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Abstract: Nuclei segmentation and classification are two basic and essential tasks in computer-
aided diagnosis of digital pathology images, and those deep-learning-based methods have achieved
significant success. Unfortunately, most of the existing studies accomplish the two tasks by splicing
two related neural networks directly, resulting in repetitive computation efforts and a redundant-
and-large neural network. Thus, this paper proposes a lightweight deep learning framework (GSN-
HVNET) with an encoder–decoder structure for simultaneous segmentation and classification of
nuclei. The decoder consists of three branches outputting the semantic segmentation of nuclei, the
horizontal and vertical (HV) distances of nuclei pixels to their mass centers, and the class of each
nucleus, respectively. The instance segmentation results are obtained by combing the outputs of
the first and second branches. To reduce the computational cost and improve the network stability
under small batch sizes, we propose two newly designed blocks, Residual-Ghost-SN (RGS) and
Dense-Ghost-SN (DGS). Furthermore, considering the practical usage in pathological diagnosis, we
redefine the classification principle of the CoNSeP dataset. Experimental results demonstrate that the
proposed model outperforms other state-of-the-art models in terms of segmentation and classification
accuracy by a significant margin while maintaining high computational efficiency.

Keywords: joint nuclei segmentation and classification; lightweight, multi-task deep learning
framework; Residual-Ghost-SN; Dense-Ghost-SN

1. Introduction

Over the past several years, deep-learning-based computer vision techniques have
been extensively applied to computer-aided diagnosis (CAD). In computational pathology,
pathological image analysis based on the deep learning method has proven powerful
in improving efficiency and accuracy in cancer detection [1]. The morphology of the
nuclei is the essential feature used by pathologists in cancer diagnosis and further cancer
prognoses, such as predicting survival [2] and pathological grading of tumors [3]. Accurate
nuclei segmentation and classification can advance the quality of tissue segmentation [4,5].
Nuclei segmentation is the crucial first step to obtaining the morphological features used
in the downstream analysis. However, the morphological heterogeneity of nuclei makes
studies challenging. The karyomorphism shows variability, while different diseases may
cause chromatin abnormalities to exhibit variable size and shape patterns. Another severe
problem is that the cells in a cancerous tumor are usually densely packed and even have
more than one nucleus, causing overlapping nuclei. This overlapping brings difficulty for
further research on separating neighboring instances via automatic segmentation.
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Extracting each nucleus and distinguishing its type can promote the diagnostic po-
tential in present-day digital pathology pipelines. For instance, precisely distinguishing
each nucleus from tumors or lymphocytes can significantly facilitate downstream analysis
of tumor-infiltrating lymphocytes (TIL), which has been proven effective in predicting
cancer recurrence [6]. The nucleus-by-nucleus classification has become another problem
researchers have been interested in recently due to the high variability and diversity of
nuclei appearance in a whole slide image.

The current deep models for histopathology image diagnosis are mainly based on
single-task learning. Single-task learning is designing a model for a specific task and then
optimizing iteratively. In this case, the nuclei segmentation and classification tasks require
two independent models, one for detecting the location of each nucleus and the other for
classifying the type of nuclei [7,8]. For more complicated tasks, we are accustomed to
modeling each part of the task by disassembling. However, there exists an obvious problem
in this way. When modeling each sub-task, it is easy to ignore the relationships, conflicts,
and constraints between different sub-tasks, resulting in the downgrading of the overall
performance of the entire task.

To address the above issue, multi-task models have drawn much attention [9–12]. The
multi-task models have the following advantages: (1) multiple tasks share the same model,
reducing the amount of memory; (2) multiple tasks obtain results through a forward calcu-
lation at one time, and the inference speed increases; (3) associated tasks share information
and complement each other, improving each tasks’ performance.

Recently, several multi-task deep models for histopathology image diagnosis have
been suggested and achieved promising results [13–15]. Unfortunately, these approaches
still suffer from efficiency issues, such as dealing with a cumbersome model with a huge
amount of parameters. In addition, the classification on the CoNSeP dataset [13] seems
hard to meet the needs of practical pathological diagnosis.

