed using the University of Sydney’s HPC service and GPU access, NVIDIA
V100 SXM2.
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Table 1. The family and individual loss functions used in this study.

Category Loss Functions/Use Case

Distribution-based

• Binary CrossEntropy (BCE) Loss:

# Balanced dataset
# Bernoulli distribution-based loss function

• Focal Loss: Suitable for highly imbalanced datasets

# Enables models to learn hard examples by
down-weighting simple samples

Region-based

• Intersection over Union (IoU) Loss

# Inspired from Jaccard similarity coefficient, a metric for
segmentation validation

• Dice Loss:

# Based on Dice coefficient

• Tversky Loss:

# Variant of Dice coefficient
# Adds weights to false positive and false negative

• Focal Tversky Loss:

# Suitable for highly imbalanced dataset
# Enables models to learn hard examples by

down-weighting simple samples

Boundary-based • Surface (Boundary) Loss

Compound

• Weighted BCE and Dice W(BCE + Dice) Loss:

# Combination of Dice Loss and Binary CrossEntropy Loss
# Used for lightly class imbalance
# Benefits from both BCE and Dice Loss properties

• BCE and Dice: (BCE + Dice) Loss

Evaluation Metrics: Models were compared and evaluated using commonly used
metrics for medical image segmentation [23]. These include the DSC, 95% Hausdorff
Distance (95HD), relative absolute volume difference (Ravd), precision, and sensitivity.
These metrics were selected to cover evaluations for region-based, contour-based and
volume-based similarities between the ground truth and auto-segmentation output. A
DSC score of 1 shows perfect agreement. The Hausdorff Distance measures the distance
between the borders of the ground truth and the auto-segmentation output. Lower values
of 95HD indicate a better performance of segmentation. Ravd is the difference between the
total volume of the segmentation and the ground truth divided by the total volume of the
ground truth. The Ravd value for a perfect segmentation is equal to zero.

3. Results

Table 2 provides a summary of the results of the different loss functions applied to the
nine models used in this study. Figure 3 shows box plots for each of the nine models and
evaluation metrics for the whole prostate. Supplementary material Figures S1–S3 contain
boxplots for these models for the prostate mid-gland, apex, and base, respectively. Figure 4
shows DSC box plots for different parts of the prostate. The mid-gland (Figure 4C) shows
a consistently high performance (except for Surface loss), followed by the base and the
apex (Figure 4B,D, respectively). Table 2 shows that the Focal Tversky loss function had
the highest average of DSC scores for the whole gland and the lowest standard deviation
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(0.74 ± 0.09). Models with IoU, Dice, Tversky and W (BCE +Dice) and BCE + Dice loss
functions obtained similar DSC scores of 0.73, 0.73, 0.72, 0.71, and 0.71, respectively. A high
DSC score was expected for these loss functions as they are variates of the Dice coefficient
and aim to minimize this metric during the training process. Additionally, the Dice loss
function and its variates perform better in class-imbalanced problems such as prostate
segmentation. Models with surface and BCE loss functions had the lowest whole gland
DSC, with values of 0.40 and 0.58, respectively. The maximum difference in DSC score
across all models’ performance was approximately 34%.

In considering DSC scores shown in Figure 4, it can be seen that all models achieved
the highest DSC score for the mid-gland (Figure 4C), which had a 20% (up to 93–94%)
higher accuracy compared to the whole prostate (Figure 4A), most likely because the whole
gland resembles the mid-gland, and it accounts for the majority of the prostate volume.
Model performance was lower in the apex (Figure 4B) when considering all parts of the
prostate and the prostate as a whole. Higher standard deviations of the DSC scores were
observed for the apex from all models (Table 2).

