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Abstract: Background: Bio-signals are the essential data that smart healthcare systems require
for diagnosing and treating common diseases. However, the amount of these signals that need
to be processed and analyzed by healthcare systems is huge. Dealing with such a vast amount
of data presents difficulties, such as the need for high storage and transmission capabilities. In
addition, retaining the most useful clinical information in the input signal is essential while applying
compression. Methods: This paper proposes an algorithm for the efficient compression of bio-signals
for IoMT applications. This algorithm extracts the features of the input signal using block-based
HWT and then selects the most important features for reconstruction using the novel COVIDOA.
Results: We utilized two different public datasets for evaluation: MIT-BIH arrhythmia and EEG
Motor Movement/Imagery, for ECG and EEG signals, respectively. The proposed algorithm’s average
values for CR, PRD, NCC, and QS are 18.06, 0.2470, 0.9467, and 85.366 for ECG signals and 12.6668,
0.4014, 0.9187, and 32.4809 for EEG signals. Further, the proposed algorithm shows its efficiency
over other existing techniques regarding processing time. Conclusions: Experiments show that the
proposed method successfully achieved a high CR while maintaining an excellent level of signal
reconstruction in addition to its reduced processing time compared with the existing techniques.

Keywords: COVIDOA; compression; Haar wavelet; reconstruction; optimization; ECG

1. Introduction

Smart healthcare systems deal with massive amounts of medical data daily for health-
care monitoring and early detection and diagnosis of diseases [1]. Bio-signals are records of
biological events inside the human body, such as a heartbeat or muscle contraction. These
signals are used to detect whether there is a problem or disorder in a human organ. There
are many kinds of bio-signals used for various clinical purposes, such as ECG, which is
used for recording human heart activity, EEG for recording the electrical activity of the
brain, EMG for evaluating the electrical activity of skeletal muscles, ERG for measuring
the electrical responses of various cell types in the retina, and EGG for recording the my-
oelectrical signal generated by the movement of the smooth muscle of the stomach [2].
ECG and EEG are the most widely used bio-signals for diagnoses of cardiac and brain
disturbances [3]. Three main elements represent a typical heartbeat signal: the P wave,
which indicates depolarization of the atria, the QRS complex, which shows depolarization
of the ventricles, and the T wave, which represents repolarization of the ventricles, as
shown in Figure 1. On the other hand, EEG signals record the brain’s electrical activity.
Several sensors are positioned on various parts of the scalp to record EEG signals, as shown
in Figure 2. EEG signals help to identify various common diseases, such as epilepsy and
autism spectrum disorder [4].
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Figure 1. Single heartbeat. 

 
Figure 2. EEG recording [4]. 

In smart healthcare systems, the bio-signals are recorded by sensors attached to the 
patient’s body and then digitized. The digital bio-signals are processed using digital com-
puters or computer-based medical devices [5]. An effective compression method is a basic 
need in such systems to minimize the volume of medical data and enhance the transmis-
sion’s efficiency [6]. However, obtaining high compression ratios is insufficient for an ef-
ficient compression algorithm, and data quality must also be maintained since the loss of 
medical data could lead to misdiagnosis problems. For these reasons, we proposed an 
algorithm for efficient compression of bio-signals that can achieve very high CR (CR = 32) 
and preserve the diagnostic features of the input signal. This algorithm is based on a block-
based HWT and COVIDOA. The HWT is used to obtain the features of the signal for these 
reasons [7]: 
• The HWT can extract local spectral and temporal information simultaneously. 
• Wavelet-based coding allows for progressive data transmission and is more robust 

to transmission and decoding failures. 
• The HWT is conceptually simple and fast. 
• The HWT is completely reversible and does not suffer from the edge effects that are 

an issue with other wavelet transformations. 
• Block-based HWT and inverse transform can be performed by applying matrix mul-

tiplication. 
We apply the HWT to the input signal and then select the best-fit coefficients to re-

construct the digital signal using COVIDOA according to a predefined objective function. 

Figure 1. Single heartbeat.
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Figure 2. EEG recording [4].

