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Abstract: Regenerative endodontic procedures (REPs) were used to recover the dental pulp’s vitality in
order to avoid the undesirable outcomes of conventional endodontic treatment and to promote dentinal
formation, especially for immature permanent teeth. Photobiomodulation therapy (PBMT) exhibits
photobiological and photochemical effects for improving the root canal’s environmental conditions by
compensating for oxidative stress and increasing the blood supply to implanted stem cells and improving
their survival. Basic research has revealed that PBMT can modulate human dental pulp stem cells’
(hDPSCs) differentiation, proliferation, and activity, and subsequent tissue activation. However, many
unclear points still remain regarding the mechanisms of action induced by PBMT in REPs. Therefore, in
this review, we present the applications of laser and PBMT irradiation to the procedures of REPs and in
endodontics. In addition, the effects of PBMT on the regenerative processes of hDPSCs are reviewed
from biochemical and cytological perspectives on the basis of the available literature. Furthermore, we
consider the feasibility of treatment in which PBMT irradiation is applied to stem cells, including dental
pulp stem cells, and we discuss research that has reported on its effect.

Keywords: photobiomodulation therapy; low-level laser therapy; regenerative endodontic procedures;
pulp regenerative endodontics; human dental pulp stem cells

1. Introduction

The typical method applied in endodontics is root canal treatment (RCT) to treat irreversibly
inflamed or necrotic pulp tissue that has been damaged by infectious diseases or trauma [1].
However, this approach has several impairments, such as the possibility of reinfection due to
microleakage [2], hypoesthesia, and increased susceptibility to root fracture due to brittleness [3].
To overcome these drawbacks, the purpose of regenerative pulp treatment is to maintain the
vitality of dental pulp [4]. Regenerative pulp treatment is an alternative treatment modality
during continuous tooth root development and root apical closure in the case of immature per-
manent teeth [5]. Traditionally, apexification has been performed to induce apical closure when
the pulp of immature permanent teeth is infected [6], but it cannot maintain pulp vitality [7].
Since the 1960s, regenerative endodontic procedures (REPs) have been proposed to be used in
uninfected, especially traumatic pulp tissue to replace the infected/inflamed pulp tissue with
viable tissue. Nevertheless, REPs have also been successfully used to treat necrotic pulps and
immature apices, with or without apical periodontitis [8,9].

The dental pulp is a neural-crest-derived, highly specialized mesenchymal tissue that
comprises odontoblasts and cells that produce extracellular matrix (ECM). The two updated
strategies for REPs to regenerate dental pulp-like tissues are cell transplantation (cell-based)
and cell homing (cell-free) [1]. The first strategy requires exogenously transplanted stem
cells (SCs) to form the dentin/pulp-like complex in the subcutaneous connective tissue after
transplant of stem cells, including postnatal human dental pulp stem cells (hDPSCs) [10],
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stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, dental
follicle progenitor stem cells, and stem cells from apical papilla (SCAPs) [11]. The second
strategy uses the host’s endogenous cells originated from the apical papilla to regenerate
tissue, which may be more clinically translatable [1]. hDPSCs have the capacity to dif-
ferentiate into multiple cell types, including odontoblasts, osteoblasts, and chondrocytes,
by expressing specific markers, promoting alkaline phosphatase (ALP) enzyme activity,
and producing precipitated mineralized nodules [12]. Basic research is aiming to establish
more effective regenerative methods for hPDSC transplantation into root canals. Therefore,
to circumvent root canal decontamination problems, maintain the vitality of pulp, and
regenerate pulp-like tissue, researchers are seeking strategies to regenerate pulp-like tissue
through either cell therapy or tissue-engineering methods.

Laser-induced photobiomodulation therapy (PBMT) has been proposed as an adjunctive
therapy with the potential to improve dental pulp tissue regeneration [13]. Notably, Marques
et al. (2016) [14] identified PBMT as “the fourth element of tissue engineering along with
stem cells, scaffolds, and growth factors” because of its benefits properties, which are able to
overcome some drawbacks of tissue engineering. When applied with adequate parameters,
PBMT stimulates cell proliferation and differentiation [15], ATP production [16], mitochondrial
respiration [17], protein synthesis, and bone formation in human periodontal ligament stem
cells, fibroblasts, and odontoblasts [18], which are directly involved in tissue repair [18,19]. It
has also been demonstrated that DPSCs respond positively to laser phototherapy, indicating
that PBMT may be a crucial therapy for tissue engineering associated with stem cells [20]. As
a matter of fact, the possible cell sources for pulp regeneration through cell homing include
DPSCs, SCAPs, and bone marrow stem cells (BMSCs) [21].

