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Abstract: It is well known that driving while fatigued is dangerous and can lead to serious traffic
accidents. However, there is a lack of studies on the mechanism of fatigue. This paper sought to infer
changes in the cardiovascular system through hand and head skin temperature peripheral factors via
an integrated lumped parameter model. A multi-layer inner structure with variable blood perfusion
was used to construct a full-body thermal model. The cardiovascular system model provided blood
perfusion using lumped parameters. The peripheral resistance and heart rate in the cardiovascular
system model were adjusted to match the experimental temperatures of the head and hands obtained
from induced fatigue experiments. The simulation results showed that the heart rate and blood
pressure decreased, and the peripheral skin resistance of the hands and head increased after fatigue.
A decrease in heart rate and an increase in peripheral resistance affect the magnitude of blood flow
to the periphery of the body, leading to a decrease in skin temperature during fatigue. The present
integrated model elucidates a key effect of human fatigue on the cardiovascular system, which is
expected to help improve the accuracy of fatigue monitoring systems.

Keywords: fatigue; cardiovascular system; heat transfer; lumped parameter; peripheral resistances

1. Introduction

According to the State Statistics Bureau, there were 2.37 million traffic accidents na-
tionwide between 2012 and 2020, 21% of which were caused by fatigue. Therefore, it is
crucial to study fatigue driving detection methods. Driver fatigue monitoring systems have
been extensively studied. Domestic and international efforts to monitor driving fatigue are
characterized by two main aspects: driving behavior and physiological features. Driver
fatigue monitoring systems detect driver fatigue using behavioral features such as the
driver’s speed [1] and steering wheel motion [2]. However, the recognition accuracy is not
high because of the influence of vehicle type, road conditions, and personal driving habits.
Therefore, many researchers have studied driver fatigue monitoring systems using physio-
logical signals such as electroencephalogram [3], electrooculography, electrocardiography,
and eye and mouth movements. Although the accuracy of these physiological signals for
fatigue monitoring is high, most physiological data measurements are intrusive, and the
signals are challenging to extract. A suitable solution is to use less intrusive and more easily
extractable physiological signals as auxiliary markers to monitor fatigue.

As an important physiological index of the human body, the temperature can be
obtained through non-contact to monitor fatigue. Theoretical studies have found that
driving fatigue is closely related to arousal level, which decreases when the driver is
fatigued. Researchers [4,5] have found that the temperature of parts of the human body,
such as the nose and fingers, can reflect the activity of the autonomic nervous system and be
used to track arousal levels. Because the autoregulatory system regulates the cardiovascular
system, including heart rate (HR) and the peripheral vasomotor system, skin temperature
changes occur in the fatigue state. Moreover, in Jagannath’s [6] simulated driving fatigue
test, subjects were found to have altered HR and blood pressures before and after fatigue.
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To obtain skin temperature, it is necessary to build a biological heat transfer model.
Mathematical heat transfer models of biological systems have been the subject of extensive
research by various biologists, physicians, mathematicians, and engineers. Many bioheat
transfer models have been used to analyze heat transfer in skin tissue in previous studies,
and the bioheat transfer model of Pennes is the most widely used model for studying
temperature distribution. In 1948, Pennes presented a solution for biological heat transfer
in the forearm. Wissler [7], Wyndham and Atkins [8] extended the model to the entire
body. Multi-segment models [9–13] usually include explicit simulations of heat transport
and thermal regulation processes in the human body, considering characteristics such
as body area, heat capacity, and tissue stratification [14]. Tanabe et al. [10] modeled
the heat transfer process of biological tissues in layers, providing separate heat transfer
parameters and establishing energy balance equations for different tissue layers. However,
Tanabe’s blood perfusion model depends on local skin and core temperatures. With the
continuous development of cardiovascular modeling, a cardiovascular system (CVS) model
with lumped parameters [11,13] has been used to improve the accuracy of tissue blood
perfusion.

Human heat transfer models have been widely used; however, most of these ap-
proaches [15,16] have only used empirical models to assess blood flow and heat transfer
from the body core to the body surface without considering the real closed-loop cardiovas-
cular system. Blood flow is an essential factor that influences body heat diffusion and skin
temperature, and external conditions can affect skin microcirculation and lead to changes in
skin temperature [17,18]. Owing to the complexity of cardiovascular networks, the lumped
parameter method is the best choice for building a CVS model due to its simplicity of
modeling, ease of solution, and low computational effort. The lumped parameter model
(LPM) of cardiovascular systems can be used not only to study the hemodynamics of the
cardiovascular system but also to explain the link between hemodynamics and heat transfer
in the human body [12,19].

In this study, an integrated full-body thermal model based on lumped parameters
was built to predict the temperature of different body parts and research changes in the
cardiovascular system during fatigue. Infrared thermography temperature measurements
were conducted before and after fatigue in eight young adults using fatigue induction
experiments. The hand and face temperatures of subjects under normal waking conditions
were used to deduce tissue layer thickness and skin resistance. Changes in different subjects’
heart rates and skin resistance were inversely evaluated using the post-fatigue hand and
face temperatures considering the skin characteristics of each subject. Finally, changes in
the cardiovascular system before and after fatigue were compared.

