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Abstract: Ultrasound imaging is cost effective, radiation-free, portable, and implemented routinely in
clinical procedures. Nonetheless, image quality is characterized by a granulated appearance, a poor
SNR, and speckle noise. Specific for breast tumors, the margins are commonly blurred and indistinct.
Thus, there is a need for improving ultrasound image quality. We hypothesize that this can be
achieved by translation into a more realistic display which mimics a pseudo anatomical cut through
the tissue, using a cycle generative adversarial network (CycleGAN). In order to train CycleGAN
for this translation, two datasets were used, “Breast Ultrasound Images” (BUSI) and a set of optical
images of poultry breast tissues. The generated pseudo anatomical images provide improved visual
discrimination of the lesions through clearer border definition and pronounced contrast. In order to
evaluate the preservation of the anatomical features, the lesions in both datasets were segmented
and compared. This comparison yielded median dice scores of 0.91 and 0.70; median center errors
of 0.58% and 3.27%; and median area errors of 0.40% and 4.34% for the benign and malignancies,
respectively. In conclusion, generated pseudo anatomical images provide a more intuitive display,
enhance tissue anatomy, and preserve tumor geometry; and can potentially improve diagnoses and
clinical outcomes.

Keywords: ultrasound; image translation; CycleGAN; breast tumors

1. Introduction

Breast cancer is the second most prevalent cancer among women in the United States
and the second leading cause of cancer death among women overall. Early diagnosis
through screening, alongside treatment advancements, have substantially reduced breast
cancer mortality [1]. The screening and diagnosis process is primarily conducted using
mammography, ultrasound, and dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI). Each of these modalities has its own unique advantages and uses, depending
on the patient’s age, breast tissue density, medical history, and the tumor’s stage and
type [2].

Ultrasound is a major tool in breast cancer diagnosis. It is probably the most cost-
effective medical imaging modality available today. Stemming from its high availability
and from the fact that it is considered hazardless, it has found applications in almost all
fields of medicine. Nonetheless, even though it was introduced to medicine about eighty
years ago and despite the enormous progress in the fields of electronics and computers,
one factor remained unchanged: ultrasound images are characterized by a granulated
appearance with poor a SNR and substantial speckle noise. Furthermore, image quality
is subject to the skills of the scanner operator and the manner in which the probe is
attached and pressed against the tissue [3]. As a result, anatomical visualization is relatively
inferior when compared to mammography or MRI. Consequently, the clinical information
is compromised, and image interpretation relies substantially on the skills of the practicing
radiologist [4,5].
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On the positive side, since ultrasound image acquisition rate enables real-time imaging,
ultrasound is commonly used during surgery to bridge the gap between the preliminary
radiological images acquired before surgery and the actual area of tissue operated on [6–8].
Still, there is often a challenge in identifying the corresponding pathology of interest in
the anatomical cut. The difficulty stems mainly from two reasons. The first problem is the
potential mismatch between the spatial orientation of the image acquired before surgery
relative to the actual cut and the physical position of the patient at the time of the image
acquisition. Relating to this problem, ultrasound offers an advantage over other imaging
modalities. Since ultrasound scans are conducted by a handheld probe, they can yield
arbitrary cross-sectional images from various directions in real time. This may enable
the surgeon to find the best match with the preoperative radiological information during
the surgery. The second challenge is the substantial differences in appearance between
the black and white radiological image and the texture and color of the operated tissue.
The remedy for that could be a style of display which resembles the anatomical appearance
more closely.

Another significant challenge faced during surgery is ensuring the complete removal
of all the tumor tissue(s). This is typically achieved by cutting a margin of healthy tissue
surrounding the tumor. The remaining positive margin, which refers to residual tumor
tissue that remains in the body after the initial surgical resection, is a very important
factor that determines the success of the surgery. Intraoperative margin assessments
encompass a range of techniques aimed at providing information on the composition of
the tissue and discriminating between normal and malignant tissue during an operation.
One such approach is spectroscopy, which evaluates biochemical differences by analyzing
the aerosol released during electrosurgery [9] or by measuring the frequency shift of
light scattered by a focused laser [10]. Another method involves the determination of
tissues’ electrical properties through measurement of their resistance [11]. Molecular
imaging, which entails the detection of specific contrast agents or dyes, is also utilized for
intraoperative margin assessment [12,13]. Following the surgical procedure, the evaluation
of margins is customarily carried out through histopathology [14] to examine the excised
tissue and guarantee the presence of adequate healthy margins.