In smart healthcare systems, the bio-signals are recorded by sensors attached to the
patient’s body and then digitized. The digital bio-signals are processed using digital
computers or computer-based medical devices [5]. An effective compression method is
a basic need in such systems to minimize the volume of medical data and enhance the
transmission’s efficiency [6]. However, obtaining high compression ratios is insufficient for
an efficient compression algorithm, and data quality must also be maintained since the loss
of medical data could lead to misdiagnosis problems. For these reasons, we proposed an
algorithm for efficient compression of bio-signals that can achieve very high CR (CR = 32)
and preserve the diagnostic features of the input signal. This algorithm is based on a
block-based HWT and COVIDOA. The HWT is used to obtain the features of the signal for
these reasons [7]:

• The HWT can extract local spectral and temporal information simultaneously.
• Wavelet-based coding allows for progressive data transmission and is more robust to

transmission and decoding failures.
• The HWT is conceptually simple and fast.
• The HWT is completely reversible and does not suffer from the edge effects that are

an issue with other wavelet transformations.
• Block-based HWT and inverse transform can be performed by applying matrix multi-

plication.

We apply the HWT to the input signal and then select the best-fit coefficients to recon-
struct the digital signal using COVIDOA according to a predefined objective function. The
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PRD is selected as the objective function so that the coefficients that lead to the minimum
PRD values will be selected for reconstruction. The PRD is calculated as follows:

PRD % =

√√√√∑N−1
x=0 (f(x)− F(x))2

∑N−1
x=0 f(x)2 × 100 (1)

The F and f are reconstructed and original signals.
The rest of the paper is organized as follows: Concise literature is presented in Section 2.

The explanation of calculating the HWT is discussed in Section 3. In Section 4, a brief
overview of COVIDOA is presented. The proposed compression/decompression algorithm
using HWT and COVIDOA is described in Section 5. Experiments, results, and discussion
are presented in Section 6. The conclusion and the recommendation for future work are
drawn in the last section.

2. Literature Review

Over the last few decades, various algorithms have been proposed to compress medical
data. These algorithms are either lossless or lossy compression. The lossless compression
methods can achieve small compression ratios with no data loss, while lossy algorithms
achieve much higher compression ratios but some information will be lost [8]. Data quality
is crucial in the medical field, and losing some features may significantly impact the
diagnosis process. However, suppose the data loss is within an acceptable limit and does
not affect the data’s visual appearance. In that case, lossy compression techniques will be
a good choice due to the high compression ratio they can achieve [9]. In [10], an ASCII
character-encoding-based lossless compression method was proposed. In [11], Chen and
Wang used two Huffman coding tables to develop a useful lossless compression method
to reduce the storage and transmission demands for ECG signals. This algorithm has
the advantages of low cost and power consumption. Rzepka [12] used selective linear
prediction to compress multi-channel ECG.

Most lossy compression algorithms are based on transform coding, where a specific
transform is applied to the input signal, and some information is used to be discarded. In
contrast, the others are used in the reconstruction process. The result of this process will not
be identical to the original input, but it should be close enough according to the application’s
purpose. The most popular transform-based compression techniques involve the DCT [13],
DWT [7], and moment-based transform [14]. For bio-signal compression, Batista et al. [15]
utilized Golomb–Rice coding with optimum DCT coefficients to compress ECG signals.
They used the well-known MIT-BIH Arrhythmia database to evaluate their algorithm,
where CR of 10.4:1 and PRD ∼= 2.5% were achieved. Jha and Kolekar [16] proposed another
DCT-based algorithm to compress ECG signals. They employed DOST and dead-zone
quantization to transform coefficients. Recent work includes the technique proposed in [17]
for assessing compressed and decompressed ECG databases. The proposed algorithm used
DCT, 16-bit quantization, run-length encoding for compression, and convolution neural
network for classification. The obtained CR was 2.56, and the classification accuracies were
0.966 and 0.990 for the compressed and decompressed databases, respectively. Further, Pal
et al. [18] proposed a compression algorithm for 2D ECG signals based on the combination
of DCT and embedded zero-tree wavelet. The results showed that the suggested approach
could raise the sparsity of the transform domain, which boosts compression effectiveness
with a small degradation in reconstruction quality. Other DCT-based signal compression
algorithms are proposed in [19,20].