Regarding 95HD, the best performance was achieved by W (BCE + Dice), with a value
of 6.66 ± 2.82 for the whole prostate gland, followed by Tversky and Focal Tversky with
values of 7.17 ± 4.21 and 7.42 ± 5.81, respectively (Table 2). The worst performing model
was Surface, with a value of 13.64 ± 4.38, approximately double that of the best performing
model (W (BCE + Dice). When considering the base, mid-gland, and apex, as expected, the
mid-gland reported lower 95HD values, followed by the apex, with the best performance
achieved by W (BCE + Dice) and Dice, respectively.
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Figure 4. Boxplots showing the Dice similarity coefficient (DSC) scores for different parts of the
prostate. The mid-gland (C) shows a consistent high performance (except for Surface loss), followed
by the base (D) and the apex (B). The whole gland’s performance resembles the mid-gland (A,C),
as it accounts for the majority of the prostate volume. Results are from the model trained using the
Dice loss.

Ravd is an appropriate metric for applications with an interest in accurate volume
estimation and similarity. An absolute value of Ravd approaching zero shows a better
model performance. The lowest absolute values of Ravd for the whole prostate were
obtained from W (BCE + Dice), BCE + Dice, Surface and Dice (0.05, 0.07, 0.09 and 0.09,
respectively) and the largest deviation from a score of zero was Focal with a value of −0.25
± 0.31 (Table 2). The standard deviations of Ravd for models with W (BCE + Dice) and
BCE + Dice were small, with values of 0.31 and 0.37, respectively.

The highest sensitivity value was achieved for the whole prostate gland using Focal
Tversky (80%), and the lowest using the Surface loss function (44%). Similar values of
precision were achieved for all loss functions for the whole gland (69–73%), with the
exception of Surface (51%). Focal Tversky, W (BCE + Dice) and Focal each have parameters
which can control trade-off between false positives and false negatives (FP and FN). These
parameters can be optimized based on segmentation task needs and data properties.

The surface loss function had the lowest DSC score and a higher 95HD. This model had
the lowest performance considering the majority of metrics used in this study. Furthermore,
models with a surface loss function required longer training times and higher numbers
of iterations.

There was a pattern of improved DSC score in slices that covered a larger area of
prostate, mainly in the mid-gland with cross sectional areas greater than 600 mm2 and
less than 2100 mm2. This is represented in Figure 5, where the data shown is based on the
prediction from the model using W (BCE + Dice) on the validation data. The same pattern
is seen in all models. Figure 6 presents the box plots for all loss functions.
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Table 2. Mean value of the five-fold cross validation for each metric used in the current study are shown for the whole gland, base, mid-gland, and apex regions.
Values shown in bold represent best performing results.

Loss Function Part BCE BCE + Dice Dice Focal Focal Tversky IoU Surface Tversky W (BCE + Dice)

DSC (mean± std)

Whole 0.58 ± 0.15 0.71 ± 0.16 0.73 ± 0.15 0.60 ± 0.14 0.74 ± 0.09 0.73 ± 0.12 0.40 ± 0.18 0.72 ± 0.14 0.71 ± 0.15

Base 0.65 ± 0.16 0.73 ± 0.19 0.74 ± 0.18 0.62 ± 0.15 0.75 ± 0.19 0.74 ± 0.18 0.46 ± 0.22 0.74 ± 0.18 0.72 ± 0.19

Mid 0.75 ± 0.11 0.90 ± 0.12 0.93 ± 0.05 0.79 ± 0.09 0.90 ± 0.07 0.92 ± 0.06 0.52 ± 0.24 0.90 ± 0.07 0.93 ± 0.05

Apex 0.59 ± 0.31 0.65 ± 0.36 0.65 ± 0.36 0.50 ± 0.31 0.63 ± 0.39 0.64 ± 0.38 0.38 ± 0.32 0.63 ± 0.37 0.62 ± 0.39

95HD (mean± std)

Whole 10.41 ± 4.51 8.63 ± 8.29 7.99 ± 7.05 8.54 ± 4.87 7.42 ± 5.81 9.48 ± 11.37 13.64 ± 4.38 7.17 ± 4.21 6.66 ± 2.82

