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Abstract: In recent years, the development of adaptive models to tailor instructional content to
learners by measuring their cognitive load has become a topic of active research. Brain fog, also
known as confusion, is a common cause of poor performance, and real-time detection of confusion is
a challenging and important task for applications in online education and driver fatigue detection.
In this study, we propose a deep learning method for cognitive load recognition based on electroen-
cephalography (EEG) signals using a long short-term memory network (LSTM) with an attention
mechanism. We obtained EEG signal data from a database of brainwave information and associated
data on mental load. We evaluated the performance of the proposed LSTM technique in comparison
with random forest, Adaptive Boosting (AdaBoost), support vector machine, eXtreme Gradient
Boosting (XGBoost), and artificial neural network models. The experimental results demonstrated
that the proposed approach had the highest accuracy of 87.1% compared to those of other algorithms,
including random forest (64%), AdaBoost (64.31%), support vector machine (60.9%), XGBoost (67.3%),
and artificial neural network models (71.4%). The results of this study support the development
of a personalized adaptive learning system designed to measure and actively respond to learners’
cognitive load in real time using wireless portable EEG systems.

Keywords: electroencephalography; long short-term memory network; attention mechanism;
cognitive load; deep learning

1. Introduction

The COVID-19 pandemic has caused significant disruptions to traditional classroom
education worldwide, resulting in a surge in distance learning methods [1,2]. The rapid
development of information technology (IT) has facilitated this transition by allowing
students to continue their education from a distance. Consequently, traditional classroom
education has gradually integrated online and distance learning methods, with distance
learning emerging as a new trend in education [3,4]. Distance learning offers learners the
flexibility to create a learning environment that transcends spatial and temporal constraints.

During the pandemic, many people were forced to work and study remotely, which
has increased interest in developing methods for monitoring cognitive load levels in these
settings. A recent issue related to cognitive load recognition has been its application to
remote work and online learning. In this context, the challenge is the lack of face-to-face
interactions, which makes it difficult to detect non-verbal cues that indicate cognitive load
levels. Consequently, researchers have been exploring the use of physiological signals, such
as EEG and eye tracking, to monitor cognitive load levels in real time.

Cognitive load is a measure of the mental effort required to complete a task and can
be used to predict performance, fatigue, and stress levels. Cognitive load recognition is
designed to improve human performance by identifying and monitoring cognitive load
levels in real time. Therefore, cognitive load detection has numerous applications in various
domains, such as healthcare, education, and aviation.
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Driven by advances in computational neuroscience, research has been conducted to
measure learners’ cognitive load based on the cognitive load theory. Cognitive load is one of
the main causes of poor performance in a wide variety of tasks, including learning processes
and associated thinking or reflection. If the degree of cognitive load of learners in learning
or work processes is reflected, it can be used to develop adaptive instructional designs.
However, most existing studies have focused on methods to estimate learners’ degree of
cognitive load during the learning outcome stage [5,6]. A study investigating prefrontal
cortex (PFC) hemodynamics using functional near-infrared spectroscopy (fNIRS) while
performing n-back and random number generation (RNG) tasks with multiple cognitive
loads suggested a relationship between subjective workload and brain activity [7]. In
attempting to quantify the cognitive load, cognitive load modeling techniques using deep
learning are also being studied, considering workload mechanisms and their impact on
human performance [8].

Measuring the degree of cognitive load of learners after completing a learning experi-
ence has certain limitations. However, the measurement of these qualities during learning
presents several challenges. To overcome these limitations, the development of adaptive
models that provide instructional control to learners by measuring their cognitive load in
real time has emerged as a promising approach. Real-time teaching feedback could facilitate
active support that reflects changes in learning status and real-time applications to help
develop adaptive instructional materials. These materials based on real-time measurement
can manage learners’ cognitive load and participation in learning at an appropriate level
during learning and help educators identify learners’ difficulties. To realize such real-time
adaptive teaching, a method to measure learners’ cognitive load in real time during their
learning experiences must be developed as a technical prerequisite.