The present paper proposes a lightweight, multi-task deep learning framework for
segmenting and classifying nuclei simultaneously. To address the problem of network
stability encountered by batch normalization (BN) when dealing with small batch sizes, we
introduce two newly designed blocks. We devise an efficient encoder–decoder architecture,
where the encoder adopts our proposed RGS for down-sampling, while the decoder uses
Dense-Ghost-Module (DGM) and convolution for up-sampling. By encoding the HV
distance of nuclei pixels, we can obtain more representative features on the instance with
fewer layers. Here, HV distance can be used to segment overlapping nuclei instances
accurately. Later, the decoder using the output features of the encoder predicts nuclei
types. According to the above characteristics, we call the proposed network GSN-HVNET.
Our experimental results show that the proposed model can retain shallow features on
nuclei to improve segmentation and classification accuracy. Our main contributions are
outlined below:

• We propose a novel, lightweight, multi-task deep learning framework containing a
unified model for segmentation and classification of nuclei instances simultaneously
with superior efficiency and accuracy.

• We propose the newly designed RGS and DGS to improve accuracy and compress the
training model.

• We redefine the classification principle of the CoNSeP dataset so that the auxiliary
diagnostic results have practical significance in pathological diagnosis.

• Our experiments on the CoNSeP, Kumar, and CPM-17 datasets confirm the improve-
ments to existing works [13,14]. Compared with the state-of-the-art HoVer-Net [13],
the number of parameters is reduced by 64%. In addition, we try different batch sizes
in our experiments and prove that batch size is no longer a strict limitation on the
proposed network; even when a small batch is presented, the proposed network can
maintain a high performance.

The remainder of this paper is organized as follows: Section 2 introduces the current
research on applying learning algorithms in histopathology image analysis. Our new
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network architecture is presented in Section 3. We conduct experiments and show desirable
results in Section 4. Finally, Section 5 concludes our work and gives a brief discussion of
future work.

2. Related Work
2.1. Nuclei Segmentation

Nuclei segmentation is the crucial first step in computer-aided systems for cancer
detection. Low level information analysis of histopathology images, such as histograms
analysis[16–20], were often used for early nuclei segmentation algorithms. There was an
obvious shortcoming that occurred to those algorithms. A certain threshold was hard to
be determined to adapt to all scenarios. In [21], the authors proposed a fast and flexible
segmentation algorithm based on computing the watersheds in digital grayscale images.
Unfortunately, related experiments reported several false-positive segmentation cases.
In [22], the authors proposed a novel, marker-controlled watershed based on mathematical
morphology to segment clustered cells with less oversegmentation, designing a tracking
method based on modified mean shift algorithm to segment undersegmented cells or
merge oversegmented cells. In [23], the authors proposed a method combining region
growing and machine learning to segment touching nuclei and classify them. In [24], the
authors proposed an improved method, which used a joint optimization of a multiple-level
set function to segment the cytoplasm and nuclei from clumps of overlapping cervical
cells. In [25], the authors proposed using the graph theory technique to segment glands
and computed a gland-score for estimating how similar a segmented region is to a gland.
In [26], the authors proposed a superpixel-based segmentation technique with different
morphological and clustering algorithms. Unfortunately, these existing segmentation
algorithms cannot provide utterly reliable results because they need to manually extract
nucleus features, which, thus, are inflexible and laborious to extend to a complex scenario.

Rather than manual feature extraction in traditional algorithms, deep learning methods
can automatically extract a distinct set of features, and have been widely applied to nuclei
segmentation [27]. For instance, U-Net has presented an outstanding performance in
biomedical image segmentation [28]. In [29], the authors proposed a deep multi-scale
neural network for accurately segmenting nuclei by improving sensitivity to hematoxylin
intensity. In [30], to meet the challenge of segmenting overlapping or touching nuclei, the
authors formulated the segmentation problem as a regression task of the distance map,
and the nuclei boundary information was used as prior knowledge for a segmentation
network. In [31], the authors proposed a contour-aware informative aggregation network
with a multi-level information aggregation module between two task decoders: one of
these segments the nuclei, and the other segments the contours.

2.2. Nuclei Classification

Nuclei classification is a vital step in histopathology image analysis, promoting down-
stream analysis such as evaluating cancer progression. Early studies utilize manually
extracted features to classify the nuclei automatically. Typically, an SVM-based method [32]
applied iterative feedback to obtain subtle and complex features of cellular morphology.
Albeit showing good performance in high-penetrant phenotypes, it can hardly achieve a
satisfying performance in lower-penetrant phenotypes. In [33], Ada-boost was used as the
classifier to classify the nuclei after segmentation. The classifier was constructed based on
intensity, texture, and morphology features. However, these machine learning methods
manually extract features, and their representation ability and stability can still be affected
by subjective factors to some extent.

Generally, a deep-learning-based nuclei classification model consists of two main
phases. Firstly, each nucleus is segmented or detected using a deep model; then, those
features are fed into a classifier to confirm nuclei types. For instance, in [34], the nuclei
in colon cancer histology images were firstly detected using a spatially constrained CNN.
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Then, each nucleus with associated patches was fed into the convolution network to predict
its type, i.e., inflammatory, healthy, or malignant epithelium.