Base 4.88 ± 1.62 4.51 ± 2.47 4.41 ± 2.99 4.69 ± 1.51 5.11 ± 6.25 7.83 ± 12.71 9.47 ± 4.33 4.22 ± 2.05 4.64 ± 2.39

Mid 3.30 ± 1.13 1.65 ± 1.11 1.49 ± 0.65 2.73 ± 0.76 1.85 ± 0.89 1.54 ± 0.73 5.52 ± 2.26 1.74 ± 0.85 1.51 ± 0.66

Apex 4.12 ± 2.32 3.01 ± 2.43 2.89 ± 2.45 4.04 ± 1.96 2.97 ± 2.63 3.06 ± 2.56 5.63 ± 2.61 3.25 ± 2.79 3.13 ± 2.54

Ravd

Whole −0.13 ±0.39 0.07 ± 0.37 0.09 ± 0.31 −0.25 ± 0.31 0.18 ± 0.35 0.13 ± 0.32 −0.09 ± 0.62 0.15 ± 0.36 0.05 ± 0.31

Base −0.06 ± 0.93 0.69 ± 1.50 0.58 ± 1.47 0.00 ± 0.98 0.73 ± 1.74 0.64 ± 1.51 0.21 ± 1.91 0.65 ± 1.66 0.70 ± 1.63

Mid −0.32 ± 0.27 0.03 ± 0.25 0.04 ± 0.15 −0.28 ± 0.21 0.15 ± 0.26 0.06 ± 0.20 −0.55 ± 0.26 0.09 ± 0.26 0.06 ± 0.17

Apex 1.63 ± 4.64 1.23 ± 4.05 1.30 ± 3.72 0.70 ± 2.98 1.89 ± 5.14 1.33 ± 3.97 −0.31 ± 0.94 2.06 ± 5.76 1.7 ± 5.0

Sensitivity

Whole 0.58 ± 0.17 0.74 ± 0.21 0.77 ± 0.20 0.54 ± 0.19 0.80 ± 0.17 0.78 ± 0.23 0.44 ± 0.28 0.78 ± 0.20 0.76 ± 0.05

Base 0.60 ± 0.001 0.87 ± 0.01 0.85 ± 0.01 0.59 ± 0.001 0.88 ± 0.01 0.86 ± 0.01 0.48 ± 0.01 0.86 ± 0.01 0.84 ± 0.01

Mid 0.64 ± 0.17 0.92 ± 0.17 0.95 ± 0.06 0.68 ± 0.14 0.96 ± 0.04 0.94 ± 0.06 0.41 ± 0.24 0.94 ± 0.06 0.95 ± 0.05

Apex 0.74 ± 0.17 0.87 ± 0.21 0.87 ± 0.20 0.66 ± 0.19 0.90 ± 0.17 0.84 ± 0.23 0.45 ± 0.28 0.87 ± 0.20 0.95 ± 0.05

Precision

Whole 0.69 ± 0.14 0.71 ± 0.19 0.72 ± 0.14 0.73 ± 0.17 0.71 ± 0.14 0.72 ± 0.13 0.51 ± 0.16 0.71 ± 0.13 0.73 ± 0.13

Base 0.83 ± 0.22 0.69 ± 0.24 0.73 ± 0.24 0.79 ± 0.23 0.72 ± 0.25 0.72 ± 0.25 0.64 ± 0.33 0.72 ± 0.24 0.70 ± 0.26

Mid 0.96 ± 0.09 0.91 ± 0.09 0.92 ± 0.08 0.96 ± 0.07 0.86 ± 0.13 0.91 ± 0.10 0.92 ± 0.11 0.89 ± 0.13 0.91 ± 0.09

Apex 0.77 ± 0.34 0.77 ± 0.27 0.79 ± 0.30 0.78 ± 0.31 0.75 ± 0.32 0.78 ± 0.30 0.77 ± 0.26 0.75 ± 0.32 0.71 ± 0.30
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Figure 5. Dice score as a function of prostate area A reverse U shape is observed, indicating the
prediction at the mid-gland (500–2000 mm2) outperformed those at the base (>2000 mm2) and apex
(<500 mm2). The zeros at the bottom correspond to cases where the model totally missed the prostate
region (Dice score = 0). Data is based on the prediction from the model using W (BCE + Dice) on
the validation data. The same pattern is seen in all models. W (BCE + Dice): weighted binary
cross-entropy with Dice.