In this study, we consider that learners’ cognitive load can be measured in real time
using data on their physiological and psychological responses. Electroencephalography
(EEG) is commonly used to collect these data. Hence, measuring cognitive load by collecting
learners’ physiological data does not interfere with their learning experience. Cognitive
load was measured using EEG analysis. EEG is the flow of electricity generated by signal
transmission between brain nerves, and EEG analysis analyzes the frequency change in
the EEG. Because EEGs exhibit different frequency wavelengths depending on mental
activity, the degree of cognitive load can be measured by EEG analysis [9,10]. However,
the generation of brainwaves is greatly affected by physical exercise and by differences
in individual cognitive abilities. Noise in the signals may also pose some difficulties in
interpreting information. Moreover, some authors have noted that EEG readings can be
affected by other mental activities and that the continuous nature of the collected data
poses notable difficulties in determining a person’s degree of cognitive load.

However, this approach can be used to develop a model to predict specific results
using learner information by applying artificial intelligence-based methods such as machine
learning. Friedman et al. explored various cognitive load prediction models based on
machine learning using learners’ EEG measurement data. They compared and analyzed
four machine learning algorithms (XGBoost, random forest, artificial neural network,
and simple linear regression models) and reported that the XGBoost algorithm exhibited
the highest predictive accuracy [11]. Machine learning algorithms may vary in prediction
accuracy owing to variables such as the size of the training dataset. Similarly, the accuracy of
artificial neural network algorithms varies with the number of hidden layers implemented
in different models. Hence, a comparative analysis of the various algorithms is required.
Therefore, we trained several machine learning models to predict cognitive load based on
EEG data to compare their predictive performance.

In this study, we aimed to develop a model to measure learners’ cognitive load based
on their neurophysiological reactions. Additionally, we are interested in creating personal-
ized models that can account for individual differences in cognitive load responses. To this
end, we developed a long short-term memory (LSTM)-based machine learning model to
predict the degree of cognitive load using EEG data. To induce a measurable difference in
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cognitive load, we presented participants with video learning tasks of different difficulty
levels and collected EEG data to compare the degree of understanding of the content that
the participants showed during the tasks. Based on these data, we applied support vector
machines, K-nearest neighbors, artificial neural networks, convolutional neural networks,
deep belief networks, (recurrent neural network) RNN-LSTM, bidirectional LSTM, and
bidirectional LSTM attention models to compare their performance in handling data most
predictably and efficiently. A recent issue related to cognitive load recognition has been its
application to remote work and online learning and the development of more accurate and
personalized models to monitor cognitive load levels in these settings.

The remainder of this paper is organized as follows. Section 2 introduces previous
studies related to cognitive load, and Section 3 explains the implementation of the proposed
bidirectional LSTM combination model. Section 4 explains the analysis and results of the
study, and Section 5 presents conclusions and future research directions.

2. Related Work
2.1. Cognitive Load

Methods of measuring mental workload include subjective methods using response
forms filled out by participants, and objective methods, including the use of psychophys-
iological measurements [12,13]. One of the best ways to measure mental workload with
a high temporal resolution is to utilize EEG data [11–13]. In this study, we propose an
algorithm to explore the mental workload associated with multitasking activities using
EEG measurements and to recognize different levels of mental workload.

According to the theory of cognitive load, learners’ management of cognitive resources
is considered important for effective learning. Cognitive load theory argues that informa-
tion processing that occurs in the learning process must be implemented within a limited
capacity of working memory and that cognitive overload occurs if mental activity exceeds
this limit [14]. The total cognitive load is composed of the sum of the extrinsic and intrinsic
loads, of which the extrinsic load is considered to be lowered through efficient instructional
design because it is a negative load owing to an incorrect design [15]. In contrast, because
the intrinsic load is considered a positive load that helps form cognitive schemas, the total
amount of cognitive load must be low for it to not be positive. For successful learning,
appropriate teaching controls should be provided depending on learners’ individual char-
acteristics to avoid imposing either an excessively high or low cognitive load for a given
learning situation [16]. This argument of the cognitive load theory is related to the need for
adaptive teaching. Teaching should be adjusted according to the level and characteristics
of each learner. In particular, the expertise reversal effect of teaching guidance that does
not meet the needs of learners can act as an unnecessary cognitive load, highlighting the
need for adaptive teaching considering learners’ individual levels of knowledge [5]. Begin-
ners can learn more effectively if they are provided with sufficient instructional guidance
because they do not form mental schemas for certain learning topics. In contrast, for learn-
ers who have sufficiently developed a related schema, providing excessive instructional
guidance hinders learning [17]. In other words, the application of adaptive teaching can
optimize learners’ cognitive load to achieve more positive learning outcomes. Studies
applying adaptive teaching have reported that groups presented with adaptive teaching
methods showed significantly higher knowledge acquisition, shorter learning time, and
higher teaching efficiency compared to groups that did not.