2. Materials and Methods

The primary objective of this study was to construct a simulated model of flow heat
transfer in the human body using an LPM. In contrast to previously published studies,
the cardiovascular system was considered in the tissue heat transfer model to provide
blood perfusion. In this study, a full-body thermal model with CVS was developed. The
entire body was divided into four segments (the head, torso, upper limbs, and lower limbs).
Owing to the varied tissue composition in different body parts, the head and torso segments
were divided into five layers (core, bones, muscle, fat, and skin), and the upper and lower
limbs segments were divided into four layers (bones, muscle, fat, and skin). A conceptual
illustration of the integrated model is shown in Figure 1. Heat is exchanged between
the body and the environment by convection, radiation, and evaporation. Individual
segments exchanged heat through conduction. Blood perfusion was distributed in different
proportions across various tissue layers.



Bioengineering 2023, 10, 368 3 of 19Bioengineering 2023, 10, x FOR PEER REVIEW 3 of 19 
 

 

Figure 1. Conceptual figure of the integrated model. 

2.1. Heat Transfer Tissue Model 

The relationship between skin temperature and local blood perfusion has been an 

interesting topic for researchers. Due to the presence of different structures and distinct 

physical properties of each tissue layer, it is challenging to study the thermal response of 

living skin tissues. For anisotropic tissue, Anders et al. [20] explored the relationship be-

tween two layers of skin and blood perfusion using an electrical analog model, which 

showed the thermal response in human skin. 

2.1.1. LPM Model of the Heat Transfer in Tissue 

Considering tissue thickness, surface area, and physical properties, the process of 

heat transfer in tissues was simulated using circuit elements. To simplify the calculation, 

each tissue layer was considered as the same material with effective properties (specific 

heat c, thermal conductance λ, tissue density ρ, and tissue thickness l). The properties of 

each layer are listed in Table 1 [21]. As shown in Figure 2, the voltage can be represented 

as an electrical analog measure of temperature. In this model, each layer consists of a serial 

connection of two elements, each of which is constituted by heat resistance r = l/λ and heat 

capacity component C = cρl. l represents tissue thickness, and the blood perfusion, q 

ml/cm2, generates the heat flux, ФA = qρc(Tb − Ti) W/cm2. From this expression, the perfu-

sion thermal resistance can be defined as REq = 1/qρc. Moreover, Vi simulates the arterial 

temperature, and Ve simulates the environmental air temperature. The heat resistance, Re, 

and REL account for inevitable heat loss during heat isolation and air thermal resistance 

on the skin surface, respectively. The model parameters are listed in Table 1. 

Table 1. Thermophysical properties and model parameters of tissues. 

  
λ 

W/m °C 

Ρ 

kg/m³ 

c 

J/kg °C 

r 

W/cm2 °C 

C 

J/cm2 °C 

Head Core 0.53 1360 2450 222.64 3.93 

 Bond 1.2 1300 1590 14.17 0.35 

 Muscle 0.5 1050 3770 76 1.50 

 Fat 0.21 850 2500 71.43 1.28 

 Dermis 0.37 1200 3400 22.97 1.39 

 Epidermis 0.26 1200 3600 3.08 0.035 

Torso Core 0.53 1360 2450 359.18 5.86 

 Bond 1.2 1300 1590 11.67 0.29 

 Muscle 0.5 1050 3770 236 4.67 

RadiationEvaporation Convection

Ambient environment

Clothing

Blood

Skin

Fat

Muscle

Bone

Core

Figure 1. Conceptual figure of the integrated model.

2.1. Heat Transfer Tissue Model

The relationship between skin temperature and local blood perfusion has been an
interesting topic for researchers. Due to the presence of different structures and distinct
physical properties of each tissue layer, it is challenging to study the thermal response
of living skin tissues. For anisotropic tissue, Anders et al. [20] explored the relationship
between two layers of skin and blood perfusion using an electrical analog model, which
showed the thermal response in human skin.

2.1.1. LPM Model of the Heat Transfer in Tissue

Considering tissue thickness, surface area, and physical properties, the process of heat
transfer in tissues was simulated using circuit elements. To simplify the calculation, each
tissue layer was considered as the same material with effective properties (specific heat
c, thermal conductance λ, tissue density ρ, and tissue thickness l). The properties of each
layer are listed in Table 1 [21]. As shown in Figure 2, the voltage can be represented as
an electrical analog measure of temperature. In this model, each layer consists of a serial
connection of two elements, each of which is constituted by heat resistance r = l/λ and
heat capacity component C = cρl. l represents tissue thickness, and the blood perfusion,
q ml/cm2, generates the heat flux, ΦA = qρc(Tb − Ti) W/cm2. From this expression,
the perfusion thermal resistance can be defined as REq = 1/qρc. Moreover, Vi simulates
the arterial temperature, and Ve simulates the environmental air temperature. The heat
resistance, Re, and REL account for inevitable heat loss during heat isolation and air thermal
resistance on the skin surface, respectively. The model parameters are listed in Table 1.

Table 1. Thermophysical properties and model parameters of tissues.

λ

W/m ◦C
P

kg/m3
c

J/kg ◦C
r

W/cm2 ◦C
C

J/cm2 ◦C

Head Core 0.53 1360 2450 222.64 3.93
Bond 1.2 1300 1590 14.17 0.35

Muscle 0.5 1050 3770 76 1.50
Fat 0.21 850 2500 71.43 1.28

Dermis 0.37 1200 3400 22.97 1.39
Epidermis 0.26 1200 3600 3.08 0.035

Torso Core 0.53 1360 2450 359.18 5.86
Bond 1.2 1300 1590 11.67 0.29

Muscle 0.5 1050 3770 236 4.67
Fat 0.21 850 2500 300 1.28

Dermis 0.37 1200 3400 32.43 0.49
Epidermis 0.26 1200 3600 3.08 0.035
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Table 1. Cont.