Intraoperative ultrasound offers another option. It enables mapping the margins
around the tissue in situ and examining the excised tissue. Detection of positive margins in
situ through the use of ultrasound enables the surgeon to make informed decisions regard-
ing additional resection procedures in real-time, if needed [6]. In addition, the ultrasound
probe can be attached directly to the excised tissue immediately after removal from the
breast, and the displayed images can be used for measuring the sizes and locations of the
healthy margins. This enables real-time margin assessment within the operation room.
Thus, if needed, more tissue can be removed. This can prevent cases where close or positive
margins are identified post-surgery, which mostly leads to additional surgeries, treatment
delay, and increase patient anxiety [15]. In this context as well, a display that resembles an
actual anatomical cut can be advantageous.

The aim of this study is harnessing the numerous advantages of ultrasound imaging
that were mentioned, both pre- and intra-operatively, while addressing its primary draw-
backs in relation to other imaging modalities, which are the poor quality and interpretability
of the resultant images. To bridge this gap, our research focused on generating a more intu-
itive representation of ultrasound images that would facilitate their interpretation by the
operators while preserving their anatomical information. An overview of the advantages
and disadvantages of ultrasound imaging is presented in Table 1.

In recent years, attempts have been made to generate methods for medical images’
translation into a more convenient form. For example, take translating point-of-care ultra-
sound to higher-quality ultrasound [16], translation between MRI different protocols [17],
and cross modality translations, such as ultrasound to MRI [18] and MRI to CT [19]. Fur-
ther, ultrasound image visualization has been improved by using CT as a reference [20].
Image translation from different domains can be done by implementing one of several
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methods [21], most of which are based on generative adversarial network (GANs) [22] or on
variational auto encoders (VAEs) [23]. The variety of methods can broadly be categorized
into supervised and unsupervised methods. Supervised methods require paired images
for training, whereas unsupervised methods do not [21]. One optional translation method
is the cycle generative adversarial network (CycleGAN). This unsupervised method is
capable of learning the mapping between two image domains without the need for paired
training data.

Table 1. Ultrasound imaging pros and cons associated with detection of tumors and their margins,
pre-operatively and intra-operatively.

Pros Cons

Radiation-free Low SNR
Real time imaging Operator dependent

Radiation-free Low SNR
Real time imaging Operator dependent

Enables arbitrary for cross-section imaging Non intuitive black and white image
Tumor detection pre and intra-operative

Margin assessment
Cost effective

In this work, we aimed to explore a different approach by creating a novel visual repre-
sentation of the tumor shape. It is postulated here that a transformation into a more realistic
and more intuitive display will be beneficial, by allowing a more straightforward interpreta-
tion. We have chosen to transform the ultrasonic images into a pseudo anatomical display,
as a demonstration of feasibility, which seems to be more natural to comprehend. This form
of representation, with colors and clearer borders, has the potential to be more intuitive
for the surgeon, and especially for those who are less experienced in the field. It could
potentially simplify ultrasound findings interpretation and improve the surgical procedure.
Since in our case, it was physically impossible to produce perfectly matched image pairs
for training the network, we hypothesized that this can be achieved by using CycleGAN.

2. Materials and Methods
2.1. Cycle Generative Adversarial Network (CycleGAN)

In order to create a transformation between two image domains using AI, it is cus-
tomary to establish a large number of paired images to train the network. This requires
that each pair of images would be acquired under the same exact conditions and views.
Evidently, due to the operator-dependent manner of ultrasonic-image acquisition, it may be
impractical to obtain matching pairs of images that exactly correspond to the same anatom-
ical cross-sections. However, the introduction of CycleGAN [24] has laid the foundations
for a new approach. CycleGAN, which has already been applied in several studies in the
medical field [18,25,26], is used to study the features of each image domain separately and
enforce similarity in the cross-domain. This, therefore, enables us to overcome the lack
of paired-image datasets (i.e., ultrasound vs. optical/anatomical). Additionally, another
notable advantage of CycleGAN is its translation rapidity. Following the training of the
neural network, the inference time is a fraction of a second, and thereby the images can be
translated and displayed alongside the ultrasound images in real time.