3. Proposed Method

Figure 1 shows an overview of the GSN-HVNET for simultaneous nuclei instance
segmentation and classification. The network input starts with 80× 80× 3 images, which
are center patches cropped out from the sample images of size 270× 270× 3. The model
can simultaneously segment the nuclei and predict nuclei types and HV-Maps (horizontal
and vertical maps). After a post-processing procedure, the nuclei instance can be obtained
using HV-Map and nuclei pixel predictions. The final output results can be obtained
by combining the segmentation results with the nuclei-type predictions. In other words,
the network can complete the segmentation and classification of nuclei instances at the
last step.

NSS branch output

HV branch output

NC branch output

Input

GSN-HVNET

Instance 

Segmentation
Instance 

Segmentation and 

Classification

Post Processing

Figure 1. An overview of the GSN-HVNET for simultaneous nuclei instance segmentation and
classification. The NSS branch achieves nuclei semantic segmentation, and the HV branch predicts
the HV distances of nuclei pixels to their mass centers. Nuclei types are predicted in the NC branch.
The nuclei instance segmentation can be accomplished by combining the output of the NSS and
HV branches.

3.1. Network Architecture

Figure 2 illustrates the detailed structure of the proposed GSN-HVNET. The proposed
network consists of an encoder and a decoder for automatic segmentation and classification
of nuclei instances. The encoder can extract an effective set of features; then, the output
result of the encoder is used as the decoder input. The decoder contains three branches.
Branch I (NSS) is used in nuclei semantic segmentation, and branch II (HV) predicts the
HV distances of nuclei pixels to their mass centers. Nuclei types are predicted in branch
III (NC). We combine the output of branch I and branch II to accomplish the instance
segmentation. Then, the instance segmentation result combines the branch III output to
accomplish automatic segmentation and classification of the nuclei instance. The encoder
employs the proposed RGS, as discussed in Section 3.1.1. The details of GBS and RGS will
be introduced in Sections 3.1.2 and 3.1.3, respectively. In Section 3.1.4, the decoder designed
with DGS will be described. The details of DGS will be presented in Section 3.1.5.
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Figure 2. The structure of GSN-HVNET. Our proposed network contains an encoder and a decoder.
The encoder, which extracts an effective set of features, is composed of a CSR block, four RGMs, and a
Conv2D. The decoder is composed of three branches to achieve accurate nuclei instance segmentation
and classification simultaneously.

3.1.1. Encoder

To extract a practical set of features, we design a novel residual ghost network as part
of the encoder in the overall network. The network employs a Conv2D-SN-ReLU (CSR)
and a series of 4 Residual-Ghost-Modules (RGMs) for down-sampling. Here, the CSR block
is composed of a Conv2D, SN, and ReLU. An RGM consists of multiple instances of our
improved Ghost-Block—Residual-Ghost-Block with switchable normalization (RGS) [35].
Benefiting from ghost convolution, our network requires much fewer parameters to gen-
erate abundant feature maps compared with using ordinary convolution, resulting in an
improved computational efficiency of our encoder. Moreover, the SN can select an optimal
combination of different normalizers for different normalization layers, improving the
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network stability, i.e., the accuracy is not affected by the batch size. Each RGM is used as a
down-sampling level of 2, which means that the spatial resolution of the input is reduced by
a factor of 2. We will give a detailed discussion on RGS in the two subsequent subsections.

3.1.2. Ghost Block with Switchable Normalization

Figure 3 compares the structure of Ghost-Block-BN (GBB) [36] and our suggested
Ghost-Block-SN (GBS). As is known, Ghost-Block can help a convolutional neural network
to generate more features at a much lower cost. To do that, a Ghost-Block first generates
several intrinsic feature maps using ordinary convolution operation and then uses cheap
linear operations to expand the features and increase the channels. The computational cost
of the linear operations on feature maps is much lower than traditional convolution and
transcends other existing efficient works. We can customize the kernel size of the primary
convolution in a Ghost-Block, and 1× 1 point-wise convolution is employed in this paper.
In the Residual-Ghost-Block (RGB), each Ghost-Block is followed by a BN layer, which
offers several advantages, including stabilizing and speeding up the training procedure.
However, the performance of GBB is severely restricted by the batch size. This is because
BN only utilizes a single normalizer in the entire network, which can be unstable and hurt
the accuracy in the case of a small batch size.