The term “PBMT” is used to characterize the various laser/LED light applications
with low-energy densities and is based on photochemical mechanisms where the photo
energy is absorbed by the mitochondrial chromophores and transmitted to respiratory-
chain components [22]. PBMT is activated through an electromagnetic radiation source
and has been demonstrated in many clinical applications to exert anti-inflammatory, anal-
gesic, and trophic-regenerative effects [22,23]. Previous studies have illustrated that in
endodontics, PBMT has been widely accepted for its beneficial effects, such as analgesia,
sterilization/disinfection, reduction of dentin sensitivity, and transpiration of infected
dentin and dentin formation in root canals [24]. The red and near-infrared light emitted by
PBMT is absorbed by the mitochondrial respiratory chain, which is one of the main sources
of reactive oxygen species (ROS), thereby causing the production of ROS, nitric oxide,
adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP) to initiate
stem cell proliferation and induce the signal cascade effect [25]. Lasers, such as diode lasers,
are usually used for PBMT of DPSCs, and the light is absorbed by mitochondria, causing
metabolic changes in the host cells through a cascade of photochemical and photoelectric
reactions, inducing both primary and secondary effects on the irradiated tissue [23].

Despite several basic and clinical studies being conducted on the effects of PBMT in
endodontic treatments, a lack of understanding regarding PBMT’s molecular and cellular
mechanisms in REPs, the interactions that occur after PBMT in the PDSCs, and the contra-
dictory results of previous studies, have made it challenging to obtain a precise mechanism
profile of PBMT. Accordingly, the purpose of the present review is to provide a knowledge
profile by understanding the mechanisms used for cellular modulation of novel adjuvant
treatment strategies in endodontics, specifically REPs, based on laboratory and clinical
studies published until now.

2. The Application of PBMT in Endodontics

PBMT applied with a low-level laser (LLLT) provides endodontists with a non-invasive
and non-thermal method that can be utilized as an adjunct to traditional RCT or as a
therapeutic tool in REPs due to its anti-inflammatory effects, apical cicatrization [26], and
acceleration benefits [27–30]. Commonly used clinical applications, such as direct pulp
capping (DPC), treatment of dentine hypersensitivity, dental analgesia, and reduction of
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postoperative pain after endodontic treatment, have been investigated (Table 1). It is also
an effective diagnostic tool for caries and pulp hyperemia.

Table 1. Current applications of PBMT in endodontics.

1 PBMT-Induced Anesthesia
2 Laser-assisted Diagnostics of Initial Caries Lesions and Pulp Status
3 Laser-based Prevention and Preparation of Enamel Caries
4 PBMT-assisted Direct Pulp Capping
5 Decontamination of Root Canal System
6 Postoperative Pain after Endodontic Treatment
7 PBMT used in Endodontic Surgery
8 Tooth/Dentinal Hypersensitivity
9 Tooth Bleaching
10 Regenerative Endodontic Procedures

2.1. PBMT-Induced Anesthesia

Being a non-invasive method, PBMT is able to produce anesthesia with an estimated
significance of 60–95% [31]. In this regard, PBMT using an 810 nm diode laser (250 mW,
53.3 J/cm2 per side, 120 s, and continuous mode) achieves good-quality anesthesia during
conventional tooth excavation [32]. In another study, PBMT based on the 2940 nm Er:YAG
laser (60 mJ/point in non-contact mode) was used to achieve an appropriate anesthetic
effect during Er:YAG-assisted cavity preparation of primary teeth [31]. Previous systematic
reviews have shown that the current clinical parameters in this field are inadequate, so it
does not seem feasible to propose a precise treatment protocol.