Various methods have been proposed to measure cognitive load; however, there is
no absolute method. Brünken, Plass, and Leutner divided cognitive load measurement
methods into two categories: distinctions between subjective and objective methods and
those between direct and indirect methods [18]. In the subjective-direct method, the level
of stress perceived by learners and the degree of task difficulty were measured using
a questionnaire. In contrast, the subjective-indirect method adopts a self-reporting ap-
proach to evaluate the degree of mental effort that learners experience through a written
questionnaire. Objective-direct methods include electroencephalogram measurements or



Bioengineering 2023, 10, 361 4 of 15

double-task response time measurements, whereas objective-indirect methods include
physiological characteristics or behavioral measurements. According to Brünken et al.’s
classification, EEG measurements consider cognitive load directly, whereas physiological
signals (sweat, pupil, etc.) indirectly measure cognitive load. In general, subjective ques-
tionnaires, double-task reaction time measurements, and physiological signal measurement
methods have been used [19]. A representative subjective method involves asking the
participants to respond to subjective questionnaires. This method involves self-reporting
the difficulty of the task by learners based on their subjective experience with the mental
effort they put in through a questionnaire. This approach is the most commonly used
and provides a relatively simple measurement of the degree of cognitive load without
requiring special equipment. However, it has a disadvantage in that changes in the degree
of cognitive load that occur during learning cannot be observed, and it relies on subjective
reports provided after the end of learning. In addition, previous studies have not reached a
clear consensus on which aspects should be measured by subjective perception, such as task
difficulty. Similarly, care should be taken when interpreting results according to various
learning contexts. For example, in the case of task difficulty, Kalyuga and Sweller measured
the total cognitive load, while DeLeeuw and Mayer (2008) argued that it was related to
the essential load [5,14,17,20]. Objective methods include the double-task response time
and physiological signal measurement methods. First, the dual-task response time method
measures the cognitive load based on the speed at which learners respond to additional
tasks presented while performing a given task [21]. In general, if the response rate to an
additional task is high, the level of cognitive load involved in processing the initial task is
low. The physiological signal measurement method checks the cognitive load by measuring
learners’ physiological responses [22,23]. Because the physiological signal measurement
method is based on objective data, it can be used to collect information in a relatively
accurate and real-time manner without affecting task performance [24].

State-of-the-art works in cognitive load recognition involve using various physiologi-
cal signals such as EEG, fNIRS, and ECG in developing models for predicting cognitive
load. Researchers have used machine learning and deep learning algorithms to process
these signals and classify cognitive load levels. However, despite the significant progress
made in this field, challenges remain, such as high individual variability, noise, and poor
generalization of models. Therefore, it is necessary to develop more accurate and robust
models for cognitive load recognition.

The proposed method for cognitive load detection uses deep learning techniques and
is motivated by the need for a more accurate and robust model that can address some of
the challenges encountered by existing methods. Random forest, AdaBoost, SVM, XGBoost,
and ANN are all traditional machine learning models that operate on fixed-length feature
vectors. These models are often trained using labeled data and can predict unseen examples
based on the patterns learned during training. Bi-LSTM, on the other hand, is a type of
deep learning model that operates on sequential data, such as text or speech. Bi-LSTM is a
variant of the long short-term memory (LSTM) network and is a type of recurrent neural
network (RNN). Bi-LSTM has been successful in many natural language processing tasks,
such as sentiment analysis, machine translation, and speech recognition. Unlike traditional
machine learning models, Bi-LSTM can learn from the temporal relationships between
inputs, which makes it well suited for tasks that involve sequential data. Bi-LSTM attention
models can handle variable-length inputs and automatically extract relevant features from
the input sequence, enabling them to capture complex patterns in the data.

Accordingly, the proposed method has the potential to improve the accuracy of
cognitive load detection and can be applied to various real-world scenarios.