The CycleGAN architecture is comprised of two generative adversarial network (GAN)
units, one for each image domain. As shown in Figure 1, each of the GAN models has a
generator and a discriminator, which are trained simultaneously. The generator attempts
to produce from the input image domain a realistic display which fits the target domain
as well as possible. The discriminator, on the other hand, examines the features of the
produced image and decides whether or not it belongs to the target domain. According to
the discriminator feedback, the generator tries to improve the generated image. In parallel,
the discriminator accepts actual input images that belong to the target domain and improve
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its discrimination capability. Thus, the two networks enforce mutual improvement in an
adversarial manner.

In the context of this work, one generator was trained to produce pseudo anatom-
ical displays (GPA) from ultrasonic images, and its corresponding discriminator (DPA)
was trained to distinguish real from generated synthetic images, as shown in Figure 1a.
In an alternating fashion, the second generator was trained to produce ultrasound dis-
plays (GUS) from optical anatomical images, and simultaneously trained its corresponding
discriminator (DUS) (see Figure 1b).

Referring to mathematical terms, the real ultrasonic image is defined as x and the real
pseudo anatomical image as y. Accordingly, the adversarial loss for each of the GAN units
is calculated by [24]:

LGANPA(GPA, DPA) = Ey∼pdata(y)[log(DPA(y))]+

Ex∼pdata(x)[log(1− DPA(GPA(x))]
(1)

LGANUS(GUS, DUS) = Ey∼pdata(y)[log(DUS(y))]+

Ex∼pdata(x)[log(1− DUS(GUS(x))]
(2)

where LGANPA and LGANUS are the loss functions for ultrasound and PA, respectively,
and Ex∼pdata and Ey∼pdata are the corresponding expected values.

In addition, the networks were trained to maintain cycle-consistent translation, which
means minimizing the difference between the original image and its reconstruction. In order
to enforce this similarity in the cross domain, the input image was passed through one
generator, followed by a second generator, minimizing the discrepancy of the real input
image from the reconstructed image.

Within this framework, the cycle consistency is determined by the translation of
ultrasonic images to anatomical displays and back to ultrasonic images, or from anatomical
images to ultrasonic displays and back. These cycle-consistent translations are depicted
visually by the green arrows in Figure 1. Maintaining cycle consistency is important,
as it ensures that the networks are able to preserve the original information and details
of the images during the translation process. The cycle reconstruction loss (Lcycle) was
calculated by:

Lcycle(GPA, GUS) = Ex∼pdata(x)[||GUS(GPA(x))− x||1]+
Ey∼pdata(y)[||GPA(GUS(y))− y||1]

(3)

In the original paper of CycleGAN [24], the researchers proposed the usage of an
identity loss to preserve the pixels’ colors throughout the image translation. However,
in our case, the two domains differ substantially in their color scales and contrast properties.
While the tumors have a relatively white color to the human eye, they appear as black
regions in ultrasound images. In order to account for the opposite contrast between the two
domains, i.e., enhancing ultrasound black-colored masses’ translation into light-colored
optical images of the masses, the loss term was modified to take the negative value of the
input images; i.e.,

Lopposite(GPA, GUS) = Ex∼pdata(x)[||GUS(x̄)− x||1]+
Ey∼pdata(y)[||GPA(ȳ)− y||1]

(4)

where x̄ and ȳ are the negative images of x and y correspondingly.
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Figure 1. (a) Schematic diagram of the CycleGAN model used here to translate real ultrasound
images into pseudo anatomical images. The upper block is the GAN for producing the pseudo
anatomical display, and the lower block is the GAN for producing the ultrasound display. (b) An
identical network is used for generating ultrasound displays from anatomical images.

2.2. BUSI Dataset

A public dataset called “Breast Ultrasound Images” (BUSI) collected from women
between 25 and 75 years old [27] was used. The data were collected in 2018, from
600 female patients, and consist of 780 images classified to three groups: (i) 133 nor-
mal images without masses, (ii) 437 images with benign masses, (iii) 210 images with
malignant masses. The images were scanned by a LOGIQ E9 ultrasound system and
include additional manually traced masks of the radiologist’s evaluation. The images are
in a PNG format, vary in height and width, and have an average size of 600 × 500 pixels.
In our study, the data were preprocessed by removing text and labels that were not part of
the original ultrasound images and cropping them to partially overlapping square patches
of 450 × 450 pixels.

