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Abstract: Articular cartilage defects commonly result from trauma and are associated with significant
morbidity. Since cartilage is an avascular, aneural, and alymphatic tissue with a poor intrinsic
healing ability, the regeneration of functional hyaline cartilage remains a difficult clinical problem.
Mesenchymal stem cells (MSCs) are multipotent cells with multilineage differentiation potential,
including the ability to differentiate into chondrocytes. Due to their availability and ease of ex
vivo expansion, clinicians are increasingly applying MSCs in the treatment of cartilage lesions.
However, despite encouraging pre-clinical and clinical data, inconsistencies in MSC proliferative
and chondrogenic potential depending on donor, tissue source, cell subset, culture conditions, and
handling techniques remain a key barrier to widespread clinical application of MSC therapy in
cartilage regeneration. In this review, we highlight the strategies to manage the heterogeneity of
MSCs ex vivo for more effective cartilage repair, including reducing the MSC culture expansion
period, and selecting MSCs with higher chondrogenic potential through specific genetic markers,
surface markers, and biophysical attributes. The accomplishment of a less heterogeneous population
of culture-expanded MSCs may improve the scalability, reproducibility, and standardisation of MSC
therapy for clinical application in cartilage regeneration.

Keywords: mesenchymal stem cells; heterogeneity; cartilage regeneration; stem cell therapy

1. Articular Cartilage Injury and Management

Articular cartilage is a highly specialised tissue found in synovial joints at the articu-
lating surfaces of bones. It has a low density of chondrocytes, which produce and maintain
a rich extracellular matrix (ECM) comprising collagens, proteoglycans, water, and ions [1].
The dense collagen network contributes to tensile strength and shear stiffness of articu-
lar cartilage [2]. The high proteoglycan content in cartilage enables articular cartilage to
withstand compressive forces and allows for weight-bearing. With the secretion of lubricin
by superficial zone chondrocytes, cartilage is coated by a lubricating layer and has a low
coefficient of friction, providing a smooth surface for uninterrupted joint movement [3].

However, repeated high-intensity mechanical overloading and acute trauma can cause
cartilage injury. Given its avascular, aneural, and alymphatic nature [4], articular cartilage
has a limited intrinsic regenerative capacity and does not recover readily from injury. This
is exacerbated by the low density of chondrocytes in articular cartilage [5] and the high
density of cartilage ECM, which impedes the migration of local chondrocytes to the injury
site [6]. If cartilage injury is allowed to progress, changes in load bearing and the release of
inflammatory mediators [7] can result in cumulative cartilage degeneration with secondary
synovitis, subchondral bone remodelling, and contractions in the surrounding ligaments,
joint capsule, and muscles [8]. This predisposes the patient to developing osteoarthritis.
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Current management of cartilage injury includes surgical debridement of the joint,
bone marrow stimulation, and transplantation approaches. In surgical debridement, loose
bodies and calcified cartilage are removed from the joint to avoid further deterioration and
fragmentation of the articular surface [9]. Bone marrow stimulation techniques, such as
drilling, microfracture, and abrasion chondroplasty, induce the migration of bone marrow
cells into the cartilage defect by mechanically penetrating the underlying subchondral
bone. A fibrin clot, containing extravasated bone marrow mesenchymal stem cells (BM-
MSCs), forms in the defect. Mesenchymal stem cells (MSCs) then participate in cartilage
regeneration [10]. However, repair after bone marrow stimulation mostly results in the
formation of biomechanically inferior fibrocartilage containing type I collagen, instead
of the desired hyaline cartilage with type II collagen [11]. The fibrocartilage repair tissue
is poorly integrated into the native cartilage and deteriorates over time [12], leading to
declining treatment effectiveness in long-term studies [13,14]. Bone marrow stimulation
techniques also disrupt the integrity of the subchondral bone, leading to instability and the
formation of subchondral cysts and osteophytes [15].

Alternatively, surgeons can consider transplantation techniques for the management
of articular cartilage defects. Osteochondral autograft transfers, either with the osteochon-
dral autograft transfer system (OATS), or Mosaicplasty, are indicated in smaller defects
less than 4 cm2 [16]. They involve the transplantation of healthy osteochondral tissue
from non-weight-bearing areas of the joint into the defect. However, these techniques
are limited by donor site morbidity and the scarce amount of donor tissue that can be
harvested. Non-weight-bearing donor cartilage may also have differences in mechanical
properties and depth [17]. In larger defects, osteochondral allografting can be applied
instead, which involves the transplantation of osteochondral tissue from a cadaveric source.
Osteochondral allografting avoids donor-site morbidity and limitations in tissue size and
structure. However, allografts are associated with high cost, and the risk of tissue rejection
and disease transmission [18].