The WT is a powerful tool for signal analysis because of its compact representation
of signals and images, and its most popular applications are denoising and compression
of signals [21]. Recently, OMs, such as Tchebichef and Hahn moments, have been used
in signal reconstruction and compression due to their ability to represent signals [22].
Signal compression techniques based on orthogonal moments are presented in [23,24]. It
is observed from the state of the art that the wavelet-based algorithms provide superior
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performance compared to the other compression methods [21]. Jha and Kolekar [25]
used the DWT to select an appropriate mother wavelet to compress the ECG signal while
guaranteeing quality. The same authors employed EMD and DWT to develop another ECG
compression algorithm [26]. Based on the obtained results, it is noticed that the suggested
method performs better than several current ECG compressors. Singhai et al. [27] used
DWT and PSO to design a compression algorithm where the PSO selects threshold values
and the optimal wavelet parameters. The compression ratio obtained using this algorithm
was 28.43 at PRD = 2.63. Kolekar et al. [28] proposed an ECG compression technique based
on the modified run-length encoding of wavelet coefficients. The proposed approach used
dead-zone quantization for WT coefficients, and the obtained coefficients were encoded
using modified run-length encoding.

Shi et al. [29] proposed a new ECG compression method based on a binary convo-
lutional auto-encoder (BCAE) equipped with residual error compensation (REC). The
proposed method aimed to achieve efficient ECG compression through deep learning while
ensuring high signal quality. The performance is tested using several measures, such as
PRD, QS, SNR, and CR. The average performance in CR, PRD, NPRD, and SNR is 17.18,
3.92, 6.36, and 28.27 dB, respectively, for 48 ECG records. The achieved results in CR and
PRD are 117.33 and 7.76, respectively. Recently, Singhai et al. [30] presented an algorithm
for ECG compression based on DWT and nature-inspired optimization algorithms. The
algorithm used the optimization algorithm to find the optimal wavelet design parameter
values and optimal threshold levels. The results show the capability of this technique to
provide high compression ratios with high signal quality.

Lossy compression depends on using only some features and omitting others in return
for reduced size. The question is, therefore, which features should be selected and which
should not? The answer should be that the features that contain the most important
clinical features and lead to the highest reconstruction quality should be selected, and the
remaining features should be neglected. An optimization algorithm would be very helpful
in selecting the most important feature subset. Motivated by the simplicity and efficiency of
the HWT in signal and image processing and the efficiency of COVIDOA in solving various
optimization tasks, we utilized the HWT in combination with COVIDOA to develop an
efficient compression algorithm for bio-signals. In this approach, the signal is transformed
using the HWT and then the best feature subset from the wavelet coefficients that should
be used for reconstructing the signal will be selected with the help of COVIDOA.

3. HWT

This section explains applying a fast block-based HWT to a one-dimensional signal.
Suppose the signal is divided into K blocks denoted by Bi, i = 1, 2, 3, . . . , K, where Bi is the
ith block of size 1 × N. The following formula can perform the forward HWT for each
block:

T = BAT (2)

where B is the signal block and A is the Haar matrix.
The Haar matrix can be obtained using the following formula [31]:

A0(x) =
1√
N

, (0 ≤ x ≤ X) (3)

A1(x) =
1√
N


1, 0 ≤ x ≤ X,
−1, X

2 ≤ x ≤ X,
0, otherwise,

(4)

and

Ai(x) =
1√
N


2

j
2 , k−1

2j X ≤ x ≤ k− 1
2

2j X,

−2
j
2 , k− 1

2
2j X ≤ x ≤ k

2j X,
0, otherwise,

(5)
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where i = 1, 2, . . . , N − 1, N = 2j(j = 0, 1, . . . , J) refers to the wavelet level. J represents
the resolution. j and k represent the integer decomposition of the index i, where i = N + k
− 1 and k = 1, 2, . . . , 2j. A0(x) represented the scaling function while A1(x) is the mother
wavelet function. The other remaining Haar wavelet functions can be obtained from the
mother function A1(x) by applying translation and dilation processes.

According to the previous formula, the kernel matrix for the HWT can be generated
as follows:

A =


A0(1) A0(2) . . . A0(N− 1)
A1(1) A1(2) . . . A1(N− 1)
A2(1) A2(2) . . . A2(N− 1)

...
...

. . .
...