(a)

(b)

Figure 3. An illustration of the ghost block and the improved ghost block with switchable normaliza-
tion. (a) Ghost block with batch normalization. (b) Ghost block with switchable normalization.

To solve the above problem, we apply switchable normalization (SN), which is ro-
bust to a wide range of batch sizes, whether a small batch size or not. As shown in
Figure 4, SN measures channel-wise, layer-wise, and minibatch-wise statistics by using
instance normalization (IN) [37], layer normalization (LN) [38], and batch normalization
(BN) [39], respectively, and tries to find an optimal combination by learning their important
weights, ensuring the stability and accuracy of the network in the case of small batch size.



Bioengineering 2023, 10, 393 7 of 17

Figure 4. Switchable normalization. It learns to select different normalizers for different normalization
layers of a deep neural network.

3.1.3. Residual Ghost Block with Switchable Normalization

Our RGS adopts the structure of residual block—the essential building unit of residual
neural network (ResNet) [40]—owing to its outstanding performance. The key idea behind
residual block is to reformulate the layers as learning residual functions with reference
to the layer inputs, instead of learning unreferenced functions. As shown in Figure 5,
we embed the proposed GBS in a residual block as RGS. Later, several RGSs are stacked
to form the RGM. Our network contains of four stacked RGMs with 1, 2, 3, and 1 RGS,
respectively. Compared with original ResNet-50, our network employs fewer building
units to extract feature maps and reduce redundant features, leading to a reduction in
model size. In addition, our proposed RGS is generic and can be used in the construction
of other lightweight deep learning architectures.

Figure 5. Residual ghost block with switchable normalization. The GBS denotes the ghost block with
switchable normalization.

3.1.4. Decoder

As aforementioned, the decoder contains three branches to obtain accurate nuclei
instance segmentation and classification simultaneously. These three branches adopt the
same architecture consisting of a series of up-sampling operations and two Dense-Ghost-
Modules. A DGM contains a series of cascading DGSs. Through stacking multiple DGSs,
we can enrich the receptive field with relatively fewer parameters compared with the most
popular Dense-Block, resulting in increased computational efficiency. As is known, low-
level information is critical in segmentation tasks because it precisely helps to determine
object boundaries. To make use of it, we adopt the skip connections to merge feature from
each RGS in the encoder via the concatenation operation. The DGM follows the first and
second up-sampling operations. There are eight and four DGSs in the first and second
DGM, respectively. Each of the three branches contains three up-sampling steps, making the
output feature the same dimension as the input image, i.e., 80× 80× 3. By combining the
results of the two up-sampling branches, NSS and HV, we can obtain accurate boundaries
of each individual cell nucleus, and thereby accomplish the nuclei instance segmentation.
Compared with independent networks for different tasks, the proposed network is a unified
model to simultaneously accomplish nuclei segmentation and classification, thus reducing
the total training time.
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3.1.5. Dense Ghost Module with Switchable Normalization

In this part, we propose a novel module applied to the decoder of GSN-HVNET. An
example of the proposed module is shown in Figure 6, in which n = 4. Each DGS connects
to other DGSs with forwarding feedback and employs GBS to extract feature maps. The
feature maps from all preceding layers are utilized as current inputs, and the feature maps
output by a DGS are used as inputs for all subsequent layers.

Figure 6. Dense ghost module with switchable normalization. The GBS and SNR denote the ghost
block with switchable normalization and switchable normalization with ReLU, respectively.

Thus, the proposed module can retain more abundant features as inputs of subse-
quent layers.

Similarly, benefiting from the lightweight nature of GBS, our proposed DGS utilizes
fewer parameters to generate abundant feature maps and valid features compared with
Dense-Block [41]. Moreover, it helps to avoid unnecessary calculations by reducing re-
dundant feature maps. Particularly, the DGM can maintain its performance under a small
mini-batch size.

3.1.6. Joint Loss Function of GSN-HVNET

We design different loss functions for each different task. In Table 1, we define the
notations for our works. The joint loss function LJoin is defined by

LJoin = LNSS + LHV + LNC. (1)

The NSS branch corresponds to a semantic segmentation task, and its loss function is
designed using BCE loss and dice loss. It is defined by

LNSS = λaLBCE + λbLDICE, (2)

where LBCE and LDICE represent the binary cross-entropy loss function and dice loss
function for the output of the NSS branch, respectively. The λa and λb are scalars that give
weights to their associated loss function. The above two functions are defined by

LBCE = −[ 1
n

N

∑
i=1

K

∑
k=1

Xi,k(I) log Yi,k(I) +
N

∑
i=1

K

∑
k=1

(1− Xi,k(I)) log(1−Yi,k(I))] (3)

and

LDICE = 1− 2×∑N
i=1(Yi(I)× Xi(I)) + ε

∑N
i=1 Yi(I) + ∑N

i=1 Xi(I) + ε
, (4)

where X represents the ground truth, Y denotes the prediction, and K represents the number
of categories. In order to avoid zero denominators, we set ε to 1.0× e−4 in the numerator
and denominator.