Autologous chondrocyte implantation (ACI) is the first application of cell therapy in
orthopaedics. ACI is suited for defect sizes larger than 3 to 4 cm2 [19]. First-generation
ACI is a two-stage procedure that consists of cartilage harvesting from the joint, in vitro
isolation and expansion of chondrocytes, and subsequent reintroduction of chondrocytes
into the chondral defect under a periosteal patch [20]. However, the periosteal patch is
prone to hypertrophy, with more than 20% of patients requiring repeat arthroscopy with
debridement. In second generation ACI, a collagen membrane replaces the periosteal patch
for covering the defect. In third generation ACI, tissue engineering principles are applied to
incorporate chondrocytes directly onto a three-dimensional (3D) scaffold for implantation.
The scaffold allows for better graft stability and reduces dedifferentiation of chondrocytes,
generating more hyaline-like cartilage [21,22]. Also known as matrix-induced autologous
cartilage implantation (M-ACI), this technique has led to improved clinical outcomes in
patients compared to microfracture [23].

Despite the promising clinical outcomes of cell therapy approaches, the use of au-
tologous chondrocytes requires tissue harvesting from the non-weight-bearing areas of
knee cartilage, resulting in donor site morbidity. Chondrocytes are also scarce, with only
10 cells available in every 0.22 mm2 of human knee articular cartilage [24], necessitating the
extensive ex vivo expansion of limited chondrocytes after isolation from patient tissue. Yet,
chondrocytes that are cultured for prolonged periods are prone to dedifferentiation, during
which cells become fibroblastic with reduced expression of type II collagen, generating
neo-cartilage of lower functional efficacy, with mechanically inferior ECM [25]. Clinicians
have, hence, explored the use of stem cells, especially adult MSCs, as an alternative cell
source for the treatment of cartilage lesions.

2. Mesenchymal Stem Cells (MSCs) for Cartilage Regeneration

MSCs are multipotent cells with a multilineage differentiation potential, including the
ability to differentiate into chondrocytes and generate ECM containing type II collagen.
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The use of MSCs as an alternative cell source for cartilage regeneration confers numerous
advantages. Firstly, autologous MSCs can be harvested relatively easily through less
invasive means, without injuring existing healthy cartilage [26]. Various tissue sources are
available for MSC harvest, including bone marrow, adipose tissue, umbilical cord blood,
and synovial fluid [27,28]. Unlike chondrocytes, MSCs can undergo expansion in vitro
without losing their phenotype through dedifferentiation [29]. Allogenic cells can also be
used in tissue engineering, as MSCs have been shown to be immune-evasive [30].

As such, many pre-clinical studies and clinical trials have been conducted on the use of
MSCs for cartilage regeneration [31]. In vivo, intra-articular implantation of MSCs has led
to enhanced cartilage repair in both small and large animal models [32]. Clinically, seven
years of extended follow up, after implantation of MSCs encapsulated within a hyaluronic
acid hydrogel, have found MSCs to be safe and efficacious for the treatment of cartilage
defects [33]. As an adjuvant treatment, a large multicentre prospective randomised clinical
trial has recently found that the intra-articular injection of BM-MSCs after microfracture led
to improved repair, and a trend towards improved clinical outcomes in articular cartilage
injuries of the knee [34]. A single-stage cartilage repair procedure, employing allogenic
MSCs and autologous chondrons in fibrin glue, has similarly reported good five-year safety
outcomes and led to clinical improvement [35].

In addition to being capable of chondrogenic differentiation, MSCs exert trophic
effects on the surrounding chondrocytes, secreting bioactive molecules that promote ECM
formation [36]. The therapeutic potential of the MSC secretome has led to an increased
focus on cell-free strategies to facilitate cartilage repair. A systematic review of pre-clinical
research reports that MSC exosomes are effective in the treatment of articular cartilage injury,
resulting in hyaline-like neocartilage formation, improved integration with native cartilage,
and increased ECM deposition in the defect site [37]. Exosomes secreted by MSCs enhance
cartilage regeneration through multiple pathways, including the activation of AKT and
ERK signalling to promote chondrocyte proliferation [38]. CD73 found in MSC exosomes
also initiate tissue repair by hydrolysing the post-injury extracellular pro-apoptotic ATP
signal into the pro-survival adenosine signal, while exosomal miRNAs are involved in MSC
chondrogenesis and matrix synthesis [39]. MSCs also promote a regenerative milieu in
injured tissue, increasing the infiltration of regenerative M2 macrophages and inhibiting pro-
inflammatory cytokines [38,40]. The MSC secretome further increases the anti-inflammatory
IL-10 and TGF-β1 levels, and induces regulatory T cells through CCL18 signalling [39,41].
miRNAs found in MSC exosomes contribute to the immunomodulatory role of MSCs [42].
In an in vivo porcine model, the injection of MSC exosomes and hyaluronic acid has led to
improved morphological, histological, and functional recovery after 4 months [43].