AN−1(1) AN−1(2) . . . AN−1(N− 1)

 (6)

According to N, the Haar wavelet kernel matrix can be of size 4 × 4, 8 × 8, 16 × 16,
32 × 32, or 64 × 64. The 8 × 8 Haar wavelet matrix is as follows:

AA8×8 =



1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

−1√
8

−1√
8

−1√
8

−1√
8

1√
4

1√
4

−1√
4

−1√
4

0 0 0 0

0 0 0 0 1√
4

1√
4

−1√
4

−1√
4

1√
2

−1√
2

0 0 0 0 0 0

0 0 1√
2

−1√
2

0 0 0 0

0 0 0 0 1√
2

−1√
2

0 0

0 0 0 0 0 0 1√
2

−1√
2


(7)

The original signal block B can then be reconstructed from its transform by applying
the inverse Haar transform as follows:

AR = TA (8)

T and R are the reconstructed signal block and the transform coefficients.

4. COVIDOA

COVIDOA is a recent metaheuristic inspired by the replication life cycle of the novel
Coronavirus particles inside the human body [32]. COVIDOA is divided into four stages
as follows:

a. Virus entry and uncoating

The virus particle tries to enter the human body cell through a special structural
protein called spike protein. After entry, the virus genome is uncoated inside the cell.

b. Virus replication

The virus uses the frameshifting technique to generate millions of copies to hijack as
many human cells as possible. The most popular frameshifting technique is +1 frameshift-
ing, in which the elements of the parent sequence are moved forward by one step, resulting
in losing the first element in the parent sequence, which will be replaced by a random value
between lb and ub as follows:

Vt(1) = rand (lb, ub), (9)

Vt(2 : D) = P(1 : D− 1) (10)

The P is the parent sequence; the Vt is the generated viral protein number t; lb and ub
are the lower and upper bounds; D is the problem dimension.
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c. Virus mutation

The virus tries to mutate to hijack the immune system as follows:

Zi =

{
r if rand(0, 1) < MR

Xi otherwise
(11)

Z and X are the mutated and non-mutated solutions, and i = 1, . . . , D. r is a random
number in a range [lb, ub]. MR is the mutation rate, which has a value from 0.005 to 0.5.

d. New virion formation and release

The previous steps generate many new virus particles called virions, which are then
released from the infected cell and directed to new cells. The pseudocode of COVIDOA is
shown in Algorithm 1.

Algorithm 1 Pseudocode of COVIDOA.

Set initial values of the following parameters: Dimension (D), population size (popSize),
maximum number of iterations (MaxItr), number of proteins, shifting number, and mutation rate
(MR).
For (i = 1: I ≤ nPop) do

Generate initial random population.
Evaluate the fitness function for all solutions in the population.

End for
Order solutions ascendingly according to fitness function.

Set the first solution as the optimum solution.
Set t = 1
Repeat

For (i = 1: I ≤ nPop) do
Select a parent solution P,
For (k = 1: I ≤ number of proteins) do

Generate protein Vk from parent solution P using Equations (9) and (10).
End for
Apply uniform crossover between the generated proteins to generate new virion (new
solution).
if (rand (0,1) < MR) then

Mutate the new solution using Equation (11).
End if

End for
Until t ≥MaxItr

5. The Proposed Compression/Decompression Algorithm

In the proposed compression algorithm, we utilized a simplified block-based HWT to
obtain the Haar coefficients for the signal; then, the COVIDOA is used to select a subset
of the coefficients needed for signal reconstruction. The size of the selected subset is
determined according to the desired compression ratio (CR) using the following formula:

SS = Round
(

1− CR
100

)
× N (12)

where SS refers to the size of a selected subset of coefficients, CR is the desired compression
ratio, and N is the signal block size. The following steps can summarize the proposed
compression algorithm:

1. The signal is split up into blocks of size 1 × N; N can be 8, 16, 32, or 64.
2. The required subset of the size of the coefficients is calculated using Equation (12).
3. The Haar wavelet kernel matrix is calculated using Equations (3)–(5).
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4. The parameters of COVIDOA are set as follows: D = SS; population size (popSize) = 30;
the maximum number of iterations (MaxItr) = 50; the number of proteins = 2; shifting
number = 1; mutation rate (MR) = 0.5.