2.2. Preprocessing and Feature Extraction

Neural oscillations or brainwaves are electrical reactions that occur in the interaction
between brain nerves and human mental activity, and these oscillations serve as indicators
that reflect brain activity. EEG analysis considers changes in the intensity of electrical
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signals generated in the brain by frequency and is often used as a physiological signal
measurement method to measure cognitive load. EEG measurements were made using
the potential differences between the electrodes attached to the head. Electrodes can be
attached to specific locations on the head to measure the EEG data in specific brain regions.
EEG analysis generally analyzes the frequency of collected EEG signals by applying a
Fast Fourier Transform (FFT). Brainwaves are divided into delta (0–4 Hz), theta (4–8 Hz),
alpha (8–12 Hz), low beta (12–16 Hz), high beta (16–25 Hz), and gamma (25–50 Hz) waves,
depending on their frequency. The intensity of brainwaves varies according to the state of
human mental activity, and the degree of human cognitive load can be estimated based
on this measurement. For example, alpha waves appear mainly in relaxation, beta waves
appear in problem solving, and gamma waves appear mainly in more complex mental
functions [25]. Considering these characteristics, we measured the constituent factors
of cognitive load separately in terms of the degree of activation of the brainwaves by
frequency.

The institutional review board (IRB) protects the rights and well-being of the subjects
in life-oriented research. The proposed study, first, does not involve invasive behavior,
such as drug administration and blood collection. Second, data were collected using only
simple contact-measuring equipment that did not follow physical changes. Therefore, it
corresponds to the IRB review that is not required in accordance with the regulations of
the National Bioethics Policy Institute of Korea. The non-copyright dataset used in the
experiment was obtained from Kaggle [26]. EEG signals were collected from 10 college
students while they watched video footage. A total of 20 videos were provided, including
10 with and 10 without a mental load. Students wore single-channel wireless headsets
(MindSet) to obtain EEG signals, which were measured on a 7-point scale from 1 to 7. The
MindSet device measured the voltage between a forehead electrode and two electrodes
(one for the ground and the other for reference) in contact with the ear. It provides an
output of 0 for mental states and 1 for nonmental states. While the students watched a
two-minute video, the EEG device emitted various previously listed signals. If the student
was not ready at the beginning of the video, we removed the first and last 30 s of the
video and analyzed only the middle 60 s of the EEG signal. The average of each firing
interval was calculated to characterize the overall values. Several features were calculated
to characterize the time profile of the EEG signal. Some of these distributions are typically
used to measure the shape (minimum, maximum, variance, skewness, and kurtosis) of
statistical distributions rather than time series. However, the small number of data samples
(100 data points for 10 subjects who watched 10 videos each), including the aforementioned
features, can overfit the training data and degrade the performance of the classification
models. Accordingly, we used only the mean as a feature of the classifier.

Table 1 shows the structure of the EEG dataset used for deep learning, including the
number of samples, the number of channels, and the range of values for the maximum
and minimum amplitudes. We preprocessed 11,388 data points and partitioned them into
separate training and validation sets. Specifically, we allocated 75% (8541 data points) for
training and 25% (2847 data points) for validation.
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Table 1. EEG data set.

Feature Count Max Min

0 Attention 11,388 100.0 1.0
1 Mediation 11,388 100.0 1.0
2 Raw 11,388 1440.0 −2048.0
3 Delta 11,388 3,964,663.0 448.0
4 Theth 11,388 2,567,643.0 17.1
5 Alpha1 11,388 1,369,955.0 2.0
6 Alpha2 11,388 1,016,913.0 2.0
7 Beta1 11,388 840,994.0 3.0
8 Beta2 11,388 1,083,461.0 2.0
9 Gamma1 11,388 658,008.0 1.0
10 Gamma2 11,388 283,517.0 2.0
11 User-defined label 11,388 1.0 0.0
12 Age 11,388 31 24
13 Ethnicity 11,388 Han Chinese Bengali
14 Sex 11,388 M F