3. Heterogeneity of MSCs

Despite encouraging pre-clinical and clinical outcomes, inconsistencies in MSC charac-
teristics remain a key barrier to widespread clinical application of MSC therapy in cartilage
regeneration. The high degree of variability in MSC stemness and chondrogenic potential
poses a challenge to the scalability, reproducibility, and standardisation of therapeutic
potency [44,45]. The characterisation of MSC exosomal mechanisms of action remains
limited, partly due to MSC heterogeneity. This restricts further research on MSC secre-
tome potency, and may limit the future clinical application and commercialisation of MSC
exosome therapy [46].

MSC heterogeneity can occur at multiple levels, depending on the donor, MSC tissue
source, cell subset, culture conditions, and handling techniques (Table 1). There is a large
degree of inter-individual variation in MSC quality, even when isolated from the same
tissue source [47]. As donor age increases, MSC immunomodulation, proliferation, and
differentiation potential decreases [48]. Compared to older donors, BM-MSCs from young
donors have improved glycosaminoglycan deposition and increased expression of the
chondrogenic markers SOX9, COL2A1, and ACAN [49]. Donor sex affects MSC properties
as well. MSCs from young female donors have been shown to exhibit a shorter population
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doubling time and increased colony formation [50]. MSCs from donors with diseases such
as osteoarthritis and osteoporosis demonstrate lower chondrogenic potential and prolifera-
tive ability, with a reduced expression of MSC surface marker CD73 [51,52]. On a genomic
level, BM-MSCs from donors with a genomic deletion of glutathione S-transferase theta
1 (GSTT1) demonstrate increased scalability, with improved clonogenic and proliferative
capabilities, while maintaining a robust multilineage differentiation potential [53].

MSCs are commonly derived from the bone marrow, adipose tissue, umbilical cord
blood, and synovium. On an intra-individual level, cells from different tissue sources
demonstrate heterogeneity in MSC characteristics. Compared to adipose-derived MSCs
(AD-MSCs), BM-MSCs from the same donor exhibited a better chondrogenic potential
in vitro and in vivo [54,55]. The seeding of BM-MSCs in commercially available scaffolds
has led to better ECM deposition in vitro than seeding with AD-MSCs [56]; the seeding of
BM-MSCs in a platelet-rich plasma bioactive scaffold has led to improved macroscopic,
histological, and immunohistochemical characteristics compared to AD-MSCs in an in vivo
rabbit model [57]. Although inferior in chondrogenic potential, AD-MSCs may possess an
improved proliferative ability compared to BM-MSCs [58]. Umbilical cord blood-derived
MSCs (UCB-MSCs) have a higher population doubling number than BM-MSCs [27]. How-
ever, compared to BM-MSCs, UCB-MSCs are reported to produce ECM of lower quantity
after chondrogenesis [59]. Synovium membrane-derived MSCs (SM-MSCs) are another
explored population of MSCs. Previous studies have found that SM-MSCs demonstrate an
increased proliferative ability and enhanced chondrogenic potential compared to donor-
matched BM-MSCs and AD-MSCs [28]. The implantation of SM-MSCs in human knee
articular cartilage defects has resulted in the production of hyaline cartilaginous tissue and
improved clinical outcomes [60].

Variation further exists between MSCs of a similar tissue source that are isolated from
different anatomical locations. For example, a higher chondrogenic potential has been
demonstrated by BM-MSCs extracted from the iliac crest and vertebral body compared
to cells derived from the femoral head, possibly due to an increased involvement of the
femoral head in disease processes [61]. BM-MSCs collected from the proximal femur
trabeculae, through rasping, display an increased chondrogenic potential compared to
BM-MSCs harvested from the main marrow compartment of the same patients through BM
aspiration [62]. Among the AD-MSCs derived from various anatomical locations, the AD-
MSCs from subcutaneous tissue show increased proliferative ability [63]. However, a donor-
matched study has found that AD-MSCs derived from the infrapatellar fat pad demonstrate
increased glycosaminoglycan production and upregulation of the chondrogenic genes
ACAN and COL2A1, indicating an increased chondrogenic potential compared to AD-
MSCs from subcutaneous fat [64].