5. For each signal block

a. Calculate the block-based HWT to obtain the Haar coefficients using Equa-
tion (2).

b. COVIDOA is used to select the optimal coefficients according to the PRD
objective function using Equation (1) as follows:

i. Generate an initial random population of solutions and compute the
objective function for each solution.

ii. Select parent solution using tournament selection and apply the frameshift-
ing technique to generate several proteins using Equations (9) and (10).

iii. Apply crossover between the generated proteins to generate a new virion.
iv. Apply mutation to the previously generated solution to obtain a new

mutated solution.
v. Replace the new solution with the parent solution if the new solution is

fitter than the parent. Otherwise, the parent solution remains.
vi. Repeat steps ii to v until the MaxItr is reached.
vii. Select the optimal solution achieved so far.

c. From the coefficient obtained in step a, only the coefficients whose positions cor-
respond to the values in the optimum solution are selected, and the remaining
coefficients are ignored (set to zero).

d. Apply the inverse transform to the optimum coefficients obtained in the previ-
ous step to obtain the reconstructed signal block using Equation (8).

6. Concatenate the reconstructed blocks to obtain the reconstructed signal.
7. Evaluate the algorithm’s performance using CR, PRD, SSIM, and QS metrics.

A diagram of the proposed compression/decompression approach is displayed in
Figure 3.
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6. Results

This section provides a brief overview of the utilized datasets, the evaluation crite-
ria, and the numerical results and discussions about the experiments performed by the
proposed algorithm as follows:



Bioengineering 2023, 10, 406 8 of 14

6.1. Datasets

Two separate bio-signal datasets are utilized to evaluate the performance of the pro-
posed compression algorithm. The MIT-BIH arrhythmia dataset is used for testing ECG
compression [33]. Further, 25 ECG records that contain cardiac information for a group
of volunteers are selected for evaluation. The selected signals have a sampling rate of
360 samples per second and a resolution of 11 bits. The second dataset is the Motor
Movement/Imagery Dataset, used for testing EEG compression [34]. This dataset contains
over 1500 one- and two-minute EEG recordings collected from 109 volunteers. Twenty
single-channel EEG signals are selected for testing. The sampling frequency of the selected
EEG signals is 160 samples per second.

6.2. Evaluation Criteria

The compression ratio and the reconstructed image quality must be measured to
evaluate the proposed algorithm’s performance. Various metrics are utilized for evaluation
as follows:

• CR

The achieved CR can be measured as follows:

CR =
NO

NR
(13)

NO and NR represent the number of bits in the original and reconstructed signals.

• PRD %

This metric is used to quantify the difference between the original and reconstructed
signals as follows:

RD =

√√√√∑(f(x)− F(x))2

∑ f(x)2 × 100 (14)

• NCC

NCC is used to measure the correlation between two signals. Its value ranges from 1
to −1, where 1 represents a complete positive correlation and −1 represents a complete
negative correlation. The NCC between the original signal f(x) and reconstructed signal
F(x) is calculated as follows:

NCC =
∑(f(x)− f(x))(F(x)− F(x))√
∑ (f(x)− f(x))

2
(F(x)− F(x)2)

(15)

f(x) and F(x) are the mean values for the original and reconstructed signals, respectively.

• QS

QS is used to measure the performance of the compression algorithm. The higher the
value of QS, the better the algorithm’s performance. QS can be calculated as follows:

QS =
CR

PRD
(16)

For a fair comparison, the proposed and competing algorithms were tested on a PC
with the following specifications: Intel(R) Core(TM) i7-1065G7 CPU, 8 GB RAM, Windows
10 operating system, and MATLAB R2016a development environment.

6.3. Numerical Results and Discussion

This section presents the numerical outcomes of the suggested ECG and EEG compres-
sion algorithm. For ECG compression, 25 records from the MIT-BIH arrhythmia dataset are
compressed using the proposed approach, and the results are shown in Table 1. It can be
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noticed from the table that the proposed approach has efficient compression performance as
it can achieve high CR (CR = 32) with excellent signal reconstruction quality (PRD = 0.2665
and NCC = 0.9436). Additionally, the high-quality score results prove the efficient overall
performance of the proposed compression approach. For example, records 108, 112, 117,
118, and 121 have the highest QS results 119, 166, 110, 142, and 211. The average results of
the proposed approach in terms of CR, PRD, NCC, and QS are 18.06, 0.2470, 0.9467, and
85.366. Figure 4 shows examples of ECG signals after compression and decompression by
the proposed algorithm. The excellent quality of the reconstructed signals is clear from the
figure, as the reconstructed signals are very similar to the original.
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Table 1. Result of ECG signal compression using the proposed algorithm.