Within the Supplementary material, Figure S4 shows the DSC scores for individual
patients for each model. Box plots of the DSC scores of all the models for each patient on
the validation datasets in the five-fold cross validation are shown in Figure 7. DSC scores of
models varied between patients, but for each patient the results were generally consistent
across all three models (Tversky, Focal Tversky and W (BCE + Dice) (Table S1).

Model performance was generally lower in the apex and base compared with the
mid-gland. This was not surprising, as inter-observer variability has been reported to be
higher in these regions [4]. However, this may be an effect of the small cross-sectional areas
(Figures 5 and 6). Additionally, the DSC score was lower for the slices that covered small
areas or very large areas. We investigated the relationship between DSC score and prostate
volume (Figure 4). No clear trend was identified, possibly due to the limited number of
samples. However, in general, the model showed lower performance in DSC scores for
smaller volumes in comparison to the average volume.

Qualatative Comparison

A selection of cases representing high and low performance are shown in Figures 8
and 9 for the models’ outputs using two different loss functions, Focal Tversky and W (BCE
+ Dice). Samples with DSC scores higher than 0.80 were considered high-performance
cases, and lower than 0.70 were considered low-performance cases. Higher DSC scores
were achieved, for example in patients (cases) #2, # 16, #21, and #33. Cases #3, #8, and #22
are examples of lower performance.
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Figure 8. Outputs of two models (Focal Tversky and W (BCE + Dice)) in the axial (top image) and
coronal views (bottom image for each patient), demonstrating both high and low performances,
measured in Dice scores. The ground truth is represented by the red contour, the model’s prediction
contour is shown in purple.

Segmentation results show higher DSC scores from the model with Focal Tversky for
case # 33 compared to W (BCE + Dice), with values of 0.83 and 0.87, respectively. Both
models failed to capture the shape of the prostate at the apex and base. However, the
output of the model with Focal Tversky had a greater similarity to the shape of the prostate
than W (BCE + Dice) (Figure 9, case #2). This indicates that the model using Focal Tversky
was more effective in defining the prostate boundaries.

Both models failed to define the prostate boundary for cases #15 and #22, especially in
the apex and base regions. From the rectum shape in case #22, it is possible that there is
some gas in the rectum which can reduce the quality of the MRI image.

For case #16, the model using W (BCE + Dice), with a DSC score of 0.79, had a worse
performance compared with Focal Tversky (DSC score 0.85). The segmentation output of
the model with W (BCE + Dice) was rectangular in shape, which can be seen in the coronal
and sagittal views (Figure 9). Shapes of the segmentation outputs from Focal Tversky had
a closer shape to the prostate than those from models with W (BCE + Dice) loss function.

In general, the W (BCE + Dice) model under-estimated the prostate volume and the
Focal Tversky over-estimated the volume. Examples are cases #22, #15, #8, #16, and #2
(Figure 9).
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4. Discussion 
Finding the most appropriate loss function for prostate segmentation is challenging. 

In this study we compared the performance of nine loss functions in a 37-patient data set. 
These nine loss functions were chosen as they are commonly used in medical image seg-
mentation tasks [14]. The 37-patient data set included locally acquired data with a com-
mon imaging protocol (two resolutions) and a single MRI scanner [16] to avoid variations 
due to image acquisition. These data were co-registered with whole mount pathology to 
provide ground truth delineations of the prostate [16] in contrast to many publicly avail-
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Figure 9. Outputs of two models (Focal Tversky and W (BCE + Dice)) for 6 patients (each patient
identified by a number, e.g., #21 represents patient 21) in the axial (top image) and coronal views
(bottom image for each patient), demonstrating both high and low performances, measured in Dice
scores (shown adjacent to each image set). The ground truth is represented by the red contour, the
model’s prediction contour is shown in purple.