During in vitro culture, MSCs form different single cell-derived clonal subpopulations
within the same MSC preparation. These subpopulations vary in morphology, transcrip-
tome, proliferative potential, and functional chondrogenic differentiation potential [65–67].
In fact, the MSC subpopulation phenotype may have a larger role in influencing the MSC
chondrogenic potential and secretome, compared to inter-individual heterogeneity in
donor age or gender [50]. Heterogeneity in MSCs is present even at an intra-colony level,
despite cells being supposedly derived from a single MSC and cultured under similar
conditions. Within the same colony, cell-to-cell variation exists in the morphology and gene
expression [68]. Single cells differentially express immunomodulatory and chondrogenic
genes, and cells with diverse properties can ultimately result from a once-homogenous
colony [69–71].
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Table 1. A summary of studies that highlight sources of MSC heterogeneity and their corresponding
outcomes in cartilage regenerative therapy.

Source of
Heterogeneity Study Details Results Reference

Donor

BM-MSCs isolated from 53 donors
(25 female, 28 male; 13 to 80 years old).

Highly clonogenic BM-MSCs were more frequent in
preparations from younger female donors. [50]

BM-MSCs isolated from 17 donors (25 to
81 years old).

BM-MSCs from young donors showed improved
glycosaminoglycan deposition and increased
expression of the chondrogenic markers SOX9,
COL2A1, and ACAN.

[49]

BM-MSCs isolated from donors with
primary osteoarthritis, osteoporosis, and
healthy donors.

BM-MSCs from patients produced chondrogenic
pellets of reduced diameter. [51]

BM-MSCs isolated from donors with
advanced osteoarthritis and healthy donors.

BM-MSCs from patients had a reduced proliferative
capacity and a significant reduction in in vitro
chondrogenic activity.

[52]

Tissue

AD-MSCs and BM-MSCs isolated from the
same donor.

Collagen II and proteoglycans were synthesized only
in the BM-MSCs in vitro. [54]

AD-MSCs, BM-MSCs, and MSCs from
periosteum isolated from the same donor.

Bone marrow and periosteum yielded more
homogenous MSCs than fat, improving the correction
of physeal arrest in a rabbit model.

[55]

BM-MSCs and AD-MSCs seeded onto two
different scaffolds: Chondro-Gide or Alpha
Chondro Shield.

Chondro-Gide seeded with BM-MSCs had the highest
MSC proliferation and deposition of ECM tissue. [56]

BM-MSCs and AD-MSCs in a platelet-rich
plasma scaffold in an osteochondral defect
rabbit model.

BM-MSCs demonstrated improved morphological,
histological, and immunohistochemical characteristics,
higher cartilage-specific gene and protein expression,
as well as subchondral bone regeneration.

[57]

BM-MSCs, AD-MSCs, and cartilage-derived
MSCs from adult Sprague Dawley rats.

AD-MSCs have the highest proliferation potential
according to growth curve, cell cycle, and telomerase
activity analyses.

[58]

BM-MSCs, AD-MSCs, and UCB-MSCs. UCB-MSCs could be cultured the longest and showed
the highest proliferation capacity. [27]

Equine-derived BM-MSCs and UCB-MSCs. BM-MSCs synthesized ECM of higher quality with a
more homogenous distribution of type IIB collagen. [59]

SM-MSCs, AD-MSCs, and BM-MSCs
isolated from the same donor.

SM-MSCs had the greatest potential for both
proliferation and chondrogenesis. [28]

Tissue location

BM-MSCs isolated from the iliac crest,
vertebral body, and femoral head.

BM-MSCs from the iliac crest and vertebral body
demonstrated higher chondrogenic potential. [61]

BM-MSCs isolated from femur trabeculae
through rasping and from the main marrow
compartment.

BM-MSCs from femur trabeculae displayed increased
chondrogenic potential. [62]

AD-MSCs from superficial subcutaneous,
deep subcutaneous, omentum, mesentery,
and retroperitoneum.

AD-MSCs from subcutaneous tissue show increased
proliferative ability and a higher level of CD146
expression.

[63]

Donor-matched AD-MSCs from knee
infrapatellar and subcutaneous adipose
tissue of osteoarthritic donors.