λ

W/m ◦C
P

kg/m3
c

J/kg ◦C
r

W/cm2 ◦C
C

J/cm2 ◦C

Upper limbs Core − − − − −
Bond 1.16 1300 1590 86.21 2.07

Muscle 0.5 1050 3770 256 5.07
Fat 0.21 1000 3060 128.57 0.83

Dermis 0.37 1200 3400 45.95 0.69
Epidermis 0.26 1200 3600 3.08 0.035

Lower limbs Core − − − − −
Bond 1.16 1300 1590 86.21 2.07

Muscle 0.5 1050 3770 220 4.35
Fat 0.21 1000 3060 333.33 1.49

Dermis 0.37 1200 3400 41.89 0.63
Epidermis 0.26 1200 3600 3.08 0.035
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Figure 2. Electrical analog model for head tissues.

2.1.2. Heat Transfer by Blood Perfusion

It is necessary to determine the blood perfusion of the tissue layer to evaluate heat
exchange between tissues and blood. Because the cardiovascular system model can only
determine total blood perfusion, the blood perfusion of each tissue layer (BP) must be
assigned. In this study, BP was determined by summarizing the relative ratio of blood
perfusion of each tissue to total blood perfusion reported in previous research [21]. Thus,
the ratio of the blood perfusion of each tissue to the total blood perfusion was calculated
using a weighting method.

δij =
BPij

∑m
j=1 BPij

(1)

where i is the number of body segments, including the head, torso, and upper and lower
limbs; m is the number of tissues; and j is the number of tissue layers, including the skin,
fat, muscle, bone, and core.

Total perfusion was distributed according to the proportion of blood perfusion in each
tissue layer, as described above. The blood perfusion in each tissue layer was calculated by
ωij = δij·qi, where qi represents the total flow through the arterioles of the tissue. δij of each
part is shown in Table 2. The tissue layer innermost to the muscle layer is specified as the
core tissue layer, whereas the fat and dermis are skin tissue layers. The calculated blood
perfusion is used to calculate the core and skin blood flow resistance and considered core
resistance and skin resistance, respectively. Blood flow through these resistances is referred
to as core blood flow (CBF) and skin blood flow (SBF), respectively. The specific resistance
values are shown in Table 3.
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Table 2. Tissue layer thickness, blood perfusion, and δij of each body part.

Tissue l
(cm)

A
(cm2)

Volume
(cm3)

Volumetric Perfusion
(mL/s/kg)

Perfusion
(mL/s) δij (%)

Head Core 1.18 1128 1331 9.21 12.97 91
Muscle 0.38 429 0.55 0.23 1.6

Fat 0.3 338 0.004 0 0
Skin 0.17 191 4.9 1.0 7.4
Bond 0.17 191 0 0 0
total 2.2 2480 − 14.2 100

Torso Core 1.76 6016 10,588 4.3 48 90
Muscle 1.18 7110 0.51 3.81 7.1

Fat 0.7 4211 0.004 0.018 0.03
Skin 0.12 722 1.9 1.5 2.87
Bond 0.14 842 0 0 0
total 3.62 23,473 − 53.328 100

Upper limbs Muscle 1.28 3180 4070 0.6 2.52 85.1
Fat 0.27 858 0.004 0.003 0.1

Skin 0.1 318 1.3 0.44 14.8
Bond 0.3 870 0 0 0
total 1.95 6549 − 2.963 100

Lower limbs Muscle 1.1 6392 7000 0.51 3.75 75.7
Fat 0.7 4474 0.004 0.013 0.26

Skin 0.155 990 1.0 1.1 24.04
Bond 0.5 3196 0 0 0
total 2.85 15,660 − 4.95 100

Hand Muscle 0.3 1000 300 0.25 0.14 17.5
Fat 0.15 150 0.0075 0.0012 0.15

Skin 0.2 200 3.3 0.66 82.35
Bond 1 1000 0 0 0
Total 1.65 1650 − 0.8 100

Table 3. Parameter values for microcirculation resistance.

Core Resistance
(mmHg·s/mL)

Skin Resistance
(mmHg·s/mL)

Head 4.7 62
Torso 2 68

Upper limbs 30 189
Lower limbs 28 96

2.1.3. Environmental Resistance

Heat transfer between the environment and body surfaces involves conduction, con-
vection, and radiation. Φ (W/cm2) is the heat exchange rate and is described by Equation
(2). ht (W/cm2 ◦C) is the total heat transfer coefficient from the skin surface to the en-
vironment and is expressed by Equation (3). Tsk and Ta represent skin and ambient
environment temperatures, respectively. hr and hc are the convective and radiant heat
transfer coefficients, respectively. The environmental resistance was defined as REL = 1/ht.

Φ = ht(Tsk − Ta) (2)

ht =
1

0.155clo
+ hr + hc (3)
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2.2. Cardiovascular System Model

The cardiovascular system (CVS) facilitates the blood perfusion required by the human
body and helps maintain a normal skin temperature. As skin temperature and blood perfu-
sion are closely related, modeling the cardiovascular system is beneficial for understanding
the mechanism between heat transfer and the cardiovascular system. Hemodynamics in
the cardiovascular system can be represented by a set of electrical elements based on the
Windkessel model theory, considering the sophistication of the cardiovascular networks.