4. Discussion

Finding the most appropriate loss function for prostate segmentation is challenging.
In this study we compared the performance of nine loss functions in a 37-patient data
set. These nine loss functions were chosen as they are commonly used in medical image
segmentation tasks [14]. The 37-patient data set included locally acquired data with
a common imaging protocol (two resolutions) and a single MRI scanner [16] to avoid
variations due to image acquisition. These data were co-registered with whole mount
pathology to provide ground truth delineations of the prostate [16] in contrast to many
publicly available datasets that rely on clinician-generated segmentations which are subject
to interobserver variation [4]. A limitation of the generalizability of our study is the small
sample size and homogeneity in the methods used to acquire the MRI data. We therefore
recommend that future studies that intend to use data from a variety of sources and
scanning protocols confirm the findings of our study using the methodology we describe,
and consider the most appropriate metric for their evaluation. Publicly available data can
be sourced from a variety of locations such as those described by Ma et al. [14], however,
the purpose of our study was to remove uncertainties due to heterogeneity in data source
and clinician contouring, and focus only on the relative performance of the loss functions
selected for our study and a range of metrics for their evaluation. Our study found the
proposed architecture performed with notable variations when different loss functions
were applied. As the base and the apex of the prostate are particularly challenging to
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segment manually due to the lack of a clear boundary [1,17], we therefore also evaluated
the performance at the mid-gland, apex, and base of the prostate independently.

Focal Tversky had the highest scores for the whole gland in terms of DSC score and
sensitivity. However, W (BCE + Dice) outperformed all competing methods in precision,
followed by 95HD, Ravd, and Tversky. With performance measured by the median and
standard deviation, the best performance was achieved by applying W (BCE + Dice), Tver-
sky, and Focal Tversky loss functions. However, the performance of models with Focal
Tversky, Tversky, W (BCE + Dice), Dice, and IoU loss functions were very close for our
dataset. Lower performance was observed using Surface loss, BCE loss and Focal loss
functions. Focal Tversky and Tversky loss functions have been recommended by other
researchers as returning optimal results when their parameters are set to the correct val-
ues [15]. However, for challenging medical segmentation tasks, we suggest using Focal
Tversky and W (BCE + Dice), and by optimizing their parameters, the best solution can be
achieved in accordance with the application requirements. The loss function parameters
of W (BCE + Dice) allow the user to define the best trade-off between FNs and FPs. Addi-
tionally, Focal Tversky and W (BCE + Dice) have the advantage of adjustable parameters,
which make it possible to tune the loss function based on the application requirements.
For example, Focal Tversky and W (BCE + Dice) have parameters which can be tuned to
address under- and over-segmentation issues that may arise with other loss functions. As a
result, in the future, we plan to investigate the effectiveness of a combination of Tversky
and BCE loss functions for prostate segmentation.

Lower performance was observed using Surface loss, BCE loss and Focal loss functions.
All models achieved higher performance for mid-gland and lower performance in the apex
and base regions. When considering model performance for individual data sets, we
observed that all models had a similar performance for each image, but performance
varied across the patient cohort. This may be related to patient-specific image quality,
however, all models generalized the average shape of images and failed to perform well
for outlier shapes.