2.3. LSTM-Based Recurrent Neural Network

In contrast to CNN models, LSTM architectures are incapable of large-scale parallel
processing. Unlike RNNs, they include input, output, and forget gates that can control
the flow of data in the network at any time. The gates of the LSTM architecture can place
memory blocks on hidden nodes to solve the long-term dependency problem of CNN
models, although the memory block cannot remember all data. Moreover, when LSTMs
are used in the pooling layer of a CNN, spatial and temporal features can be considered
simultaneously, owing to the end-to-end structure. The LSTM layer compensates for the
long-term dependence problem of the CNN. LSTMs are used to recognize the characteristics
of sequential data and store them in memory using a variable called the cell state. As shown
in Figure 1, the LSTM architecture includes input, output, and forget gates, which enable it
to be variably controlled according to the characteristics of the input data.
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The LSTM architecture consists of four components: input gate, forget gate, cell state,
and output gate. The purpose of the input gate is to obtain new information using two
features referred to as Rt and dt. Rt combines the previous hidden vector ht−1 with the new
information xt. In other words, we multiply [ht−1, xt] by the new matrix Wr and add the
noise vector br. Then, we perform the same procedure for dt. Rt and dt multiply elements
by element and import them into cell state ct. The slope of the forget gate is similar to that
of the input gate; this component controls the limits of the values retained in memory. The
cell state calculates the element multiplication between the previous cell states Ct−1 and
the forget ft. Then, we add the input gate rt multiplied by dt. The output gate is a symbol
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representing the output gate at t, and W0 and b0 are the weight and bias of the output gate,
respectively. The hidden layer ht is moved to the next point or output yt.

2.4. Bi-LSTM

Bi-LSTM represents bidirectional long short-term memory. Bi-LSTM is a type of
recurrent neural network (RNN) that is widely used for modeling sequential data. Unlike
traditional RNNs that process input data in only one direction, Bi-LSTM models can process
input data in both forward and backward directions simultaneously [27]. This makes them
particularly useful for tasks such as natural language processing, speech recognition, and
handwriting recognition, in which the context of each input data point depends on both
past and future data points. The architecture of a Bi-LSTM model consists of two long
short-term memory (LSTM) layers: one that processes input data in the forward direction
and one that processes input data in the backward direction. Each LSTM layer has a series
of memory cells that can store information over time and a series of gates that control the
flow of information into and out of the memory cells. The gates are composed of sigmoid
and tanh activation functions that determine the amount of information to be retained or
discarded based on the relevance of the input data. By processing data in both directions,
Bi-LSTM networks can capture both past and future contexts of a sequence, allowing them
to better model complex dependencies and relationships within the data.

During training, the Bi-LSTM model was fed with the input sequences, and the weights
of the network were updated using a backpropagation algorithm. The final output of the
model was generated by concatenating the outputs of both LSTM layers, allowing the
model to capture both the past and future contexts of the input sequence.

Overall, the Bi-LSTM model showed promising results in various applications, demon-
strating its effectiveness in capturing long-term dependencies and improving the perfor-
mance of sequential data-processing tasks.

3. Materials and Methods
Deep Learning-Based Cognitive Load Analysis Model

The model proposed in this study comprises a bidirectional LSTM and an attention
mechanism to extract the positive and negative characteristics of the mental load. Contrary
to conventional machine learning techniques, LSTM models are not capable of large-scale
parallel processing, unlike CNNs. Instead, they utilize input, output, and forget gates to
process the data. The gates have the advantage of being able to place a memory block
on a hidden node. This can solve the long-term dependency problem of CNN models,
although the memory block cannot remember all data. Moreover, when LSTM is used in
the pooling layer of a CNN, spatial and temporal features can be considered simultaneously
owing to its end-to-end structure. In addition, LSTM models can exhibit improved accuracy
because they can equally model sequence vectors when predicting words. LSTMs provide
sequential data characteristics and store them in memory using a variable called the cell
state. This specialized architecture enables the data to be processed differently according to
different situations by controlling the calculation process. Next, a single value is outputted
using the sigmoid function in a fully connected layer called the dense layer.

A typical BCI system utilizes data preprocessing processes to remove noise, extract
features, and classify the data to reflect characteristics and extract meaningful data from
unprocessed brainwaves [28]. The classified information may be used as an instruction for
device control or provided to the user. Because brainwaves are characterized by nonlinearity
and high variability between individuals and situations, the implementation of stable and
reliable BCI systems is challenging. In this study, we used an LSTM model to extract and
classify cognitive load and related brainwave characteristics. The collected data were used
as input to the LSTM model. The data to which the output value was assigned underwent
a conversion process to make it suitable as input to the LSTM model.