AD-MSCs from the infrapatellar fat pad demonstrated
increased glycosaminoglycan production and
upregulation of the chondrogenic genes ACAN and
COL2A1.

[64]

Subpopulation

Single-cell RNA sequencing of human
primary Wharton’s jelly-derived MSCs from
three donors.

Differentially expressed gene analysis found several
distinct subpopulations of MSCs that differ in
proliferation, development, and inflammation
response.

[66]

Single-cell RNA sequencing of BM-MSCs
(three donors), AD-MSCs (three donors),
UCB-MSCs (two donors), and
dermis-derived MSCs (three donors).

MSC subpopulations were substantially heterogeneous
in immune regulation, antigen
processing/presentation, and senescence.

[65]

4. Managing the Heterogeneity of MSCs for More Effective Cartilage Regeneration

In addition to selecting the appropriate donor and MSC tissue source, this section
elaborates on other strategies to manage the heterogeneity of MSCs ex vivo for more
effective cartilage repair, namely, through reducing the MSC culture expansion period, and
selecting MSCs with a higher chondrogenic potential, through specific surface markers and
biophysical attributes (Figure 1).
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Figure 1. Managing the heterogeneity of MSCs. The heterogeneity of MSCs can be managed ex vivo
through (a) reducing MSC culture expansion with the addition of bioactive factors, extracellular
matrix proteins, and biophysical stimulation, (b) selecting MSCs with a higher chondrogenic potential
based on specific surface markers, and (c) selecting MSCs with a higher chondrogenic potential based
on specific biophysical attributes.

4.1. Reducing Expansion Period

The aforementioned diversity in MSC subpopulations emerges and becomes amplified
during culture expansion, with single colonies ultimately giving way to a heterogenous
mix of cells characterised by varying potencies [72,73]. Extensive passaging in vitro also
results in a decreased MSC migration potential and differentiation potential, leading to the
production of less cartilaginous tissue [74]. MSCs in long-term culture produce increased
β-galactosidase levels compared to MSCs from aged donors, indicating that culture length
may have a greater impact on MSC senescence than donor age [75]. After extended
culture expansion, AD-MSCs also demonstrate an increased production of proinflammatory
cytokines and a decreased production of anti-inflammatory mediators [76]. Thus, reducing
the expansion period of MSCs could improve MSC homogeneity and quality for cartilage
repair.

To reduce the MSC expansion period, MSC proliferation may be enhanced with the
addition of bioactive factors. Growth factors, such as fibroblast growth factor 2 (FGF2), have
been shown to improve MSC proliferative capabilities in vitro, reducing the population
doubling time and resulting in differential expression of proliferation-related genes [77].
After four passages, FGF2 treatment increases cell yield by 256-fold without affecting the
MSC chondrogenic potential [78]. Binding of the FGF receptor may activate signalling
pathways, such as the Ras/Erk pathway, to increase cell proliferation downstream [79,80].
Supplementation with FGF4 also leads to a halving of the MSC population doubling time
without affecting MSC pluripotency. As a ligand for the FGF2 receptor, FGF4 may exert its
stimulatory effects on MSC proliferation through similar signalling pathways [81]. Heparan
sulfate is another activator of FGF2 signalling through its affinity for FGF2 and the FGF2
receptor [82]. Heparan sulfate increases endogenous FGF2 production, and stabilises FGF2
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to maximise the effects of FGF2 supplementation [83,84]. The addition of heparan sulfate
increases MSC colony formation and growth, increasing MSC expansion by up to 13-fold
while maintaining MSC multipotency [85].

Platelet-derived growth factor-BB (PDGF-BB) stimulates MSC self-renewal through the
PI3K/Akt pathway [86], increasing the expression of membrane-tethered matrix metallopro-
teinase MT1-MMP to enhance MSC proliferation [87]. PDGF-BB exerts a dose-dependent
effect on MSC numbers, increasing MSC cell count by 45% at 5 nM, and 81% at 25 nM [88].
A potent mitogen, PDGF-BB upregulates the genes associated with proliferation without
promoting senescence [89].

Other bioactive additives to consider include epidermal growth factor (EGF) and
insulin-like growth factor (IGF). EGF increases colony-forming units and improves MSC
proliferation in vitro by 30% [90], activating β-catenin to reduce cell cycle pathway suppres-
sion [91]. Elevated autocrine IGF-1 levels also enhance MSC proliferation and the number
of cell doublings while suppressing apoptosis [92]. IGF-1 supplementation stimulates
proliferation in a dose-dependent manner through both the IGF-1 receptor and insulin
receptor [93].