Intuitively, it can be expected that model performance will be affected by the choice
of the metric used to measure performance and the principal components driving the
loss function. For example, DSC measures the overlap between two regions. If the Dice
loss is used, the training process is exactly guided as the final metric, which theoretically
should achieve a good performance. This can be seen in Table 2; the Dice loss achieved
a consistently high DSC in the whole prostate gland (0.73) as well as the sub-volumes
(0.65–0.93). In addition, the close variants of the Dice loss, including Tversky, Focal Tversky,
and IoU loss, also obtained high performances (0.63–0.92), but slightly inferior to the Dice
loss. For losses that are not region-based, compound losses such as BCE + Dice and W (BCE
+ Dice) showed relatively higher DSC (0.62–0.93) as they consist of a Dice loss component.
In contrast, Surface loss (boundary-based) and BCE (distribution-based) demonstrated
the lowest DSC (0.38–0.75). However, this pattern is not shown between all metrics and
categories. For example, HD95 is a boundary-based metric and it was expected that Surface
loss would achieve a high performance. However, as shown in Table 2, Dice loss has the
lowest HD95, while Surface loss had the highest. One possible reason is that the Surface
loss is relatively hard to train, requiring more epoches for it to converge. Since the training
process was consistent across all loss functions, this may explain why some functions did
not perform as well as expected.

To overcome variability in performance of individual loss functions, compound loss
functions can be considered. For example, in the case of prostate segmentation, data
imbalance is a major problem, and loss functions, such as BCE, that are suitable for balanced
data are not suitable for this task. However, as shown in our study, weighted BCE combined
with Dice can improve model performance significantly.

Tuning hyper-parameters of U-Net, such as the learning rate and number of iterations,
requires significant computational time. To address this, we defined the best learning
rate for Dice and BCE loss functions, as most of the other loss functions are variations



Bioengineering 2023, 10, 412 14 of 19

of these loss functions. We used a grid search for optimization of the learning rate and
defined the optimal value of loss function parameters in Focal, W (Dice + BCE) and Focal
Tversky loss functions on the validation data set. The optimal learning rate was selected as
α = 0.0001, from 0.001, 0.0001, 0.00001. The parameters of the W (Dice + BCE) loss function
allocated a higher contribution to the cross-entropy term, α equal to 0.6, in comparison to
the Dice term with a weight of 0.4. The optimum value of β for the weighted cross-entropy
term was found to be 0.7, which penalizes false negatives more. This aligned with other
recommendations for segmentation problems on MRI data [24]. Different values of α and
β can be applied to obtain the best model result and handle the imbalance problem of each
dataset appropriately.

Models were trained using the T2w axial data and performed better visually in the
axial view. Training a model using axial, sagittal, and coronal (or a 3D data set) might
improve the model performance. However, adding more inputs will also add complexity
and extra computation cost. In this study, we used the 2D U-Net model, which has a lower
number of components, to optimize in comparison to a 3D U-Net. In addition, 3D U-Net
models underfit when trained on a small number of datasets [6]. Furthermore, it is easier
to identify the loss function contribution to the model performance where there is less
model complexity. It has been shown that a simple network with a proper loss function can
outperform more complex architectures, including networks with specific up-sampling or
with skip connection [24].

Regarding implementation, Keras offers a number of tools to construct a U-Net with
its sequential and functional interface. Hence, the model itself can be constructed and set
up for training in a straightforward approach. However, for the loss function, a potential
challenge is to carefully choose the exact equation to implement. This is because even for
the same loss function, there are slight variations. For example, the denominator of a Dice
loss can be the sum of squared signal intensities, while another form will leave out the
square operation. Such subtle differences can add to confounding factors when comparing
model performance reported in the literature.

A model’s output can improve using post-processing methods that reduce false posi-
tives and false negatives in segmented images [25]. CNN segmentation results improve
using energy-based refinement post-processing steps [26]. We applied threshold-based
refinement to cope with false positives [27]. A threshold value of 0.5 was found to be the
optimal value to return the highest Dice score with the least number of false positives.