2.2. Laser-Assisted Diagnostics of Initial Caries Lesions and Pulp Status

Approaches based on light-induced fluorescence or light scattering properties related
to demineralization are laser fluorescence (LF) [33], quantitative light-induced fluorescence
(QLF) [34], and optical coherence tomography (OCT) [34], each of which is regarded as a
useful supplement to the conventional diagnostic tools for caries and has helped improve
the accuracy of caries detection in recent decades.

The LF technique, which is applied using a diode laser at a wavelength of 655 nm, quantifies
the fluorescence intensity of a tooth’s surface and displays it. QLF detects the auto-fluorescence
by irradiating teeth at 405 nm. OCT uses a 1300 nm wavelength to detect the light backscattered
from tooth structures for dental caries detection applications. LF and QLF methods can quantify
the severity of demineralization by measuring the fluorescence loss; however, the disadvantage
of these methods is that they cannot measure the internal extension of carious lesions.

The patient will experience severe pain when the laser is used on a tooth with hyper-
emic pulp because laser irradiation increases the local blood flow in the pulp [35].

2.3. Laser-Based Prevention and Preparation of Enamel Caries

Diode lasers containing 810, 830, and 890 nm were used for caries prevention [36]. PBMT
(810 nm, 30 mM, and 90 s) has been shown to increase calcium and phosphate levels [37,38].
PBMT applied at a wavelength of 830 nm suppressed the process of demineralization around
orthodontic brackets on bovine teeth [39] and increased the hardness of the enamel surface [40].

The erbium laser is now also one of the options for cavity preparation, and it causes
minimal invasive damage [41].

2.4. PBMT-Assisted Direct Pulp Capping

PBMT has been proposed to contribute to the outcomes of DCP procedures [42] and
effectively improve the prognosis of DPC for permanent teeth [43], due to its considerable
effects in shortening the inflammatory phase, reducing pain, promoting the process of wound
healing, and stimulating the formation of hard dentin tissue [44,45]. The photo energy that
penetrates into the pulp tissue coagulates the exposed pulp, thereby creating the biological
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basis for forming reparative dentin [12]. However, the findings of these in vitro and animal
studies have shown that proper technique and materials (calcium hydroxide –Ca(OH)2 and
MTA [46]) in DPC are prioritized over optimization of PBMT [47], and so far, laboratory
results have not been generalized to clinical studies [44,48,49]. Therefore, it is still unclear how
to identify the contribution of a laser’s application to the clinical-outcome improvement in the
irradiated group, and further studies are needed to obtain more accurate results.

2.5. Decontamination of a Root Canal System

Due to infections by multiple and numerous aerobic and anaerobic bacteria, the key
procedure of REPs comprises effective root canal decontamination (disinfection/sterilization).
Decontamination of the root canal system is critical to the success of REPs and is accom-
plished through effective chemical-mechanical preparation, such as ultrasonically activated
NaOCl [50]/EDTA [51] and the use of antibiotics in combination [52]. Aside from the ultrasoni-
cally activated NaOCl in endodontics, laser-assisted elimination of intra-canal microorganisms
can be divided into two mechanisms: debris and smear-layer removal and disinfection of the
root canal [53].

Maximum debris and smear-layer removal effects are achieved when laser light is
used in root canals in conjunction with an appropriate concentration of a NaClO irrigating
solution [53]. Many lasers, such as CO2 [54], Nd:YAG [55,56], and erbium family (Er:YAG [57]
and Er,Cr:YSGG [58]) ones have been reported to be used in removing debris and smear layers
from infected canal walls. Er:YAG is the most appropriate laser for this purpose [57,59].

Nd:YAG, Ho:YAG, and Er:YAG lasers eliminated more than 99% of Enterococcus faecalis
(E. faecalis) and Escherichia coli (E. coli) for root-canal disinfection [60]. Schoop et al. (2004)
demonstrated the antibacterial effects of diode, Er:YAG, Er,Cr:YSGG, and Nd:YAG lasers as
being efficacious for dentinal disinfection from E. facaelis and E. coli at varying thicknesses.
Therefore, laser treatment is a convenient adjunct to regular canal disinfection, especially
in combination with chemical-mechanical preparations [61].