2.3. Optic/Anatomic Dataset

To demonstrate feasibility, a set of optical images were collected from poultry breast-
tissue samples. To simulate abnormal tissue, small regions were thermally etched. The etched
texture resembles the appearance of breast masses (see, for example, [28–31]). In order to
simulate the typical ultrasound signal decay with depth, part of each image contained a black
background on the lower part of the image. The etched sizes, shapes, and locations of the
simulated tumors were created so as to resemble the relative distribution of the abnormal
masses in the BUSI ultrasound images.
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2.4. Training Parameters

In order to train the model, the dataset, after being cropped into partially overlapping
square patches, was divided into train, validation, and test subsets. The training subgroup
consisted of 80% of the images, 5% were used for validation, and the rest were used
for testing the performance of the suggested method. The relative numbers of cases of
malignant, benign, and normal tissue were maintained in the validation and test groups as
well. The network’s architecture was based on the CycleGAN architecture provided by [24].
The hyperparameters were tuned according to the validation set, on which the cycle loss
was 10× higher than the GAN’s loss and the opposite loss was 0.03 lower. The model
was trained on a NVIDIA Tesla V100 GPU (Petach Tikva, Israel) running Linux. Training
computation time was approximately 36 h.

2.5. Automated Segmentation

In order to evaluate the quality of the generated images, image segmentation was
performed and compared to the BUSI’s traced masks. The optical images were segmented
by applying the morphological geodesic active contours (MorphGAC) [32] using the scikit-
image implementation [33]. As a preprocessing step to highlight the edges, the inverse
Gaussian gradient (IGG) was applied. To control the steepness of the inversion, the alpha
parameter was set to 100, and the standard deviation of the Gaussian filter sigma parameter
was set to 1.5, for both the ultrasonic and the pseudo anatomical display images.

Stemming from the fact that the BUSI tracing was preformed manually, it inherently
included inconsistencies. In order to overcome this problem, the generated images were
also compared to automatically re-segment masks with the MorphGAC algorithm for the
ultrasound images. The code for the segmentation graphical user interface implementation
is available https://github.com/LilachBarkat/MorphGAC-Segmentation-GUI (accessed
on 27 May 2022).

2.6. Evaluation Protocol

Since an image interpretability comparison is ultimately subjective and evaluation met-
rics such as SSIM (structural similarity) which are commonly used in image reconstruction
quality analysis are irrelevant in our case, other indices which are more indicative of the
clinical merit were applied. The performance of the method was evaluated by comparing
the optical segmentation mask to both the original BUSI reference masks and the BUSI
masks re-segmented by the MorphGAC algorithm. Three metrices were used to evaluate
the quality of the segmentation results. The first index used for contour evaluation was the
Dice index, which assesses shape similarity and is defined as [34]:

Dice =
2× TP

(TP + FP) + (TP + FN)
(5)

where TP, FP, and FN are the true positive, false positive, and false negative pixels, respec-
tively. Positive means within the lesion mask, and negative means outside the mask.

In addition, the accuracy at locating the center of mass of the lesion is defined as:

Center error =√
(CxRe f erence − CxGenerated)

2 + (CyRe f erence − CyGenerated)
2

√
2a

(6)

where CxRe f erence and CxGenerated are the x coordinates of the center of mass; and CyRe f erence and
CyGenerated are the y coordinates of the reference masks and the generated masks, respectively.√

2a is a normalizing size factor corresponding to the diagonal length of the image (the
largest possible dimension in the image).

https://github.com/LilachBarkat/MorphGAC-Segmentation-GUI
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The area index of the lesion is defined as:

Area index =
|SRe f erence − SGenerated|

a2
(7)

where SRe f erence and SGenerated are the segmented lesion areas of the reference and generated
masks, and a2 is the size normalization to the image area.

3. Results

A set of exemplary images translated from ultrasound to colored pseudo anatomical
displays is depicted in Figure 2. As can be observed, a pseudo anatomical display provides
superior visual discrimination of the lesion, including much clearer border definition and
enhanced contrast, especially for the malignant tumors (see Figure 2C,D). Furthermore,
the tissue’s texture is more vivid and realistic. Importantly, in most cases, the algorithm
manages to overcome the acoustic artifacts commonly appearing in ultrasonic images,
such as the acoustic shadow artifacts, as can clearly observed in Figure 2A, acoustic
enhancement artifacts of the tumor’s posterior tissue in Figure 2A,B, and the signal decay
with depth, at the bottom of the image, as depicted in Figure 2A. These distinctions highlight
the superiority of the optical representation over the ultrasound images, particularly by
capturing and representing the fine details.