5. Conclusions

The performance of a 2D U-Net model with nine different loss functions for prostate
gland segmentation was compared. Ranking of model performance was found to depend
on the metric used to measure performance. Performance was also found to vary based on
the region within the prostate being considered, with the base and apex generally being
less compared with the mid-glad and entire prostate gland. There was some evidence that
performance was also affected by cross-sectional area of the image, with peak performance
in the range of 600–2100 mm2. The performance of models using different loss functions
varied by approximately 34% using the DSC score metric. Focal Tversky, Tversky, and W
(Dice + BCE) loss functions achieve better performance considering majority of metrics.
However, performance of models with Focal Tversky, Tversky, W (Dice + BCE), Dice,
and IoU were close. Lower performance was observed using the distribution-based and
boundary-based loss functions (Surface, BCE, and Focal loss functions). Based on this
37-patient data set, it is suggested that the Focal Tversky and W (Dice + BCE) loss functions
are most suitable for the task of prostate segmentation as their parameters allow the user to
modify the loss function for a specific dataset.
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models with different loss functions. Figure S2: Box plots of all metrics used in this study for the apex
region on validation data from the five-fold cross-validation for models with different loss functions.
Figure S3: Box plots of all metrics used in this study for the prostate base region on validation data
from the five-fold cross-validation for models with different loss functions. Figure S4: Dice similarity
coefficient (DSC) score of all the models for each patient. Figure S5: DSC score vs. prostate volume
(mm3) for model using Focal Tversky loss. Table S1: W (BCE + Dice), Tversky and Focal Tversky
performances, DSC score, for each patient.
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Appendix A Definition of Loss Functions Used in This Study

Loss functions are important key drivers in determining the success of neural network
models. They define how neural network models calculate the overall error between the
prediction and the ground truth. During training, the loss is calculated for each batch and
minimized using optimization algorithms. Selecting an appropriate loss function has a
larger effect on model performance than using a complex architecture [17]. Loss functions
can generally be classified into four groups: distribution-based, region-based, boundary-
based, and compound loss [14]. Compound loss is the combination of different types of
loss functions. The main role of loss functions is to quantify the mismatch region between

https://www.mdpi.com/article/10.3390/bioengineering10040412/s1
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ground truth and segmentation. The main differences between them are the weighting
methods [14].

The following equations use these generic notations. Specific parameters will be
explained otherwise.

gi, si: voxels i in ground truth and segmentation output, respectively;
C: the number of classes;
c: notation for an individual class. If class c is the correct classification for voxel i, gi

c is
equal to 1 and si

c is the corresponding predicted probability;
N: the total number of samples.
Distribution-based loss functions: Distribution-based loss functions aim to minimize

dissimilarity between two distributions. We used binary cross-entropy (BCE) and Focal
loss from distribution-based loss functions. The fundamental function in this category is
cross-entropy and all functions were derived from cross-entropy function.

Cross-entropy loss: Cross-entropy (CE) loss is the most commonly used loss function
for training deep learning models. It measures dissimilarity between two distributions
using CE. Data distribution comes from the training set properties. The formulation for the
CE loss function is:

LossCE = − 1
N

N

∑
i=1

C

∑
c

gi
clog (si

c )

In this study the segmentation task was a binary classification, therefore, the loss
function is a binary cross-entropy (BCE).

A CE loss function can control output imbalance, false positive, and false negative
rates. However, model performance with a cross-entropy loss function is not optimal for
segmentation tasks with highly class-imbalanced input images [28]. There are several
different loss-function-based techniques using weighted cross-entropy [29].

A variation is the weighted cross-entropy (WCE):

LossWCE = − 1
N

N

∑
i=1

C

∑
c

wcgi
clog (si

c )

where wc is the weight for each class. This loss function penalizes majority classes by
weighting them inversely proportional to the class frequencies.

Focal loss: The focal loss function is one of the WCE loss functions shown to better
manage unbalanced classes in a dataset [30]. The Focal loss function reduces the loss
function corresponding to well-classified examples. It uses a scaling method to allocate
higher weights on the examples that are difficult to classify over easier cases.