Signal
Metric

CR PRD NCC QS

100 25.6000 0.2764 0.9305 92.6194
101 21.3 0.2951 0.9173 72.2034
102 21.3 0.3700 0.9399 57.5676
103 10.6667 0.2628 0.9734 40.7137
104 16 0.2730 0.9833 58.6081
105 16 0.3051 0.9763 52.4590
106 8 0.2336 0.9890 34.2466
107 10.6667 0.1832 0.9909 58.2242
108 21.333 0.1790 0.9689 119.1788
109 32 0.2665 0.9436 119.8951
111 10.6667 0.2471 0.9805 43.1850
112 16 0.0968 0.9250 166.6667
113 10.6667 0.2584 0.9739 41.3438
114 21.3333 0.5272 0.9238 40.4647
115 21.333 0.3017 0.8993 70.8738
116 18.2857 0.2845 0.9188 64.3863
117 16 0.1453 0.9158 110.1170
118 21.333 0.1501 0.9455 142.2222
119 16 0.1511 0.9480 105.8901
121 21.3 0.1008 0.9452 211.3095
122 16 0.1660 0.9653 96.3855
123 21.3 0.1765 0.8928 120.6799
124 21.3 0.1856 0.9214 114.7629
200 21.3 0.3895 0.9301 54.6855
202 16 0.3518 0.9689 45.4804

Average 18.06 0.2470 0.9467 85.366

For EEG compression, 20 single-channel EEG signals from the Motor Movement/Imagery
Dataset are compressed and decompressed by the proposed approach. The results in terms
of CR, PRD, NCC, and QS and displayed in Table 2. It is shown from the table that the
proposed algorithm can achieve high CR values while maintaining signal quality for EEG
signals. The best EEG compression results for the proposed algorithm are 16, 0.2423, 0.9725,
and 66.033 for CR, PRD, NCC, and QS, respectively. The proposed algorithm can achieve
average CR, PRD, NCC, and QS values of 12.6668, 0.4014, 0.9187, and 32.4809, respectively.
Figure 5 shows samples of EEG signals before and after compression by the proposed
algorithm.

A comparison with some existing approaches [22–24] to prove the efficiency of the
proposed compression algorithm over the state-of-the-art techniques is conducted in terms
of CR, PRD, and QS, as shown in Table 3. It is shown from the table that with the same
CR, the proposed approach achieves the minimum PRD and maximum QS values, which
demonstrates the proposed algorithm’s superiority to the competing methods.

In remote healthcare monitoring systems, the compression speed is very important as a
higher compression speed means reduced energy consumption. Along with the evaluation
measures already mentioned, we also compared the other techniques in processing time.
Tables 4 and 5 show the processing time in seconds for the proposed and existing com-
pression techniques for ECG and EEG signals. The tables demonstrate that the proposed
algorithm has a lower processing time than the other techniques in most cases. However, in
some cases, the technique in [24], which uses Tchebichef moments with the ABC algorithm,
has the lowest processing time, especially in higher compression ratios. We conclude
from previous experiments that the proposed compression algorithm achieves excellent
performance for bio-signal compression.
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Table 2. Result of EEG signal compression using the proposed algorithm.

Signal
Metric

CR PRD NCC QS

S001R01 8 0.4259 0.9145 18.7838
S001R02 10.6667 0.4440 0.8993 24.0241
S001R03 10.6667 0.4271 0.9257 24.9747
S001R04 16 0.3911 0.9207 40.9103
S001R05 10.6667 0.4481 0.8986 23.8027
S001R06 16 0.4344 0.9085 36.8324
S001R07 8 0.3580 0.9393 22.3464
S001R08 10.6667 0.4130 0.9224 25.8274
S001R09 10.6667 0.4134 0.9187 25.8024
S001R10 16 0.4116 0.9161 38.8727
S001R11 16 0.3595 0.9429 44.5063
S001R12 10.6667 0.4148 0.9159 25.7153
S001R13 8 0.3540 0.9381 22.5989
S001R14 16 0.3424 0.9427 46.7290
S002R01 16 0.4884 0.8829 32.7600
S002R02 10.6667 0.4436 0.8907 24.0458
S002R05 16 0.4753 0.8522 33.6629
S003R01 16 0.4329 0.9105 36.9600
S003R03 16 0.2423 0.9725 66.033
S003R05 10.6667 0.3098 0.9623 34.4309
Average 12.6668 0.4014 0.9187 32.4809
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Table 3. Comparison with other techniques.