The anti-bacterial effects of photodynamic therapy (PDT) [62] on the pulp of human
teeth with periapical and necrotic lesions indicated that it was an appropriate solution
for root-canal disinfections [63]. Photodynamic therapy using a diode laser at 60 J/cm2

and 50 mW plus methylene blue eliminated E. faecalis from root canals to the degrees of
77% [64] and 99% [65]. Photodynamic therapy using diode red light at 30 J/cm2 energy plus
methylene blue reduced 80% of the colonies of Actinomyces israelii, Fusobacterium nucleatum,
Porphyromonas gingivalis, and Prevotella intermedia. Based on available studies [66], PDT
provides endodontists with an antibacterial adjunctive device for RCT [67].

2.6. Postoperative Pain after Endodontic Treatment

Pain results from chemical-mechanical preparations or microbial damage to the pulp
tissue or root apex, and its emergence is significantly higher after RCT [68–70]. This therapeutic
technique, PBMT, makes endodontic treatment more comfortable by applying a preliminary
phase to avoid the use of pharmacological agents for postoperative pain control [71].

PBMT using a 970 nm laser at 0.5 W reduced the postoperative pain after RCT in patients
with symptomatic apical periodontitis [72]. However, another group showed that PBMT
applied by an 808 nm laser with 100 mW of power at 70 J/cm2 has limited effects on reducing
the pain associated with root-canal retreatment [68]. Thus, research has indicated that PBMT
can delay the onset of postoperative pain and decrease its severity and duration after an RCT.

The mechanisms of PBMT’s actions in pain reduction are through facilitating the
synthesis of anti-inflammatory prostaglandins (PGEs), immunoglobulins, β-endorphins,
and lymphokines. Additionally, it decreases the production of pro-inflammatory factors
and pain-related neurotransmitters. As a result, it has been suggested that PBMT could
be useful in relieving pain after RCT or root-canal retreatment. However, due to a limited
number of clinical studies, it is not yet time to formulate an exact clinical protocol; thus,
further studies should be performed to achieve more conclusive results [73].
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2.7. PBMT Used in Endodontic Surgery

Investigations have addressed the importance of PBMT in endodontic surgery with
regard to pain relief, swelling reduction, and soft and hard tissue healing. The diode laser
applied at 3–7.5 J/cm2 showed desirable results of PBMT on pain relief and tissue healing;
however, more clinical studies are needed to obtain further insights. [26,74].

2.8. Tooth/Dentinal Hypersensitivity (DH)

Matsumoto et al. (2018) used a laser to treat DH for the first time, and laser technology
is gradually being recognized as an important method for DH [75].

Up till now, lasers studied for DH treatment address three different mechanisms:
dentin tubal obliteration by high-power density output laser therapy, alteration in the pain
threshold of the pulp’s neural system, and stimulation of reactive dentine formation as a
result of the PBMT effect [76,77]. Clinical studies have shown that PBMT using GaAlAs
(795 or 830 nm) or InGaAlP (660 nm) at 1.8–10 J/cm2 significantly reduced DH.

2.9. Tooth Bleaching

PBMT mainly reduces the mild to severe postoperative sensitivity that appears in
most patients after tooth bleaching [78], particularly with the in-office technique [79–81].
Clinical studies suggested that PBMT applied with a diode laser at 12 J/cm2 effectively
reduced dental sensitivity after in-clinic bleaching. In vitro studies have investigated the
effect of PBMT on odontoblastic cell responses or the neutralization of gel bleaching.

3. PBMT on Regenerative Endodontic Procedures

The application of lasers in REPs introduces the idea that PBMT induces biostimulatory
effects on stem cells, including promoting stem cell growth, increasing their metabolism,
improving their regeneration, accelerating dentine regeneration after pulp exposure [82,83],
and having effective influences on the viability and differentiation of dentoalveolar-derived
mesenchymal stem cells’ viability [84] (Figure 1). Pulp regeneration based on REPs under
PBMT has shown favorable outcomes in several preclinical studies [13,85] and could be a
feasible alternative to cell-homing therapies.
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3.1. Biological Responses of hDPSCs to PBMT

The provoked bleeding is stimulated by mechanical forces on periapical tissues, which
offer the essential regenerative elements of stem cells and scaffold to fill the canal space.
These elements release growth factors to allow platelets to form a blood clot and stimulate
cellular expansion [12]. Given that SCAPs with regenerative potential are found near the
root apices in immature necrotic permanent teeth, this, combined with wide-open apices,
facilitates the recruitment of more stem cells to the canal spaces, increasing the success of
the REP modality [86]. Due to the survival and continued potential differentiation of the
SCAPs, REO should be considered as the first choice of treatment for immature teeth with
necrotic pulp [87].