In addition to growth factors, ECM proteins have a role to play in MSC proliferation.
Tropoelastin is an ECM component which interacts with the cell surface integrins αvβ3
and αvβ5. Tropoelastin supplementation stimulates MSC proliferation at a level similar
to IGF-1 or FGF-2 supplementation while maintaining the MSC phenotype, and may be
an attractive cost-effective alternative to the use of serum and growth factors [94]. MSCs
cultured with basement membrane ECM proteins further demonstrate a 250-fold increase
in proliferation capabilities, resulting in increased colony numbers and size while retaining
MSC multipotency [95]. Coating culture flasks with type I collagen significantly increases
MSC proliferation, boosting cell attachment and reducing cell death [96]. However, effects
on the subsequent MSC chondrogenic potential have not been investigated. ECM produced
from stromal cells increases cell proliferation in a three-dimensional scaffold, and enhances
MSC clonogenicity while maintaining MSC stemness [97].

Lastly, biophysical stimulation through low intensity vibration, electromagnetic field
exposure, and electrical stimulation may contribute to improved MSC proliferation during
culture expansion. Low intensity vibration increases MSC doubling by 28%, and reduces
senescence-associated β-galactosidase levels by 28% after 60 passages in vitro [98]. Loss
of the MSC proliferative ability can also be reversed with the application of low inten-
sity vibration [99]. Electromagnetic field exposure of suspended MSCs increases MSC
numbers by 2.41-fold [100], possibly due to the induction of a shorter cell cycle [101].
Electrical stimulation of MSCs at 448 kHz induces cell cycle progression through ERK1/2
upregulation, enhancing MSC proliferation by 38% without affecting subsequent MSC
differentiation [102].

4.2. Selecting MSCs Based on Specific Markers

The expression of specific cell surface markers has been linked to an increased cartilage
regeneration potential of MSC subpopulations [48] (Table 2). Screening MSCs for potency
allows for the selective expansion of MSC subpopulations with homogenous and desired
characteristics, increasing the applicability of MSC therapy. Selection may be performed
with techniques such as magnetic-activated cell sorting (MACS) or fluorescence-activated
cell sorting (FACS) [103], and with a combination of markers to potentially improve screen-
ing specificity [104].

The MSC surface markers specified by the International Society for Cell and Gene
Therapy are CD73, CD90, and CD105 [44,105]. CD73+ MSCs possess a good chondrogenic
potential, with high levels of COL2 and ACAN expression during chondrogenesis [106].
Meanwhile, CD105+ MSCs demonstrate increased proliferation, improved colony forma-
tion, and an enhanced chondrogenic potential in vitro with increased expression of SOX9,
COL2, and ACAN [107,108]. Subpopulations of AD-MSCs expressing CD29 and CD105
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show an increased chondrogenic potential, witha higher expression of the chondrogenic
marker COL2 [109].

A member of the tumour necrosis factor receptor superfamily, CD271, is a cell surface
marker that establishes MSC proliferation and differentiation capacity [110]. Compared to
CD73+ MSCs, CD271+ MSCs have an increased chondrogenic potential [106]. CD271+ BM-
MSCs display improved chondrogenesis in vitro and in vivo compared to control MSCs,
and a reduced volume of CD271+ BM-MSCs is needed to produce a similar cartilage graft
compared to unfiltered multiclonal MSC preparations [111,112]. CD271+ MSCs improve
osteochondral defect healing, and maintain low angiogenesis while retaining trilineage
multipotency [113]. In addition to demonstrating upregulation of the genes associated with
ECM production and cell adhesion, CD271+ MSCs demonstrate downregulation of the
genes associated with inflammation [114].

CD146 is a transmembrane glycoprotein expressed in MSCs but not in fibroblasts [115].
CD146 expression decreases as the MSC passage number increases, coinciding with an in-
crease in population doubling time [116]. CD146+ MSCs produce increased glycosaminogly-
cans after chondrogenesis [117] and demonstrate an increased chondrogenic potential [118].
In a three-dimensional scaffold, CD146+ MSCs demonstrate spontaneous chondrogene-
sis [119], while intra-articular implantation of CD146+ MSCs has led to chondroprotective
effects in inflammatory environments [120]. A magnetically-sorted CD146+ MSC popu-
lation has also shown improved cell migration compared to a heterogenous cell popula-
tion [121]. Compared to unsorted AD-MSCs, CD146+ MSCs promote long-term cartilage
repair in vivo and produce less inflammation [122].