Yang’s left heart model [22] was modified to predict blood flow in the entire human
body. To obtain arteriolar flow in various parts of the body, blood circulation at the end of
the body was enriched based on Liang’s model [23]. In this model, the CVS was divided
into six circulation types (heart, cerebral, upper limbs, torso, lower limbs, and peripheral),
where the torso and lower circulations were simplified. The CVS model was built using the
parameters R, L, and C, where R represents blood viscous resistance, L represents blood
inertia, and C represents vessel wall elasticity. These values can be determined based on
the anatomy of the vascular segments.

R =
8µl
πr4 , L =

ρl
πr2 , C =

3πr3l
2Eh

(4)

where µ and ρ represent blood viscosity and density, respectively; E and h denote vascular
wall elasticity and thickness, respectively; and l and r express vascular length and diameter,
respectively.

A complex electrical analog circuit was constructed for the CVS, as illustrated in
Figure 3. The model begins with a pressure source Ppu, which refers to a constant perfusion
pressure in the pulmonary capillaries. Pulmonary capillary and venous compliances are
lumped into a single capacitance Cpvc, which fills the left atrium (la) via Lpv and Rpv. The
preload of the left ventricle (lv) comes through the mitral valve (mv). The afterload of lv
consists of a lumped-parameter representation for ascending aorta (aa), the upper limb
circulation (ulb), the cerebral circulation (cer), the thoracic aorta (ta), and descending aorta
(da). Meanwhile, blood flows through the thoracic aorta to the lower limbs circulation
(llb), including torso circulation (tor) and peripheral vascular circulation (pc). The blood
flow in each vessel compartment of the upper limb circulation and cerebral circulation
is in analogy with resistance, capacitance and inductance of an electric circuit in series,
where R, S, C and L represent blood flow resistance, viscous part of the vessel, compliance
of the vessel and blood inertia respectively. The additional subscripts of a, al, c, v, and
vv denote different vessels, including arteries (a), arterioles (al), capillaries (c), veins (v),
and venous beds (vv). The RCL parameters were initially determined based on vascular
anatomy. In the later stages, the RCL values were partially adjusted by matching blood flow
and blood pressure from the relevant literature. The final RCL values are listed in Table 4.
As the subcutaneous vascular network is highly complex, the tissue blood perfusion rate is
controlled by subcutaneous arterioles. The arterial flow from the cardiovascular system is
distributed to the corresponding skin tissue to enable the coupling of the cardiovascular
system and skin tissue heat transfer.
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Table 4. Cardiovascular system model parameters.

Preload

Ppu(mmHg) 7.4

Aortic trunk

Aav (cm2) 4.0

Rpu (mmHg·s/mL) 0.01 Lao (mmHg·s2/mL) 0.0008

Rpv (mmHg·s/mL) 0.002 Lav (mmHg·s2/mL) 0.0004

Lmv (mmHg·s2/mL) 0.0005 Caa (ml/mmHg) 0.1

Lpv (mmHg·s2/mL) 0.0005 Cda (ml/mmHg) 0.1

Amv (cm2) 4.0 Rao (mmHg·s/mL) 0.04

Rta (mmHg·s/mL) 0.02

Artery
(E0:Z:R:L)

Arteriole
(C:R:L)

Capillary
(C:R:L)

Vein
(C:R:L)

Head 0.6:15:0.04:0.002 0.2:4.3:0.003 0.6:2.09:0.0005 2.3:0.55:0.0004
Upper limbs 0.8:13:0.1:0.003 0.1:25.89:0.003 0.45:4.18:0.0005 4.6:1.09:0.0004

Torso Rtor = 1.94
Lower limbs Rllb = 21.68
Peripheral Rpr = 1.4 Rpc = 0.01 Cpc = 2.0

R, mmHg·s/mL; L, mmHg·s2/mL; C, ml/mmHg.

2.3. Coupled Computation

In this paper, the CVS model provides the blood flow information for the 0D human
tissue heat transfer model to calculate the tissue temperature. The 0D cardiovascular
blood circulation model was coupled to the human tissue heat transfer model through the
thermal resistance of blood perfusion (REq). The specific computational process is shown
in Figure 4.



Bioengineering 2023, 10, 368 8 of 19Bioengineering 2023, 10, x FOR PEER REVIEW 8 of 19 
 

 

Figure 4. Flowchart of coupling strategy. 

2.4. Experimental Setup 

Figure 5 shows a schematic of the experimental system for measuring physiological 

signals such as skin temperature and blood perfusion signals. In this study, fatigue exper-

iments were conducted using infrared thermal imager temperature measurement meth-

ods. An infrared thermal imager was used to collect the infrared thermal images of the 

face and a single hand in the same frame as the subject (Figure 5). A laser Doppler flow-

meter (AD Instruments) was used to monitor blood perfusion in the index finger. Eight 

men volunteered to participate in this study. Their mean age, weight, and height were 24 

± 1.1 years, 73 ± 10.5 kg, and 1.7 ± 0.07 m, respectively. The experimental procedure was 

strictly followed for all subjects to ensure that the data could be compared without inter-

ference. All experimental procedures were performed in a controlled laboratory environ-

ment. 

 

Figure 5. Schematic of the experimental setup for physiological measurement during fatigue state. 