The impact of PBMT on DPSCs has often been evaluated in terms of cell growth,
survival rate, and cellular metabolism [88]. Moreover, the PBMT applied with 5 J/cm2

energy density presented the most striking results for maintaining cell viability, improving
the proliferation and differentiation processes [21].

Additionally, upon stabilization of cell homing, the cells secrete the ECM containing
growth factors, which are the third essential element of tissue engineering and thus are
important for dental pulp regeneration. Garrido et al. (2019) showed that ECM secreted
by hDPSCs exhibited a higher level of fibronectin when irradiated to the PBMT [89].
Thus, PBMT seems to help maintain and contribute to the balance of the cell homeostasis
stabilization status.

Lovelace et al. (2011) studied in a rat model with pulp necrosis and an open apex
the effects of PBMT on root development by using cell homing and stem-cell transplanta-
tion [90,91]. They found that daily PBMT irradiations improved the tissue’s response to
apexification and favored apexogenesis, and thus played critical roles in maintaining the
bio-stimulating effect during an REP [21].

Vascular endothelial growth factor regulates intercellular signals, the angiogenesis
process, the formation of new blood vessels, and tissue regeneration [92]. This finding is
supported by the results of Moreira et al. (2017), who reported that a blood-clot scaffold
combined with PBMT resulted in the formation of dental pulp-like tissue with blood vessels,
nerves, odontoblast-like cell layers, and perivascular SCs [13]. The continuous healing
process of the pulp was observed in the presence of a blood clot as a scaffold, and the
healing was accelerated in the PBMT-irradiated group [13].

Recently, SCs exposed to PBMT have demonstrated enhanced cell growth, which
results in the activation of intracellular and extracellular chromophores and the initia-
tion of cellular signaling [25]. Zaccara et al. (2020) showed that PBMT can regulate
histone-acetylation signaling of hDPSCs through increasing the nuclear modifications that
chemically induce histone acetylation on H3 (Lys9), and it can influence gene expression to
increase the hDPSCs’ viability [93]. These results are consistent with studies that demon-
strated that PBMT irradiation of hDPSCs using a 600 nm InGaAlP diode laser or a 635 nm
LED laser was able to promote cell growth and survival, ATP production, and mitochon-
drial metabolic activity [94–96]. Moreover, Ferreira et al. (2019) reported that PBMT at
5 J/cm2 can help hDPSCs maintain undifferentiated status and replicate for a short-term
period [97].

Regarding the influence of PBMT on the mineralization of hDPSCs, Matsui et al. (2007)
irradiated dental pulp cells in vitro with a diode laser and observed significantly elevated
expression of calcified nodules, higher ALP activity, upregulation of bone morphogenetic
protein (BMP), and upregulation of osteocalcin after 1.0 W irradiation [98–100]. Addition-
ally, PBMT can improve the composition of the extracellular matrix synthesized by the
cell sheets of hDPSCs, facilitating cell transplantation by increasing fibronectin synthesis
induced by PBMT [89].

Divergent results have been obtained based on in vivo and in vitro experiments about
PBMT on regenerative pulp treatment procedures. Pereira et al. (2012) and Theochari-
dou et al. (2017) demonstrated that none of the PBMT protocols improved proliferation or
cell viability rates, nor the relative production levels of mineralized nodules for hDPSCs
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from normal and inflamed dental pulps [101,102], whereas the latter showed that scaf-
fold/DPSCs complexes irradiated by PBMT showed statistically significant increases in
odontogenesis-related markers and ALP enzymic activity [102].