Stro-1 is another widely-employed MSC marker [123]. Stro-1 expression is associated
with increased proliferation and differentiation capacity [124], along with increased im-
munosuppression and homing capabilities of MSCs [125]. Meanwhile, CD49f is a member
of the adhesion molecular family that is also involved in the maintenance of MSC stem-
ness, regulating MSC proliferation and differentiation through the PI3K/AKT signalling
pathway [126]. CD49f+ MSCs have improved clonogenicity, adhesion, migration, and
anti-apoptotic properties compared to unsorted MSCs, with MSCs demonstrating reduced
CD49f expression as the passage number increases [127,128]. The glycolipid SSEA-4 may
be another surface marker of interest. Compared to unsorted MSCs, SSEA-4+ MSCs exhibit
improved growth and multipotency [129,130]. Increased SSEA-4 expression may also be
associated with increased chondrogenic potential [131]. Although these surface markers
have not been well-studied in the context of chondrogenesis and cartilage repair, the su-
perior MSC characteristics of cells expressing Stro-1, CD49, and SSEA-4 may render these
specific markers an attractive target in MSC selection for more effective clinical application.

Alternatively, genomic biomarkers, such as GSTT1, may be used for the selection
of MSC donors pre-harvest. Transcriptomic analyses have revealed that homozygous
negative GSTT1 MSCs demonstrate increased scalability and potency, possibly due to
increased protection from DNA damage [53]. Diagnostic kits to identify prospective donors
are being developed, and may reduce unnecessary MSC harvesting from donors [132].
Other hypothesised genetic biomarkers, which may be validated in future studies, include
the single-nucleotide polymorphism rs144383 in GDF5, which is strongly associated with
osteoarthritis [133].

With the high cell-to-cell variability present within a single MSC colony, single-cell pro-
filing techniques may become increasingly important to identify heterogeneity within MSC
subpopulations, and establish more selective biomarkers for isolating MSC subpopulations
capable of more effective cartilage repair. Single-cell RNA sequencing (scRNA-seq) allows
for the ongoing identification of functional MSC subpopulations through clustering [134].
Surface marker expression and the subsequent heterogeneity during chondrogenesis can
be quantified to identify cell subpopulations that are less heterogenous and more chondro-
genic [135]. At a genomic level, techniques such as multiple displacement amplification
(MDA) and multiple annealing and looping-based amplification cycles (MALBAC) may be
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employed, while single-cell mass spectrometry may be used to explore cellular heterogene-
ity at a proteomic level [136,137].

Table 2. A summary of studies that highlight specific MSC markers and their associated phenotype
in cartilage regenerative therapy.

Specific MSC Markers Results Reference

CD73+
High levels of COL2 and ACAN expression during
chondrogenic differentiation, with stable levels of COL1,
COLX, and MMP13.

[106]

CD105+
Increased proliferation and improved colony formation.
Enhanced chondrogenic potential in vitro with increased
expression of SOX9, COL2, and ACAN.

[107,108]

CD271+

Improved chondrogenic differentiation with a higher
expression of Runx2 and COL2.
Upregulation of genes associated with ECM production and
cell adhesion; downregulation of genes associated with
inflammation.
Improved osteochondral defect healing while maintaining
low angiogenesis in an athymic rat model.

[106,113,114]

CD146+

Increased glycosaminoglycan production after
chondrogenesis.
Improved chondrogenic potential and cell migration.
Chondroprotective effects during intra-articular
implantation.
Promoted long-term cartilage repair in a rat osteochondral
defect model and demonstrated immunomodulation.

[117–122]

Stro-1+ Increased proliferation and differentiation capacity.
Increased immunosuppression and homing capabilities. [124,125]

CD49f+ Improved clonogenicity, adhesion, migration, and
anti-apoptotic properties. [127]

SSEA-4 Improved growth and multipotency.
Increased chondrogenicity. [129–131]

GSTT1 Homozygous negative GSTT1 MSCs demonstrate increased
scalability and potency. [53]