In this study, we adopted a one-way LSTM layer followed by an attention mechanism
to model the effect of the mental load generated at a given time on overall emotion. The
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attention mechanism is a learning method that weighs a part of the input that affects the
output the most. Bidirectional LSTM layers are generally known to perform better when
considering both the front and rear concealed states than unidirectional LSTM layers when
using an attention mechanism. The overall structure of the proposed model is shown in
Figure 2.
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The first hidden layer included 128 neurons and used a bidirectional long short-term
memory (LSTM) layer with a rectified linear unit activation function. Then, to avoid
overfitting, we included a dropout with a probability of 0.2 and passed the data through a
second bidirectional LSTM layer with 64 neurons and the ReLU activation function. After
calculating the attention weight with the hidden state, which is the output of the second
layer, the dimensionality of the data was reduced by passing through a layer with an output
size of 16 and the first dense layer using the ReLU activation function. The final output is
obtained by passing the data through the second dense layer, which has an output size of
1 and using the sigmoid activation function in the second classification and the softmax
function in the third. In the second-stage classification, the output values are low or high
for valence or arousal, and in the third-stage classification, the results are classified as low,
middle, or high. The attention weights were processed in the following order: This method
calculates the attention weight of the part of the input that affects the output; the higher
the weight of the input part, the greater the value when the network is trained. The order
of calculation is as follows: The hidden state vector calculated via the second bidirectional
LSTM layer is multiplied by a randomly initialized attention weight, whose length is equal
to the length of the hidden state vector. The output size of the second bidirectional LSTM
layer was 64, with a total of 128, owing to the bidirectional architecture. Thus, the length of
the attention weight is 128. The resulting value from this calculation was converted into
a probability value through the softmax activation layer, and the transformed attention
vector was combined with the first calculated hidden state vector to be calculated as the
final attention output. Dense layer 1, which is connected to the attention layer, receives
the corresponding attention output as input and reflects the part of the weight that is
most important for future learning to produce more accurate results. The Adam optimizer
was used, with a learning rate of 0.001. A cross-entropy loss function suitable for binary
classification was also used. To measure accuracy, we adopted the Stratified K-fold cross-
validation method with four iterations. Using this method, labels were distributed in a
balanced manner for each fold; 75% of the data were used as the training set and 25% as
the testing set for each iteration. Each iteration was trained for 30 epochs with an input
batch size of 32. Each hyperparameter was optimized experimentally.
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Figure 3 shows the results of the analysis of the correlation between variables. In
the heatmap, the X- and Y-axes were set to the same variable and plotted as points.
Consequently, we observed a suitable correlation between Gamma1 and Beta2.
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Table 2 summarizes the proposed LSTM model. The structure of the model was the
same as that of the model implemented in Python. The ReLu activation function was used
with a dropout of 0.2, fork of 100, and batch size of 10, and a sigmoid activation function
was used in the last dense layer.

Table 2. The proposed LSTM model.

Layer Num Type Output Shape Parameters

Layer 1 Input Layer (None, 16, 1) 0
Layer 2 Dense (None, 16, 64) 128
Layer 3 Dense (None, 16, 128) 8320
Layer 4 Bidirectional LSTM (None, 16, 512) 788,480
Layer 5 Dropout (None, 16, 512) 0
Layer 6 Bidirectional LSTM (None, 16, 512) 1,574,912
Layer 7 Dropout (None, 16, 512) 0
Layer 8 Attention (None, 16, 512) 528
Layer 9 Dense (None, 16, 128) 65,664

Layer 10 Dense (None, 16, 1) 129
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4. Results

The performance of the proposed Bi-LSTM model has a decisive influence on the
overall system because control is performed based on accurate EEG feature extraction and
classification according to the learning process. Loss and accuracy were used to verify
the performance of the proposed LSTM model. The smaller the loss, the better because
it indicates a difference from the result value. A categorical cross-entropy loss function
was also used. Accuracy is the ratio of the total number of positive recognitions to that of
negative recognitions. Thus, accuracy values closer to 1 indicate better performance. For the
best training data, the proposed LSTM model exhibited a loss value of 0.08 and an accuracy
of 96.9% over 76 epochs. For the verification data, the loss value was 0.3636, the accuracy
was 84.8%, the loss value was 0.8289, and the accuracy was 87.11%. Figure 4 shows the loss
and accuracy of the LSTM model according to data type. The x-axis represents the number
of epochs, and the y-axis represents the accuracy according to the loss.
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Table 3 presents the results of the comparison between the proposed method and
the other algorithms. We evaluated the accuracy and F1-score of each model using both
EEG training and test datasets. Our experimental results allowed us to identify the best
model based on its accuracy and bias-variance balance. We can clearly identify the models
with the highest scores. Specifically, the SVM model performed the worst, whereas the
AdaBoost and random forest models performed similarly, with a performance 15.68%
better than that of the most accurate ANN algorithm with an average accuracy of 0.871.
The accuracy results of the models are as follows: two-way LSTM attention (0.871), ANN
(0.714), RNN-LSTM (0.69), Bi-LSTM (0.6743), XGBoost (0.6733), AdaBoost (0.6431), and
vector machine (0.6094).