A small circularly-moving ball was used as the induction source in the infrared ther-

mographic temperature measurement experiment. As the experiment lasted for only 10–

15 min, the self-measurement method interfered with the fatigue experienced by the sub-

ject. Experimental videos were recorded, and the evaluator assessed the fatigue level of a 

subject based on the subject’s sleepiness, referring to the NEDO method [24]. The NEDO 

START

t=0.0s

Update data of human 

skin temperature

Calculation of blood flow by using the 

CVS model until the waveform is stable

Update data of tissue 

blood perfusion

t=t+△t, △t=0.1s

Calculation of the human 

tissue heat transfer model

t?=t_end

END

NO

YES

Calculation of blood flow by using the 

CVS model until the waveform is stable

Figure 4. Flowchart of coupling strategy.

2.4. Experimental Setup

Figure 5 shows a schematic of the experimental system for measuring physiological
signals such as skin temperature and blood perfusion signals. In this study, fatigue experi-
ments were conducted using infrared thermal imager temperature measurement methods.
An infrared thermal imager was used to collect the infrared thermal images of the face
and a single hand in the same frame as the subject (Figure 5). A laser Doppler flowmeter
(AD Instruments) was used to monitor blood perfusion in the index finger. Eight men
volunteered to participate in this study. Their mean age, weight, and height were 24 ± 1.1
years, 73 ± 10.5 kg, and 1.7 ± 0.07 m, respectively. The experimental procedure was strictly
followed for all subjects to ensure that the data could be compared without interference.
All experimental procedures were performed in a controlled laboratory environment.
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Figure 5. Schematic of the experimental setup for physiological measurement during fatigue state.

A small circularly-moving ball was used as the induction source in the infrared
thermographic temperature measurement experiment. As the experiment lasted for only
10–15 min, the self-measurement method interfered with the fatigue experienced by the
subject. Experimental videos were recorded, and the evaluator assessed the fatigue level of
a subject based on the subject’s sleepiness, referring to the NEDO method [24]. The NEDO
method is a fatigue-level evaluation criterion based on facial expressions. The fatigue
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evaluation criteria divided the fatigue into five levels, as listed in Table 5. In this study, the
state of the subjects was evaluated by the raters every 30 s. To ensure that the evaluation
results were not affected by individual differences among raters, the assessment results
of the three raters were averaged to obtain final state evaluation results for each subject.
Levels 1–2 were classified as awake, and levels 3–5 were classified as fatigued.

Table 5. Fatigue rating criteria based on facial expression by the NEDO procedure.

Level State Facial Expressions and Behaviors

Level 1 Awake
• Eye movements are quick and frequent
• Blink rates are stable at approximately two per 2 s
• Body motions are active

Level 2 Slightly drowsy
• Lips are parted
• Motions of eye movements are slow
• Body motions are active

Level 3 Drowsy
• Blinks are slow and frequent
• Repositions body on the seat
• Touches hand to face

Level 4 Very drowsy
• Blinks are assumed to occur consciously
• Shakes head
• Frequently yawns

Level 5 Extremely drowsy • Eyelids closing
• Moves head back and forth

3. Data Processing

Infrared thermal imaging cameras only obtain image and temperature matrix informa-
tion; therefore, it is necessary to extract temperature information from the desired part of
the thermal image. The low resolution of the thermal imaging camera and blurred edges
of the image result in poor target tracking. The adopted method combines visible-light
images with target-tracking methods using computer vision to extract the temperature of
the region of interest in the thermal image. The specific methods are as follows:

Step Face-and-hand feature point recognition and region of interest localization for visible
images

This paper uses the open-source library Dlib to perform facial feature point recognition
on visible face maps. The open-source library uses the HOG method to identify face position
recognition in the input vector, calls the already trained facial feature point detector to
identify 68 facial feature points (see Figure 6b), and outputs the position coordinates of the
feature points. The identified feature points are named from minimum to maximum as f_0,
f_1, . . . , f_67, then f_30 is selected as the center of the tip of the nose, and r1 is the rounded
area with a radius of r1, which requires the dynamic calibration of r1 in each frame.

In this study, the open-source library Mediapipe was used for hand-feature point
recognition on visible light maps. Similar to Dlib, an open-source library used for facial
recognition, the palm region is detected first. Then, a trained hand feature point detector is
invoked to recognize 21 hand feature points (see Figure 6a), and the location coordinates of
the feature points are output. The identified feature points are denoted as h_0, h_1, . . . ,
and h_20, from minimum to maximum. Next, a circular region of radius r2 with h_8 as the
center is used as the index fingertip region, where r2 is dynamically calibrated again in
each frame.

The first step combined the visible map (Figure 6c) with Dlib and Mediapipe to extract
the feature points traced to the region of interest (Figure 6d).
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Figure 6. Visible image feature point extraction: (a) Schematic of hand 2D feature point distribution
identified by Mediapipe open-source library. (b) Schematic of facial 2D feature point distribution iden-
tified by Dlib open-source library. (c) Original image before and (d) after feature point identification
and region of interest localization.