Loss f ocal = −
1
N

N

∑
i=1

C

∑
c
(1− s i)

γgi
clog (si

c )
where γ is a hyperparameter called focusing parameter.

Region-based loss: Region-based loss functions aim to minimize mismatch by maxi-
mizing the overlap regions between the output of segmentation (Ss) and ground truth (Gg).
Dice loss is the key element of this category.

Dice loss: Dice loss aims to directly maximize the Dice coefficient, which is the most
commonly used segmentation evaluation metric [31]. Segmentation models with Dice loss
functions have shown superior performance for binary segmentation [29,31,32]. The loss
function is formulated as the negative DSC:

LossDice = −
2∑N

i=1 sigi

∑N
i=1 si

2 + ∑N
i=1 gi

2 + ε

where ε is a small number to avoid division by zero. In this study, ε = 1 was used for
all models.
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IoU loss: The IoU loss function aims to maximize the intersection-over-union coeffi-
cient, known as the Jaccard coefficient. IoU is an evaluation metric for segmentation similar
to Dice loss [33]:

LossIoU = 1− ∑N
i=1 sigi

∑N
i=1(si + gi − sigi)

Tversky: The Tversky loss function reshapes Dice loss and prioritizes false negatives
to achieve a better trade-off between precision and recall [33]. Background voxels that are
labelled as the target object are false positives. False negatives refer to the voxels of a target
object that are misclassified as background. Segmentation with fewer false positives and
false negatives are ideal, but it is not easy to decrease both at the same time.

LossTversky =
∑N

i=1 sigi

∑N
i=1 sigi + α∑N

i=1 si(1− g i) + β∑N
i=1 gi(1− s i)

where α and β are weighting factors to weight the contribution of false positives and false
negatives. For certain applications, reducing the false positive (FP) rate is more important
than reducing the false negative (FN) rate or vice versa [34].

Focal Tversky: Focal Tversky applies the concept of focal loss to improve model
performance for cases with low probabilities [35]:

LFTL = (1 − LTversky) 1/γ

where γ varies in the range [1, 3].
Boundary-based loss functions: Boundary-based loss functions are a new type of

loss function that aims to minimize the distance between two boundaries of the ground
truth and segmentation output.

Boundary (BD) loss (Surface loss): A boundary (BD) loss (or surface loss) function
aims to minimize the mean surface distance, Dist (∂G, ∂S), between two boundaries (sur-
faces) of the ground truth G and segmentation output S. The boundary of the ground truth
(G) is denoted as ∂G, and ∂S represents the boundary of segmentation (S). This means that
BD loss minimizes the mean of the distance between surface voxels in S and the closest
voxels in G.

Boundary loss uses an integral over the boundary between regions instead of integrals
within the regions.

Dist(∂G, ∂S) =
∫

∂G
||yas(p)− p||2dp

where p is a point on boundary ∂G and yas(p) is the corresponding point on segmentation
boundary ∂S.

Compound loss: Compound loss functions are a combination of different types of loss
functions, mostly cross-entropy and Dice similarity coefficient. This loss function comes
from both the WCE and the Dice loss functions.

LossCombo =α

(
− 1

N
[

N

∑
i=1

β(gilog si) + (1− β)(1− gi)log(1− si)]

)
− (1

− α)

(
2∑N

i=1 sigi + ε

∑N
i=1 si

2 + ∑N
i=1 gi

2 + ε

)

where α controls the contribution of the WCE loss and the Dice terms; β controls the
contribution from positive voxels within WCE. Values of α and β can be defined from a grid
search. In this study, two configurations are used. One has equal weights on BCE and Dice,
referred to as BCE + Dice. The other uses grid search to determine the best combination
(α = 0.6, β = 0.7), known as weighted BCE and Dice, or W (BCE + Dice). The latter applies
more penalty to false negatives. This aligns with the observation that under-segmentation
(false negative) is a common problem for MRI data [23].
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