As shown in Table 4, we employed a technique to determine the optimal hyperparam-
eters for all the models. By defining a grid of possible hyperparameter values and training
the models with each combination of hyperparameters, the values that yielded the best
performance in the validation set were identified.
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Table 3. Classification result of comparison of the proposed method with other algorithms.

Classification Methods Average Accuracy F1-Score

Random Forest 0.6416 0.657
AdaBoost 0.6431 0.660

Support Vector Machine 0.6094 0.629
XGBoost 0.6733 0.686

ANN 0.7142 0.710
RNN-LSTM 0.6900 0.690

Bidirectional LSTM 0.6743 0.670
Bidirectional LSTM Attention 0.8710 0.870

Table 4. Grid search results for the best combination of parameters.

Models Parameters (Grid Search) Best Params

Random Forest
‘max_depth’: list (range (10, 20, 5)), 15

‘n_estimators’: [50,100] 100

AdaBoost
‘algorithm’: [‘SAMME’,‘SAMME.R’] ‘SAMME.R’

‘n_estimators’: [10,40,60,100,120,130,140] 120

SVC

‘kernel’: [‘rbf’] ‘rdf’

‘C’: list (np.arange (0.5, 1.5, 0.1)) 0.7

‘gamma’: [‘scale’, ‘auto’] ‘scale’, ‘auto’

XGBoost

‘base_score’: list (np.arange (0.2, 0.5, 0.1)) 0.4

‘n_estimators’: [10,40,60,100,120,130,140] 60

‘objective’: [‘binary:logistic’] ‘logistic’

ANN

Model hidden layer {32, 16, 16}

Dense (activation = ‘sigmoid’) ‘sigmoid’

compile (loss = ‘binary_crossentropy’) ‘binary_crossentropy’

optimizer = ‘adam’, metrics = [‘accuracy’]) ‘adam’

Dense (activation =
‘relu’,kernel_regularizer = ‘l2’) ‘relu’, 12

A confusion matrix is a table for comparing predicted and actual values to measure
prediction performance achieved through training [29,30]. As shown in Figure 5, the rows
represent the correct answer class, and the column represents the predicted class. The
confusion matrix, with 2847 data points, had a true negative, false positive, false negative,
and true positive of 1058, 277, 124, and 1388, respectively.
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Table 5 shows the precision, reproduction rate, and detailed classification report of
the F1-score of the proposed model. Precision refers to the ratio of the number of samples
belonging to the positive class among the samples shown to belong to the positive class,
indicating a high precision of 0.918. Recall refers to the ratio of the number of samples
detected to belong to the positive class among the samples in the actual positive class. The
weight harmonic average of precision and recall is called the f-score, and the best result
is false positive and false negative values close to 1. The classification report in Table 5
shows that 92% of the data predicted at 0 (mental load) were actually 0, and 83% of the data
predicted at 1 (nonmental load) were actually 1. In addition, 80% of the actual cognitive
load data was predicted to be cognitive load, and 93% of the non-cognitive load data was
predicted to be non-cognitive load.

Table 5. Model performance of Bi-LSTM attention.

Bi-LSTM Attention Precision Recall F1-Score Support

0—Mental load 0.92 0.80 0.85 1360
1—Not mental load 0.83 0.93 0.88 1487

Accuracy - - 0.87 2847
Macro average 0.88 0.87 0.87 2847

Weighted average 0.87 0.87 0.87 2847

From the experimental results on algorithm comparisons, it was determined that
traditional machine learning models, such as random forest, AdaBoost, SVM, XGBoost,
and ANN, are best suited for tasks in which the input is a fixed-length feature vector. By
contrast, Bi-LSTM is ideal for tasks that involve sequential data because it can learn from
the temporal relationships between inputs, making it well suited for tasks such as EEG
processing and cognitive load prediction.