The loss function for the HV branch is defined by

LHV = λcLMSE + λdLMSGE, (5)
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where LMSE represents the mean squared error measuring the difference between the HV
distances prediction and the ground truth, λc and λd are the weights of their associated loss
function. The loss function LMSGE is used to calculate the gradients of the mean squared
error between HV maps and ground truth. LMSE and LMSGE are defined by

LMSE =
1
n

n

∑
n=1

(pi(I)− Γi(I))2 (6)

and

LMSGE =
1
m ∑

i∈M
(∇x(pi,x(I)− Γi,x(I)))2 +

1
m ∑

i∈M
(∇y(pi,y(I)− Γi,y(I)))2, (7)

where I represents the input image and pi(I) is defined as the regression output of HV
branch. The pixel-wise softmax predictions of NSS and NC branches are represented by
qi(I) and ri(I), respectively. Γi(I) denotes the ground truth of the HV distance of nuclei
pixels to their mass centers.

The loss function of LNC is defined by

LNC = λeLBCE + λ f LDICE. (8)

Similarly, λe and λ f are used to balance the two loss functions LBCE and LDICE.

Table 1. The definition of notations.

Notation Definition

hncij The value of a pixel before normalization.
ˆhncij, The value of a pixel after normalization.

γ, β Scale and shift parameter
Ik, |Ik| A set of pixels, and the number of pixels in Ik.

L, λ
L denotes the loss function and λ represents

its parameters.
I The input image.

Γi(I) The HV distance of nuclei pixels to their
mass centers.

pi(I) The regression output of HV branch.

qi(I) The pixel-wise and softmax predictions of
NSS branch.

ri(I) The pixel-wise and softmax predictions of
NC branch.

E The energy landspace.

Ft
c

The whole measurement for nuclei type
classification and nuclei instance segmentation.

FP, FN False-positive, false-negative.
TP, TN True-positive, true-negative.

3.2. Post-Processing

The proposed network produces three outputs. To obtain the nuclei location and
separate overlapping or clustered nuclei, we need to post-process the output of NSS and
HV. Within each HV map, there are significant differences between pixels in adjacent
instances. Using this property, we can calculate the gradient so as to separate the clustered
nuclei. To do that, we have

Sm = max(Hor(phor), Ver(pver)), (9)

where phor and pver represent the horizontal and vertical predictions produced by the HV
branch, and Hor and Ver refer to the horizontal and vertical components, respectively, of
the Sobel operator, which calculates the horizontal and vertical derivative approximations.
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In Figure 1, Sm highlights the regions where pixels in adjacent regions of two instances
differ significantly in the horizontal and vertical maps.

We compute the marker M according to

M = σ(τ(q, h)− τ(Sm, k)), (10)

where q is the output probability map of the NSS branch and τ(q, h) is a threshold function
acting on q and sets values above h to 1 or 0; otherwise, σ is a rectifier setting all negative
value to 0 and M is the output marker. We can obtain desired segmentation results by
choosing appropriate h and k.

Next, we compute the energy landscape E according to

E = [1− τ(Sm, k)] ∗ τ(q, h). (11)

Finally, given the energy landscape E, a marker-controlled watershed is carried out
using M as the marker to determine how to split τ(q, h), given the energy landscape E. The
task of joint segmentation and classification of nuclei requires converting per-pixel nuclei
type prediction in the NSS branch to the prediction of the type of nuclei instances. To do
that, we combine the post-processing result with NC branch output.