Step Alignment of visible and infrared thermograms

As shown in the previous step, the feature points of the face and hand in the visible
image were recognized using Dlib and Mdiapipe, respectively, and the position coordinate
sequences of the feature points in the visible image were obtained. Then, we aimed to
apply the feature points of the visible image to the corresponding positions of the infrared
thermal image with high precision. The visible light camera of the binocular infrared
camera used in this study was placed directly above the infrared camera; however, the
relative positions of the two cameras remained unchanged. Although the positions of
the visible and infrared thermal images are not the same, the difference between the two
images is slight. The two images correspond to the same location in space based on image
alignment. The dimensions of the visible and thermal images were (1440, 1080) and (384,
and 288), respectively. To achieve a better alignment effect, the visible light image size was
reduced to the same size as that of the thermal image. The relative offsets (dx and dy) in the
horizontal and vertical directions of the two images were then considered for alignment.
Due to the lens arrangement of the binocular thermal imaging camera used in this study,
the orientation offset direction was considered only in the longitudinal direction. To ensure
that the selected image offsets were valid for non-specific target distances, the results of
image alignment offsets were tested at different distances from the camera. Finally, 0.5 m
spacing and (14, 2) pixel image offset were determined as the optimal settings.

Step Automatic tracking and calibration of areas of interest

Precise mapping of the visible feature points onto the corresponding positions of
the thermal image was achieved in Step 2. Then, automatic tracking and calibration of
the region of interest were required. As the subject moved to varying degrees during
the experiment, the field of view of the face and hand presented in the image changed,
which caused the face and hand area in the entire image to change, thus changing the pixel
distances r1 and r2 that determine the region of interest. Therefore, it was necessary to
determine the field of view change rates for the two frames before and after imaging. When
the field of view changes, the distance between adjacent even feature points also changes;
therefore, the absolute distance ratio between two points within the current frame and the
previous image was calculated using facial feature points f_27 and f_30 as the field-of-view
change rate to adjust the size of the region of radii r1 and r2 to improve region localization.
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Step Extraction of regions of interest

The final step involved calculating the average temperature inside the localized region
of interest. After localizing the thermal image region of interest, the average temperature of
the region of interest was obtained by loading a CSV file of the temperature matrix extracted
using the software with a thermal imaging camera. Figure 7 shows the algorithm flow for
skin temperature extraction within the region of interest based on visible image-assisted
thermal images.
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4. Model Validation

To verify the reliability of the model, the results of the integrated thermal and CVS
models were compared with previously published data.

4.1. CVS Model and Integrated Model Validation

The CVS model was validated by comparison with data from Liang’s cardiovascular
system model [23]. Comparisons of blood flow in the large arteries of the upper limbs
are shown (Figure 8a). The fluctuation in the flow wave from the simulation model in
this study was small, which may be related to the compliance parameters of the upper
limb arteries. However, good agreement was observed between shape, phase lag, and
diastolic reverse flow. The integrated model was validated by comparing the simulated
mean skin and core temperatures with published experimental data at various ambient
temperatures [13]. As shown in Figure 8b, the simulation parameters were modified based on
the environmental conditions used in the experiment. Close agreement was observed between
the simulated skin and core temperature and experimental conditions (within 0.5 ◦C).
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4.2. Experimental Data Processing and Matching Method for Temperature

The thickness of the skin tissue layer and the skin blood flow differ in each individual.
This proposes an individualized model that considers the physiological differences between
individuals and the role of blood perfusion in autoregulation. The simulated hand and head
temperatures obtained by varying the tissue layer thickness and small skin resistance of
the head and hand in the model were used to match the subject’s temperature when awake
in the fatigue experiment to obtain a personalized model. The experimental videos of the
induced fatigue experiment were used to determine the fatigue level of the participants. In
this study, fatigue onset was considered to occur when subjects reached Level 3 fatigue.
The average temperature (before fatigue) was considered the temperature when the subject
was awake, and the fatigue temperature was considered the average temperature during
the Level 5 fatigue state. As shown in Figure 9, the subject became progressively more
fatigued and reached a fatigued state at 269 s.
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After obtaining skin temperatures before fatigue, an integrated model was developed
to vary tissue layer thickness and skin resistance to match the subject’s temperature when
awake during the experiment. The changes in tissue layer in heat transfer models reflect
differences in physiological structure, and the changes in skin resistance reflect the role of
blood perfusion in thermoregulation. An objective function was constructed by calculating
the difference between the simulated and experimental temperatures, and the interior-
point method was used to solve the constrained optimization problem. The matlabRa2020
version was used to solve the optimization problem. After obtaining the tissue layers
and skin resistance for all subjects, a tissue heat transfer model with the CVS model was
developed to vary HR and skin resistance to match temperatures during fatigue.

5. Results
5.1. Skin Temperature Changes after Fatigue Onset

During the induced fatigue experiment, skin temperatures of the hand and head
regions of interest were collected from eight subjects. As the fatigue level increased, the
temperatures of the heads and hands of the subjects gradually decreased, as shown in
Figure 9. During the experiment, the skin temperature fluctuation of the hand was large
compared to the skin temperature fluctuation of the head. The statistical results of the skin
temperatures before and after fatigue in subjects’ hands and heads are shown in Figure 10.
The method for calculating the average temperature before and after fatigue is presented in
Section 4.2. Comparing the average temperature among the eight subjects before and after
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fatigue, the average temperature in the head and hand decreased to 0.36 ◦C and 0.73 ◦C,
respectively, indicating that the mean temperature in the hand decreased more after fatigue.
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5.2. Physiological Differences between Individuals