A.
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BUSI BUSI mask Fake optic image

dice: 0.9418

Optic - GAC

dice: 0.9485 

Ultrasound - GAC
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n

dice: 0.6483 dice: 0.9122 

C.
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dice: 1.0000 dice: 1.0000 

Figure 2. (1st column) Examples of the BUSI images. (2nd column) BUSI masks. (3rd column) The
model-generated pseudo anatomical images. (4th column) The corresponding segmented masks
obtained by MorphGAC for the pseudo anatomical images and for the original ultrasound images
(5th column), with the corresponding Dice scores. The rows correspond to: (A) benign, (B) benign,
(C) malignant, (D) malignant, and (E) normal. As can be noted, the pseudo anatomical images are
more natural to comprehend, and the tumors are better defined.
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Although the algorithm was successful in most cases, there were instances where
its effectiveness was reduced. One of the difficulties encountered was the depiction of
erroneous lesions in normal tissues leading to false-positive readings. This was due to the
presence of a darker area in comparison to the surrounding tissue, as demonstrated, for
example, in Figure 3C. This issue poses a challenge not only only for the algorithm, but also
for radiologists who have to use multiple cross-sectional views from various directions to
overcome this problem. Additionally, there were few mistranslations of acoustic artifacts,
as depicted in Figure 3A.

A.
 b

en
ig

n

BUSI BUSI mask Fake optic image

dice: 0.9681

Optic - GAC

dice: 0.9841 

Ultrasound - GAC

B.
 m

al
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dice: 0.5376 dice: 0.6915 

C.
 n

or
m

al

dice: 0.0000 dice: 0.0000 

Figure 3. (1st column) Examples of the BUSI images. (2nd column) BUSI masks. (3rd column) The
model-generated pseudo anatomical images. (4th column) The corresponding segmented masks
obtained by MorphGAC for the pseudo anatomical images and for the original ultrasound images
(5th column), with their Dice scores. The rows correspond to: (A) benign, (B) malignant, (C) normal.
As can be noted, in these cases, the algorithm was less effective.

Nonetheless, part of the discrepancy can presumably be attributed to inconsistency
in the BUSI tracing in “difficult to trace” ultrasonic images, as depicted, for example, in
Figure 3B. The variability in the manner in which radiologists segment the tumor results in
an inconsistent segmentation process. This is caused by factors such as the indistinct contour
of the tumor, the subjectivity of manual segmentation, and the diversity in radiologists’ ex-
pertise and interpretation. These factors collectively contribute to the observed discrepancy.

This is also demonstrated, for example, in Figure 4 where three substantially different
tracings are presented for the same tumor (example taken from “malignant 3–9” in BUSI).
As recalled, to overcome the variations stemming from the manual tracing, the ultrasonic
images were re-segmented using the MorphGAC algorithm, which yielded better consistency.

The overall estimation of the performance based on the criteria listed above are
outlined in Table 2 and are also graphically depicted in Figure 5. As can be observed,
the performance is better for benign tumors, this can be attributed to their more regular
shapes. Contrary to that, for the malignant tumors, whose geometry is more irregular
and whose borders are commonly blurred, it was more difficult for the model and for the
MorphGAC algorithm to accurately segment the lesions.
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Figure 4. (Middle column) Three exemplary original ultrasonic images of the same tumor, which
are marked as “malignant 3–9” in BUSI. (First column) the corresponding three different tracings
provided by BUSI for the same tumor. As can be observed, the three tracings differ substantially in
shape and geometry. (Last column). Contrary to that, the corresponding MorphGAC segmented
masks yielded more consistent tracings, which appear to better match the lesion shapes in the
ultrasound images.
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Figure 5. Distributions of the three metrics per tumor type for the two segmentation methods—BUSI
(left) MorphGAC (right). (a) Dice distribution, (b) center error distribution, (c) area index distribution.
The dashed lines represent the median score and upper and lower quartiles.

Table 2. Quantitative evaluation by comparing the optical segmented mask to both the original BUSI
reference masks and the BUSI masks re-segmented by the MorphGAC algorithm.