4. Experiment
4.1. Datasets and Implementation

In our experiment, we adopt three authoritative nuclei datasets: CoNSeP [13],
Kumar [42], and CPM-17 [43]. Table 2 describes these datasets used in our experiment.
The CoNSeP dataset, extracted from 16 colorectal adenocarcinoma (CRA) WSIs, consists
of 41 hematoxylineosin (H&E) staining images, each of size 1000× 1000 at 40× objective
magnification. In CoNSeP dataset, tumor regions, stroma, muscular, fat, glandular, and
collagen can be observed. In addition to containing different tissue components, seven
nuclei types are provided, including malignant/dysplastic epithelial nuclei, normal epithe-
lium, inflammatory, fibroblast, muscle, endothelial, and miscellaneous. In [13], the authors
combined the original seven categories into four categories, of which malignant/dysplastic
epithelial and normal epithelial were combined into a single type corresponding to the
epithelial class, and fibroblast, muscle, and endothelial were combined into a single type
corresponding to the spindle-shaped class. However, in practical clinical diagnosis, a CAD
system should mainly focus on the identification of lesion area. To address this issue, we
reclassified this dataset in our experiment. Specially, the normal epithelium, fibroblast,
muscle, endothelial, and miscellaneous were combined into a single type corresponding to
normal region, and the malignant/dysplastic epithelial and inflammatory are considered
as two separate types—that is, the reclassified contain three nuclei categories as well as the
background category. With this classification rule, our model can directly report the types
of nuclei in lesion areas.

Kumar is an annotated dataset containing over 13,000 segmented nuclei from four
different organs—breast, kidney, liver, and prostate—of 16 patients. The CPM-17 dataset
provides the tissue image with labels for nuclei segmentation and classification. It is ob-
tained from patients with head and neck squamous cell (HNSCC), glioblastoma multiforme
(GBM), non-small cell lung cancer (NSCLC), and lower-grade glioma tumors (LGG). Some
examples taken from these datasets are shown in Figure 7.
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Malignant/dysplastic 

epithelium
Normal epithelium Inflammatory Fibroblast

Muscle Endothelial Miscellaneous

Figure 7. The sample clipping region is extracted from the CoNSeP dataset, where the color of each
nuclear boundary indicates its category.

Table 2. Description of the dataset used in our experiment. The Seg denotes the dataset with
segmentation labels and the Class denotes the dataset with classification labels.

CoNSeP CPM-17 Kumar

Total numbers
of nuclei 24,319 7570 21,623

Labeled nuclei 24,319 0 0
Number of images 41 32 30

Origin UHCW TCGA TCGA
Magnification 40× 40× & 20 × 40×
Size of images 1000×1000 500×500 to 600×600 1000×1000

Seg/Class Seg&Class Seg Seg
Number of

cancer types 1 4 8

We run our code on a server equipped with an NVIDIA Geforce RTX 3090 GPU
and Intel(R) Xeon(R) Gold 5118 CPU. During the training phase, we performed data
augmentation to augment the training data. We randomly combined zooming, channel
shifting, shearing, rotating, and horizontal/vertical flipping, which cropped the original
image into 270 × 270 sub-images. We used Kaiming normalization [44] to initialize weights
and set initial bias as false. We used Adam [45] as the optimizer, with a trainable batch
size of 4. We set an initial learning rate as 1.0× e−4 and weight decay as 0.1. The six
hyper-parameters λa, λb, λc, λd, λe, and λ f used for balancing the joint loss function are
tuned to be {1, 1, 1, 1, 2, 1} on the validation set.

4.2. Evaluation Metrics
4.2.1. Nuclei Instance Segmentation Evaluation

The segmentation of the nuclei instances can be divided into three sub-tasks; these
three sub-tasks are the separation of the nuclei from the background, the detection of
individual nuclei instances, and the segmentation of each detected instance. The Ensemble
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Dice [43] and Aggregated Jaccard Index [42] are two popular metrics used to measure the
performance of nuclei instance segmentation. To better investigate the proposed method,
we need to measure the performance of each sub-task. The dice coefficient (F1 score) is
defined by

Dice_coe f =
|TP|

|TP|+ 1
2 |FP|+ 1

2 |FN|
=

2× (X ∩Y)
(|X|+ |Y|) , (12)

where TP represents the true-positive rate, FP represents the false-positive rate, and FN repre-
sents the false-negative rate. X and Y represent the ground truth and prediction, respectively.

The AJI calculates the ratio of an aggregated intersection cardinality to an aggregated
union cardinality between the ground truth and prediction. It is defined by

AJI =
∑N

i=1|Gi ∩ Pi
M|

∑N
i=1|Gi ∪ Pi

M|+ ∑F∈U |PF|
, (13)

where Gi is the ith nucleus from the ground truth with N nuclei. Pi
M represents the Mth

connected component in prediction, which has the largest Jaccard Index with Gi, and where
each M cannot be utilized more than once. U is a set representing the connected component
in the prediction without the corresponding ground truth.

Unfortunately, F1 score and AJI only calculate an overall score for the instance segmen-
tation quality. In addition, the two metrics suffer from a limitation that they will produce
excessive penalization and result in an abnormal score for overlapping regions.