Differences in human skin tissue and blood perfusion can lead to differences in skin
temperature between individuals. To investigate the effects of skin tissue thickness and
blood perfusion rate on epidermal temperature, the tissue layer thickness and blood
perfusion rate of each subject were matched. In this model, the skin resistance and skin
blood perfusion rate are associated: when skin resistance increases, the skin blood perfusion
rate decreases. Skin temperature is influenced not only by the thickness of the tissue layer
and skin resistance (blood perfusion rate) but also by the ambient temperature. Therefore,
ambient temperature during the experiment was considered. Using the matching method
described in Section 4.2, the thickness of each tissue layer and the magnitude of skin
resistance was obtained for all subjects (Figure 11). From the results, it was observed
that for different subjects, the skin layer thickness and skin resistance were different. The
hand tissue layer thickness was smaller than that of the head, with average tissue layer
thicknesses of 1.5 cm and 8.0 cm, respectively. In contrast, the skin resistance of the head
was smaller than that of the hand, with average resistance values of 30.4 mmHg·s/mL and
114.4 mmHg·s/mL, respectively. This difference was attributed to higher blood perfusion
in the head than in the hand under normal conditions.
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5.3. Change in the Cardiovascular System after and before Fatigue

During the fatigue experiments, we collected head and hand temperature signals from
the subjects according to the fatigue rating evaluation described in Section 4.2 (In Figure 9).
Based on the specific tissue layer thickness of each subject used in the integrated model,
the temperature values of the subject after fatigue during the experiment were matched by
varying HR and skin resistance. The initial value of the optimization problem was set to
76.6 beats/min for HR, and the initial value of skin resistance was the skin resistance of the
subject in the awake state. Taking the subject in Figure 9 as an example, the head and hand
temperatures before fatigue were 35.03 and 35.22 ◦C, respectively; the skin temperatures
of the head and hand after fatigue were 34.77 and 34.25 ◦C, respectively; and the initial
values of the model head and hand were set to 24.55 and 21.96 mmHg·s/mL, respectively.
By matching the skin temperatures of the head and hand after fatigue (see Section 4.2 for
details), the post-fatigue HR, head, and hand skin impedance values were calculated as
75.9 beat/min, 32.67 mmHg·s/mL, and 80.73 mmHg·s/mL, respectively. HR and skin
resistance of all subjects before and after fatigue were calculated (Figure 12). The simulated
results indicate that after fatigue, HR decreased, and skin resistance increased in all subjects.
The mean HR decreased significantly from 76.6 to 67.96 beats/min. The skin resistance of
the head increased from 30.4 mmHg·s/mL to 42.41 mmHg·s/mL after fatigue, and the skin
resistance of the hand also increased from 114.4 mmHg·s/mL to 358.73 mmHg·s/mL after
fatigue.
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The mean values of HR and skin resistance before and after fatigue were calculated
separately for each subject and incorporated into the model to compare changes in the
cardiovascular system before and after fatigue. The simulation results revealed a decrease
in peak aortic flow (Figure 13a), blood pressure (Figure 13b) and subcutaneous blood
perfusion rate in the head and hands (Figure 14) before and after fatigue. The reduction in
HR (76.6–67.96 beat/min) and blood pressure (106.6–103.2 mmHg) obtained by the model
are consistent with previously reported findings [6]. As HR decreases, aortic flow and
blood pressure decrease as well. Although excellent skin resistance in the hands and head
leads to an increase in blood pressure, the increase in blood pressure due to the change
in skin resistance is not sufficient to counteract the decrease in blood pressure due to the
decrease in HR, which was reflected in the simulation results. In this work, it is found that
the average blood perfusion of the hand and head skin decreased by 0.0016 mL/mL/s and
0.0018 mL/mL/s, respectively.
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Figure 14. Change of skin blood perfusion (a) and core blood perfusion (b) before and after fatigue.
Qhandsb is hand skin blood flow in the awake state; Qhandsf is hand skin blood flow in the fatigue
state; Qheadsb is head skin blood flow in the awake state; Qheadsf is head skin blood flow in the
fatigue state; Qhandcb is hand core blood flow in the awake state; Qhandcf is core skin blood flow in
the fatigue state; Qheadcb is head core blood flow in the awake state; and Qheadcf is head core blood
flow in the fatigue state.

6. Discussion

Fatigue is a complex physiological phenomenon that affects both physical and mental
activity. This study attempted to establish a biological thermal model considering CVS
parameters to analyze changes in HR, skin blood flow, and blood pressure in the fatigue stage.
It is found that changes in peripheral resistance and HR caused by fatigue are the primary
reasons for skin temperature reduction, leading to changes in the cardiovascular system.

Previous studies have shown that the physiological differences between individuals
and skin blood perfusion have a significant influence on heat transfer [25–27]. Therefore,
this paper proposes a method for establishing a personal biological thermal model based
on experimental personal data that thoroughly considers differences in tissue layers and
skin blood perfusion. Based on the model, some results can be obtained by varying HR and
skin resistance. There is something to discuss the simulation results of skin blood perfusion
and blood pressure.

For skin blood perfusion, increased peripheral resistance and reduced blood flow
induce changes in skin temperature during fatigue. The reduced skin blood perfusion
rates in the hands and head after fatigue were consistent with the reduced Laser Doppler
blood flow signal components in the fingers identified in the experiment. This suggests
that reduced blood perfusion rate after fatigue leads to a decrease in skin temperature,
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which is consistent with previously reported results obtained from simulated driving
experiments [28]. The skin resistance values are expected to change more significantly due
to fatigue in the hand than that in the head because skin temperature changes in the hand
are strongly influenced by blood perfusion. Moreover, the high oxygen consumption in the
head and the stability in blood flow are crucial to maintaining oxygen consumption in the
brain, so temperature fluctuations are expected to be less significant in the head.