4.3. Selecting MSCs Based on Specific Biophysical Attributes

MSCs develop variation in morphology and physical properties with prolonged
in vitro expansion, with multivariate biophysical analysis of culture-expanded MSCs fur-
ther demonstrating a correlation between cell size, stiffness, nuclear membrane fluctuations,
MSC biomolecular markers, and functionality [138,139]. High-throughput cell separation
techniques are being developed for the selection of MSCs based on these properties. Mul-
tiparameter deformability cytometry classifies cells according to multiple biophysical
characteristics, such as size, deformability, and morphology, through microfluidic inertial
focusing, hydrodynamic stretching of cells, and high-speed video recording [140]. Since
MSC differentiation results in a reorganisation of lamin A/C and an increase in heterochro-
matin levels [141], MSC stiffness is also directly correlated with the extent of chondrogenic
differentiation [142]. The combination of small cell size, low cell stiffness, and high nu-
clear membrane fluctuations is indicative of high MSC clonogenicity and multipotency,
and future cell isolation techniques may select for this subpopulation of MSCs [138]. The
corresponding surface biomarkers of the cell mechanophenotype may also be employed
for MSC sorting. For example, CD44 expression is strongly inversely related with cell
elasticity, and MSC isolation based on cell stiffness may employ CD44 expression levels as
a surrogate marker [143]. Alternatively, cell separation based on cell deformability using
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a deterministic lateral displacement device, such as those employed in isolating immune
cells from whole blood cells, may be used to segregate MSC based on stiffness [144].

Functional differences in the capacity for cartilage repair are present based purely
on MSC size. Using a high-throughput microfluidic label-free technology, medium-sized
cells, 17 to 21 µm in size, have been demonstrated to possess the highest proliferation rate
and chondrogenic potential. Selected MSCs of this size continue to highly express COL2
and ACAN after 10 passages, prolonging the MSC chondrogenic potential in vitro [145]. In
addition, the secretome of MSCs within this size range promotes chondrogenesis, while
the secretome of larger MSCs, more than 21 µm in size, promotes osteogenesis and adi-
pogenesis [139,146]. Further, the secretome of larger MSCs has been found to further
induce cellular senescence, indicating the negative effect of MSC heterogeneity during
in vitro expansion. A selective MSC culture approach, that excludes MSCs larger than
21 µm and smaller than 17 µm at every passage, may select for MSCs with an improved
proliferation and chondrogenic potential compared to a conventional MSC expansion
approach [145,146].

Another potentially relevant biophysical attribute is cell and nuclei shape. MSCs
take on a rounded phenotype at the start of chondrogenesis, and rounded MSCs in early
lineage commitment have been found to upregulate chondrogenic genes, committing
to chondrogenesis [147]. This may be associated with the MT1-MMP control of MSC
commitment through ECM remodelling, in which MT1-MMP activates β1-integrin for
downstream signalling through regulating MSC shape [148]. MSCs with a rounded nuclei
have also been found to increase the expression of RUNX2, SOX9, and ACAN [149].

5. Conclusions

Articular cartilage injury severely impacts patients’ quality of life, driving a market for
cartilage regeneration products that was worth USD 852 million in 2021 [150]. While MSC
therapy has the potential to improve cartilage repair, MSCs are highly heterogenous, and
inconsistencies in MSC quality prevent scalability, reproducibility, and standardisation for
clinical application. Hence, large-scale clinical trials employing MSC therapy for cartilage
regeneration have not been completed [151]. To hasten the advancement of MSC therapy,
numerous companies have developed proprietary MSC-specific optimised expansion media
that are serum- and xeno-free for the reliable expansion of MSCs. The identification of
suitable genetic markers may further improve the selection of donors for high-performance
MSCs in allogenic therapy. In addition, the employment of optimal biophysical attributes
for the selection of desirable chondrogenic MSCs may facilitate the delivery of a more
functionally consistent MSC phenotype, thus enabling the translation of MSC therapy to
the clinic for improved cartilage regeneration.
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Abbreviations

3D three-dimensional
ACI autologous chondrocyte implantation
AD-MSC adipose-derived mesenchymal stem cell
BM-MSC bone marrow mesenchymal stem cell
ECM extracellular matrix
EGF epidermal growth factor
FACS fluorescence-activated cell sorting
FGF2 fibroblast growth factor 2
GSTT1 glutathione S-transferase theta 1
IGF insulin-like growth factor
M-ACI matrix-induced autologous cartilage implantation
MACS magnetic-activated cell sorting
MALBAC multiple annealing and looping-based amplification cycles
MDA multiple displacement amplification
MSC mesenchymal stem cell
OATS osteochondral autograft transfer system
PDGF-BB platelet-derived growth factor-BB
scRNA-seq single-cell RNA sequencing
SM-MSC synovium membrane-derived mesenchymal stem cell
UCB-MSC umbilical cord blood-derived mesenchymal stem cell
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