To take a measurement of each sub-task, we take advantage of panoptic quality [46]
with accurate quantification and interpretability to measure the performance of nuclei
instance segmentation. The panoptic quality for nuclei instance segmentation is defined by

PQ = DQ× SQ = Dice_coe f ×
∑(x,y)∈TP IoU(x, y)

|TP| , (14)

where x and y denote a ground truth component and a prediction component, respectively.
The IoU represents the intersection over union. Each (x, y) must be unique over the whole
set of prediction and ground truth segments, if their IoU(x, y) > 0.5. DQ and SQ help
to give a direct insight into detecting individual nuclear instances and segmenting each
detected instance. Therefore, PQ can serve as the objective evaluation criteria for measuring
the performance of the nuclei instance segmentation task.

To demonstrate the effectiveness of the proposed method, we use the following three
metrics. Dice coefficient and PQ are used to measure the separation of all nuclei from
the background and serve as a unified score for comparison, respectively. The AJI is
used for the comparison with other methods. In this study, these three metrics serve as
objective evaluation criteria. As the most reliable assessment of the segmentation quality,
the subjective evaluation can also be carried out in practical applications.

4.2.2. Nuclei Classification Evaluation

Nuclei classification is influenced by nuclei instance segmentation. The whole measure-
ment for nuclei type classification should include nuclei instance segmentation.
HoVer-Net [13] defines an efficient evaluation, which is defined by

Ft
c =

2(TPc + TNc)
2(TPc + TNc) + 2(FPc + FNc) + (FPd + FNd)

, (15)

where FPd and FNd are false-positive and false-negative in detecting ground truth instances,
respectively. TPc, TNc, FPc, and FNc denote true-positive, true-negative, false-positive, and
false-negative, respectively.
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4.3. Experimental Results

Table 3 compares the number of trainable parameters of the proposed and other
popular models. As can be seen from this table, our model gives the smallest size among
all others in terms of the nuclei segmentation task and the second smallest size in term
of the joint segmentation and classification task. Consequently, our model offers a high
degree of computational efficiency. Table 4 compares the Dice scores of the proposed and
two state-of-the-art models working with small mini-batch sizes. The results indicate that
the proposed model appears more stable, i.e., our model can work well on small-memory-
capacity GPUs, such as the NVIDIA 1080ti or 2080ti, thus reducing the hardware cost. The
model size is significantly smaller than other compared networks.

Table 3. Comparative results for the number of trainable parameters of different networks for nuclei
segmentation and classification. The Seg denotes the single-task network for segmentation. The
Seg&Class denotes the multi-tasking network for simultaneous segmentation and classification.

Method Seg/Class Parameters

HoVer-Net [13] Seg 42.94M
HoVer-Net [13] Seg&Class 52.20M
Micro-Net [14] Seg&Class 183.67M

DIST [30] Seg&Class 8.81M
DCAN [47] Seg 39.54M
SegNet [48] Seg 28.07M
FCN8 [49] Seg 128.05M
U-Net [28] Seg&Class 35.23M

Mask-RCNN [15] Seg&Class 44.17M
Our proposed Seg 15.03M
Our proposed Seg&Class 32.52M

Table 4. Comparative results for different mini-batch sizes presenting in three multi-tasking networks.
The Dice coefficient is used to evaluate the segmentation performance on the CoNSeP, Kumar, and
CPM-17 datasets.

Batch Size
Our Proposed HoVer-Net Micro-Net

Dice Dice Dice
CoNSeP Kumar CPM-17 CoNSeP Kumar CPM-17 CoNSeP Kumar CPM-17

1 0.821 0.851 0.865 0.816 0.794 0.843 0.752 0.759 0.828
2 0.830 0.844 0.870 0.806 0.804 0.875 0.764 0.785 0.857
3 0.839 0.842 0.870 0.835 0.819 0.879 0.758 0.794 0.859

The proposed network is measured by the three kinds of metrics discussed above,
compared with baselines and other state-of-the-art networks, and the results are reported
in Table 5. The results indicate that our proposed network achieves the highest accuracy
among all the others. Moreover, even though the DIST model has fewer parameters than
ours on joint nuclei segmentation classification task, its segmentation performance is worse
than ours by a large margin on all three datasets. Therefore, our network offers an optimal
trade-off between accuracy and efficiency.