Tumor Type Median BUSI Median MorphGAC Mean ± Std BUSI Mean ± Std MorphGAC

Dice Benign 0.85 0.91 0.67 ± 0.36 0.70 ± 0.38
Malignant 0.58 0.70 0.53 ± 0.30 0.60 ± 0.32

all 0.77 0.83 0.62 ± 0.35 0.67 ± 0.36

Center error [%] Benign 0.56 0.58 5.09 ± 11.23 4.22 ± 10.78
Malignant 4.13 3.27 7.21 ± 10.29 7.21 ± 10.65

all 1.17 0.73 5.76 ± 10.95 5.14 ± 10.79

Area index [%] Benign 0.74 0.40 2.84 ± 5.21 2.11 ± 5.08
Malignant 9.25 4.34 11.64 ± 8.79 6.12 ± 6.49

all 2.31 0.71 5.56 ± 7.67 3.35 ± 5.83
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Upon more closely studying the distribution of the quality indices, the area index and
the center of mass error were seen to share similar behavior. For the benign tumor, both
error indices are close to zero with a narrow distribution. Contrary to that, the distribution
for the malignant tumors is wider. Although most of the masks for the generated images
have a small detection error, some cases yielded significantly different masks. Examining
the Dice-score distribution, for the benign tumors, the re-segmented masks have higher
median score of 0.91 compared to 0.85 of the BUSI manually segmented masks. For the
malignancies, the distribution is wider and the re-segmentation median score is 0.70, and
for the manually segmented BUSI masks, it is 0.58.

4. Discussion

Ultrasound is a common and affordable imaging technique that provides real-time
imaging without the use of harmful ionizing radiation. It is often used in real-time during
surgery, but its images can be challenging to interpret due to their relatively poor quality.
The obtained images are characterized by a granulated appearance, a low signal-to-noise
ratio, and substantial speckle noise. Furthermore, their quality is highly dependent on the
operator’s skills.

The ultrasound probe enables acquisition of cross-sectional images in arbitrary spatial
orientation and offers real-time capabilities. Consequently, ultrasound is used in image-
guided interventions and surgeries. Nonetheless, interpreting ultrasound images in the
anatomical/pathological context can still be difficult for surgeons. This is due to differences
in between the black and white images and the appearance of the actual tissue during
surgery, and in some of the cases, the indistinct mass margins. These variations pose a
challenge in finding and identifying all the abnormal tissue.

To address this problem, we harnessed the great progress in the field of neural net-
works for image-to-image translation. There are already applications in the medical field
for cross-modality translations. In this work, we chose to approach this issue from a new
perspective and translated the ultrasound image into an optical image that would resemble
the appearance of the actual tissue. However, due to the inherent limitations of producing
corresponding paired images of ultrasound and optical images, we chose to employ a
CycleGAN model for this task. This type of network is capable of learning each domain
separately and is able to produce unique translations for each image.

To translate between two image domains, there must be sufficient similarity between
them. To demonstrate the feasibility of our approach, we generated pseudo-anatomical
images with similar tumor shapes, sizes, and a black background that mimics the acoustic
shadow seen in ultrasound images. To improve the translation results, we have incorpo-
rated a constraint into the loss function to convert the black appearance of the tumors in
the ultrasound display to white objects in optical images of the tissue. We evaluated the
translation by examining the accuracy of tumor location, area, and contours. Our results
(Figure 5 and Table 2) show that the translation maintains the geometrical information.

As for the limitations of the suggested method, it is noted that the optical images used
for training in this study were based on etched poultry breast-tissue samples which do not
necessarily resemble actual cuts observed during surgery. Although the simulated lesions
were prepared to resemble the geometrical features of real breast tumors in terms of size
and shape, optimal results presumably can be achieved by using actual optical images of
anatomical cuts through breast-tumor tissues acquired during surgery. Nonetheless, this
study clearly demonstrated the potential that can be achieved by translating ultrasound
images into optical images of human tissue during surgery.

In conclusion, in this work, a method for image translation from ultrasound into a
pseudo anatomical display was presented. This image-translation method yields a more
vivid and realistic tissue-texture presentation which potentially can enable a more straight-
forward comparison to the real anatomy. Furthermore, as can be observed, the pseudo
anatomical images provide superior visual discrimination of the lesions. The borders are
well delineated, and the contrast clarity is substantially improved.
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The main contribution of this study was to demonstrate the feasibility of this transla-
tion, while preserving the anatomical content. It can serve as an ancillary tool by providing
a simultaneous depiction of a real-time ultrasound image alongside a pseudo anatomical
representation. Although this study may not yield substantial advantages for medical
practitioners proficient in breast ultrasound, it renders considerable benefits to those who
lack experience in the field. Additionally, this representation can be helpful for medical
training and practices. Overall, our proposed method could potentially lead to faster and
better diagnosis and improved clinical outcomes.
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