Algorithm
Metric

CR PRD NCC QS

100 m
Proposed 25.6000 0.2821 0.9005 90.7801
Ref. [24] 16 0.4058 0.5068 39.4283
Ref. [22] 10.6667 0.6993 0.4181 15.2534

101
Proposed 21.3 0.2951 0.9173 72.2034
Ref. [24] 21.3 0.4411 0.5791 48.2884
Ref. [22] 21.3 0.9085 0.3474 23.4452

112
Proposed 16 0.0968 0.9190 166.6667
Ref. [24] 16 0.1930 0.6022 82.9016
Ref. [22] 12.8000 0.9045 0.1599 14.1515

117
Proposed 16 0.1453 0.8954 110.1170
Ref. [24] 16 0.1903 0.6946 84.0778
Ref. [22] 16 0.9120 0.1919 17.5439

121
proposed 21.3 0.1008 0.9352 211.3095
Ref. [24] 21.3 0.2403 0.5872 88.6392
Ref. [22] 21.3 0.9291 0.1553 22.9254

S001R14
Proposed 16 0.3424 0.9427 46.7290
Ref. [24] 16 0.3817 0.9317 41.9177
Ref. [22] 16 0.6630 0.7470 24.1327

S003R03
Proposed 16 0.2423 0.9725 66.033
Ref. [24] 16 0.3368 0.9686 47.5059
Ref. [22] 16 0.6574 0.7365 24.3383

Table 4. Processing time of the proposed and existing techniques in seconds for ECG compression.

Signal CR 8 10 16
Algorithm Proposed Ref. [24] Ref. [22] Proposed Ref. [24] Ref. [22] Proposed Ref. [24] Ref. [22]

100 Time(s) 16.8569 20.50271 43.0804 5.9904 5.2764 12.7438 5.1200 4.9127 10.5913
101 Time(s) 9.3482 18.44711 24.0403 5.3523 5.31273 10.3791 5.22571 5.9275 9.9437
102 Time(s) 20.92532 22.2531 42.5343 14.40836 14.8672 21.5439 12.74184 15.4386 18.3288

Table 5. Processing time of the proposed and existing techniques in seconds for EEG compression.

Signal CR 8 10 16
Algorithm Proposed Ref. [24] Ref. [22] Proposed Ref. [24] Ref. [22] Proposed Ref. [24] Ref. [22]

S003R03 Time(s) 19.84490 22.29458 60.8584 10.72566 17.24832 18.9420 6.588784 8.447046 8.36956
S001R06 Time(s) 19.05750 32.05123 80.70620 11.41363 27.05330 34.86599 10.18366 17.933577 36.61682
S002R01 Time(s) 22.52732 45.5811 91.5449 16.21887 25.7678 44.4210 15.2215 15.93446 32.3308

7. Conclusions

In this paper, an efficient compression algorithm is proposed for bio-signals. Because
of the simplicity and efficiency of the HWT in extracting signal information, the proposed
technique used the block-based HWT to extract the signal’s features. The novel COVIDOA
selects the best wavelet coefficient subset to achieve the desired compression ratio. The
optimum coefficient subset is selected according to a selected objective function, PRD. The
subset of coefficients that achieves the minimum PRD value is selected and is considered
the optimum and selected for signal reconstruction. The MIT-BIH arrhythmia and Motor
Movement/Imagery datasets are used to test the performance of the proposed algorithm
in ECG and EEG signal compression. The results showed that the proposed compression
approach could achieve high CRs while maintaining signal quality. Comparing existing
compression algorithms is conducted according to CR, PRD, NCC, QS, and processing
time. The comparison proved the superiority of the proposed algorithm in ECG and EEG
compression.
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Future work may include applying the proposed algorithm for other bio-signals, such
as EMG, ERG, and EGG. Further, the proposed approach may be applied to 2D and 3D
medical image compression to minimize the storage and transmission capabilities required
by healthcare systems.
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