The limitations of this study are as follows: First, the data used were insufficient to
clearly reveal the difference in the degree of cognitive load in the composition of a given
video based on participants’ understanding of the online learning video. We can consider a
difference in the degree of cognitive load calculated by dividing the difficulty according to
the understanding of the video; however, factors other than learning difficulty may have
affected this value. Considering these limitations, the results of this study only suggest the
possibility of determining the degree of cognitive load through machine learning using
brainwave data. Accordingly, subsequent studies should clearly determine the differences
in the difficulty of the learning tasks given to the experimental participants. Second, it is
difficult to conclude that the accuracy of the model was represented well for all situations
because the amount of student data collected was relatively small. Although the machine
learning model was trained by integrating the data extracted from each experimental
participant, the trained machine learning model would likely be unable to determine
the degree of cognitive load universally because the number of participants was only 10.
The accuracy of machine learning models depends on the amount of data available for
training and verification. In particular, in the case of the ANN model used in this study,
the accuracy was relatively high, and the possibility of overfitting was suspected. To
confirm overfitting, data collected from additional participants were required. Third, the
participants of the experiment were not evenly distributed. Accordingly, the ratio of the
number of data samples used to train the artificial intelligence model is not equal. Because
the training data are the basis for the model to determine the level of cognitive load, the
uneven proportion of training data may have caused the accuracy of the model’s judgments
to be inconsistent. Fourth, a real-time adaptive teaching model must be developed. In
this study, we have presented EEG wavelength and electrode locations with a relatively
large impact on EEG-based cognitive load determination and proposed an appropriate
machine learning algorithm for the development of a cognitive load discrimination model.
These research results only confirm the level of learners’ cognitive load, and it is difficult to
confirm what support should be provided to learners from these data. To apply this to the
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educational field, an adaptive teaching model that provides appropriate teaching support
according to learners’ cognitive load levels must be developed.

5. Discussion

The main reason for measuring the mental workload is to quantify the cognitive load
that performs tasks to predict human performance. However, the existing method of
evaluating mental workload presents a relationship between subjective workload and brain
activity, making objective verification difficult. For instance, Agbangla et al. suggested a
relationship between subjective workload and brain activity through PFC hemodynamics
using fNIRS while performing n-back and RNG tasks with multiple cognitive loads, while
Longo et al. suggested the possibility of mental workload modeling in EEG data using
deep learning [7,8]. In this study, we trained an artificial intelligence model to determine
learners’ levels of cognitive load using EEG data and confirmed the influence of different
variables on cognitive load determination and the accuracy of the model with different
machine learning algorithms. Applying bidirectional LSTM cyclic neural networks to
classify student confusion regarding online course videos with EEG data showed that the
bidirectional LSTM model achieved state-of-the-art performance compared to other ma-
chine learning approaches and showed suitable robustness as evaluated by cross-validation.
As a result, gamma and alpha waves significantly influenced the determination of the
discriminant model, and the bidirectional LSTM attention and ANN models exhibited the
highest accuracy.

In this study, we propose a two-way LSTM recurrent neural network framework to
detect a student’s mental load when watching online course videos. We implemented an
attention-based LSTM deep learning model that effectively classifies cognitive load models
by applying an attention mechanism, which is a state-of-the-art technology suitable for
the mental load. The proposed model achieved an accuracy of 87.1% using EEG signals
without a separate feature-extraction process. The results of a comparative analysis with
other algorithms also showed that the accuracy of the proposed model outperformed
that of other machine learning approaches, including a tomography LSTM model. The
architecture of the bidirectional LSTM model helps leverage time-series capabilities for
improved performance. An analysis of the contributions of each function to the model also
confirmed that gamma and beta values are the most important for the cognitive load. In
the future, the model should be trained with more EEG datasets, and the experimental
results can be applied not only to learning but also to other EEG-related tasks, such as task
evaluation and detection of drowsy driving.

In future studies, we intend to improve the accuracy of measuring cognitive load even
in the lower class by applying a method to solve the data imbalance problem. In addition,
for continuous cognitive load models, the degree of the mental load is important. Hence,
we plan to apply a regression model to the last stage of the deep learning-based cognitive
load model to analyze it in various ways.
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