As aforementioned, the 4-class nuclei classification carried out in HoVer-Net is imprac-
tical for use in practical pathological diagnosis. Accordingly, we have reclassified the data.
Table 6 lists the comparative results for 3-class nuclei classification on the CoNSeP dataset.
Here, Fd denotes the F1 score for nuclei detection. F1

c , F2
c , and F3

c denote the classification
score for healthy, inflammatory, and malignant/dysplastic epithelium classes, respectively.
The results show that the proposed network outperforms all the others in terms of F1

c , F2
c ,

and F3
c scores. In Figure 8, we illustrate the results of nuclei segmentation and classification

on the sample images and compare them with those of [13–15,30].
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CoNSeP

CPM-17

Kumar

Ground truth GSN-HVNET HoVer-Net

Malignant/dysplas

tic epithelium
Normal region Inflammatory

Mask-RCNNMicro-Net

Figure 8. Comparative results for nuclei classification and segmentation. The normal epithelium,
fibroblast, muscle, endothelial, and miscellaneous are combined into a single type corresponding to
the normal region, and the malignant/dysplastic epithelial and inflammatory are considered as two
separate types.

As can be seen from this figure, our lightweight method is successful in segmenting
overlapping and clustered nuclei. It is also excellent to complete the task of nuclei classifi-
cation at the same time. Overall, our proposed model achieves state-of-the-art accuracy
on nuclei segmentation and classification tasks while maintaining low computation cost.
Our idea can be directly deployed in the cell pathology diagnosis system to reduce the
workload of pathologists.

Table 5. Comparative results for nuclei segmentation. The Dice coefficient, AJI, and PQ are used
to evaluate the instance segmentation performance of ten networks on the CoNSeP, Kumar, and
CPM-17 datasets.

Method CoNSeP Kumar CPM-17
Dice AJI PQ Dice AJI PQ Dice AJI PQ

HoVer-Net [13] 0.838 0.525 0.494 0.826 0.618 0.597 0.869 0.705 0.697
SegNet [48] 0.796 0.194 0.270 0.811 0.377 0.407 0.857 0.491 0.531
FCN8 [49] 0.756 0.123 0.163 0.797 0.281 0.312 0.840 0.397 0.435
U-Net [28] 0.724 0.482 0.328 0.758 0.556 0.478 0.813 0.643 0.578
DIST [30] 0.798 0.495 0.386 0.789 0.559 0.443 0.826 0.616 0.504

DCAN [47] 0.733 0.289 0.256 0.792 0.525 0.492 0.828 0.561 0.545
Micro-Net [14] 0.784 0.518 0.421 0.797 0.560 0.519 0.857 0.668 0.661

Mask-RCNN [15] 0.740 0.474 0.460 0.760 0.546 0.509 0.850 0.684 0.674
CIA-Net [31] - - - 0.818 0.620 0.577 - - -

Our proposed 0.861 0.602 0.566 0.879 0.635 0.644 0.899 0.701 0.683
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Table 6. Comparative results for 3-class nuclei classification on the CoNSeP dataset. Fd denotes the
F1 score for nuclei detection. F1

c , F2
c , and F3

c denote the classification score for healthy, inflammatory,
and malignant/dysplastic epithelium classes, respectively.

Method Fd F1
c F2

c F3
c

HoVer-Net [13] 0.784 0.488 0.525 0.517
Micro-Net [14] 0.812 0.487 0.549 0.546

DIST [30] 0.782 0.489 0.569 0.526
Mask-RCNN

[15] 0.701 0.413 0.568 0.514

Our proposed 0.820 0.514 0.572 0.519

5. Conclusions

In this paper, we designed a lightweight, multi-task deep learning framework for
nuclei segmentation and classification. Our model follows an encoder–decoder architecture,
and the decoder consists of three branches, each outputting a prediction for a sub-task. To
sufficiently use the correlation among the three branches, we employ NSS and HV branches
to complete the nuclei instance segmentation and use NC branch to predict the classes
of each nucleus in a learning process. Two newly designed blocks, Residual-Ghost-SN
and Dense-Ghost-SN, are employed in the encoder and decoder parts, respectively, to
reduce the computational cost and improve the network stability under small batch sizes.
Extensive experiments have been carried out on the CoNSeP, Kumar, and CPM-17 datasets,
and the results demonstrate that our model offers a state-of-the-art trade-off between
computational efficiency and both segmentation and classification accuracy.

Ultimately, our idea is generic, and can be easily deployed to other histopathology
images analysis works. Moreover, the blocks proposed in this paper, including Residual-
Ghost-SN and Dense-Ghost-SN, are also generic and can be flexibly embedded into other
deep CNNs for histopathology image diagnostic tasks. However, regarding their appli-
cation in the field of natural images, we have not conducted experiments, and the effects
cannot be guaranteed. Thus, we pose this as an open problem and expect to provide a
theoretical analysis with complete proof in further research.
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