To clearly clarify the mechanisms of PBMT on hDPSCs, basic cytological and histo-
logical studies are needed. Nevertheless, current clinical studies strongly suggest that
PBMT has positive effects on SCs migration, differentiation, proliferation, and cellular
activity (Figure 2).
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3.2. The Favorable Effect of PBMT on Vascularity and Fibroblast Proliferation

PBMT with 4 J/cm2 promotes significantly higher cell growth in terms of vascularity
and fibroblast proliferation. Furthermore, PBMT influenced primary photochemical and
photophysical activities in the mitochondria, resulting in rapid increases in ATP and cell
viability due to an oxidative change. Additionally, a secondary PBM effect was triggered
when biochemical reactions and redox state were changed, which led to DNA synthesis,
and consequently, increased cell proliferation [82].

Moura-Netto et al. (2016) also reported increased proliferation of stem cells from
exfoliated deciduous teeth (SHEDs) under these same PBMT parameters during situations
of nutritional deficit [103]. This finding is consistent with those of Eduardo et al. (2008)
and Marques et al. (2017) [94,104], who demonstrated that pulp fibroblasts from human
primary teeth showed greater viability and proliferation when exposed to higher energy
densities of lasers for a shorter period of time, introducing the hypothesis that in laser
application, the dose applied plays a positive role in cell growth in vitro. One possible
explanation is that the transitory heating of the chromophores that may occur over longer
periods may trigger enzyme (cytochrome c oxidase) inhibition [105].

3.3. The Beneficial Effect of PBMT on Dentin Formation

PBMT stimulates dentin formation by inducing the dentin matrix to release a variety of
growth factors, including BMP, fibroblast growth factors, and transforming growth factor-β,
all of which stimulate dental pulp cell and odontoblastic differentiation, and are related to
the ectodermal–mesenchymal molecular interactions [12].

For human primary teeth, the literature reports favorable tissue effects of PBMT
for dentine formation [85,106] and immature-connective-tissue synthesis to fill the root
canal [13]. PBMT increased the proliferation of human SHEDs [97] and maintained cell
viability [97].
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Fekrazad et al. (2015) [106] revealed that PBMT induces new dentine formation, and
Arany et al. (2014) [85] showed that PBMT promoted hDPSCs and mouse pre-odontoblasts
to differentiate new dentine and increased tertiary dentine volumes. Furthermore, Mor-
eira et al. (2017) [13] observed fewer and thinner collagen fibers and blood vessels, and a
layer of cells in intimate contact with the dentin wall that exhibited cytoplasmic extensions
into the dentinal tubules in the PBMT-irradiated group, resulting in the formation of an
immature connective tissue filling the mesial root canal and forming an odontoblast-like
cell layer [13].

3.4. Current Limitations of PBMT in REPs

Although the studies mentioned before demonstrated the efficacy and success of
PBMT for REPs, there are still many controversies about its effectiveness. Despite the
variety of PBMT parameters and the different comparative methods used in clinical trials,
it appears that accurate PBMT protocols need to be evaluated in well-designed and large
clinical studies before achieving evidence-based treatment protocols and conclusions. Ad-
ditionally, the combination of antimicrobial peptides (AMPs) with PBMT may be beneficial
for the clinical REPs due to its potential immunomodulation properties. However, such
combination therapy needs to be further investigated.

Although PBMT affects the SCs and pulp fibroblasts’ differentiation, proliferation,
and viability—and dentine formation—the findings of existing in vivo and in vitro studies
cannot yet fully explain the complete mechanisms of PBMT in REPs, and therefore, further
prospective and randomized clinical trials on REPs’ efficacy with PBMT are required. In
order to apply the therapy to patients, more in vivo research with adequately large samples
must be carried out, even though the results until now have been promising for dentin–pulp
complex regeneration.

Based on the limited evidence available to date, we hypothesize that PBMT has positive
effects on regenerative endodontic procedures in terms of improved clinical outcomes or
molecular modulations.

4. Conclusions

The present review indicates that PBMT-assisted regenerative pulp procedures could
be useful adjunctive tools for future advancements in endodontics, specifically REPs.
However, the currently available scientific evidence is unable to specifically explain the
mechanism of action of PBMT in REPs. Therefore, further in vivo and in vitro research
is required.
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