For blood pressure, we calculated changes in HR and blood pressure after fatigue. HR
decreased at fatigue onset, which is consistent with the results of other studies on simulated
driving fatigue [6,29]. Regarding the change in blood pressure, a marked decrease in
both systolic and diastolic blood pressure was observed before and after fatigue. Our
results exhibited consistent trends with Jagannath et al. However, our results contradicted
those reported by Fumio [30] and Yamakoshi [28], where the blood pressure increased in
their experiments. This was caused by differences in driving environments. In Fumio’s
experiment, the subjects studied were city drivers where the urban traffic environment was
worse, which results in tremendous stress and can lead to nervousness or anxiety, thus
potentially increasing blood pressure. In Yamakoshi’s [28] experiment, the simulated road
conditions were highway environments. However, subjects were given clear demands,
such as “keep an eye on surroundings“ and asked to perform ongoing monotonous tasks
under strained conditions. Therefore, the demand for prolonged attention causes stress in
drivers and may increase blood pressure.

Furthermore, the blood pressure response is influenced by local conditions in the work-
ing muscles, which are peripherally regulated by a muscle chemical reflex of metabolites in
the trapped muscles and remain continuously elevated as long as the occlusion persists [31].
Therefore, during previous experiments, there is a possibility that peripheral regulation by
muscle chemical reflexes may be responsible for the increase in blood pressure. However,
the present experiment did not exceed 1 h in length, and the subjects were not asked to pay
constant attention to their surroundings, which allowed them to reach a state of fatigue
in a safe situation. Therefore, the subjects’ blood pressure was not expected to increase in
response to tension.

By extension, drivers experience higher stress levels under sustained mental stress.
Moreover, as mental fatigue increases, HR decreases, and HR variability (HRV) increases.
Increased HRV implies that the autonomic nervous system inhibits vagus nerve activity
and increases sympathetic nerve activity, which may be related to the protection of physio-
logical coherence [32]. In addition, during fatigue, excitatory sympathetic activity activates
the renin-angiotensin system (RAS), which produces angiotensin that acts on vasoconstric-
tion [33], leading to the contraction of skin capillaries, a decrease in tissue blood perfusion,
and a decrease in skin temperature. In future studies, wavelet analysis could be applied to
analyze changes in endothelial and neural frequency segments to explore the reasons for
the decrease in blood flow due to the increase in peripheral resistance. When peripheral
resistance increases, blood pressure increases, and the increase in blood pressure stimulates
blood pressure receptors, which can reduce HR. Not only does the blood perfusion rate
in the superficial layer decrease, but the decrease in HR also leads to a decrease in blood
perfusion in the core layer of the tissue. The effects of fatigue on the cardiovascular system
are characterized by a decrease in HR as well as a decrease in blood pressure and a decrease
in aortic root flow before and after fatigue, suggesting that HR and blood pressure influence
the magnitude of blood flow to the peripheral body [34]. Therefore, in a fatigued state, the
blood supply to the brain may be reduced, and the brain requires more oxygen to function
correctly. Slight hypoxia may also be a cause of fatigue in the body, and a reduction in
saturated blood oxygen to the brain has been reported in previous experiments [35].

Finally, although the experimental results of only 8 subjects are presented in this
paper, a lot of work has been done to verify the model. In the early experiments, the
thermocouple was used to collect skin temperature signals and obtain data from 13 subjects.
Based on these results, we found that hand and head temperature decreased after fatigue,
which is consistent with infrared measurements. Since the infrared thermal imager can
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measure temperature without contact, which is more suitable for our research purposes,
we used the infrared thermal imager to capture temperature in the later experiment. And
the infrared thermal imager can get the temperature information of the whole face space. In
the following work, it is necessary to further expand the experimental data of the infrared
thermal imager and improve the reliability of the model.

7. Limitations

This study had some limitations. The blood perfusion in each tissue layer was uneven.
Although the weighted method was used to assign blood perfusion, it is necessary to
collect more samples from each tissue layer using laser Doppler measurements to decrease
deviation. In addition, the CVS model was simplified in this work, and the vascular network
system of the lower limbs and trunk was only considered using electrical resistance. The
results obtained by the model would be more accurate if a more comprehensive systemic
cardiovascular system could be established. Moreover, a lumped parameter model was
used to build the CVS model, and the parameters of the CVS model were difficult to
determine because they were taken based on blood flow waveforms in previous literature.
However, changes in the parameters have a significant impact on blood flow. Further
studies are required to enhance the accuracy of this model.

8. Conclusions

In this study, an integrated biological thermal model with a complex lumped parameter
cardiovascular model was built to predict the thermal response of skin tissue after fatigue
onset. The temperature during the fatigue state was determined through an induced fatigue
experiment. Dynamic skin blood perfusion and individual differences were considered
in the model. Skin temperatures of the hand and head were determined before and after
fatigue, and it was confirmed that the model effectively predicted the skin temperatures of
the hand and head. The mean absolute errors of the proposed model in predicting skin
temperatures of the hand and head during fatigue were within acceptable limits. The
model was used to predict changes in the cardiovascular system before and after fatigue;
it was found that HR decreased, peripheral resistance increased, and both aortic blood
flow and blood pressure decreased. HR and peripheral resistance combine to influence
the magnitude of blood flow to the periphery of the body, leading to a decrease in skin
temperature during fatigue. Finally, the model may help offer a preliminary strategy for
predicting the pathological and physiological interactions between skin temperature and
blood perfusion and is expected to support the development of new monitoring strategies
for driving fatigue.
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