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Abstract: The World Health Organization (WHO) highlights that cardiovascular diseases (CVDs)
are one of the leading causes of death globally, with an estimated rise to over 23.6 million deaths by
2030. This alarming trend can be attributed to our unhealthy lifestyles and lack of attention towards
early CVD diagnosis. Traditional cardiac auscultation, where a highly qualified cardiologist listens
to the heart sounds, is a crucial diagnostic method, but not always feasible or affordable. Therefore,
developing accessible and user-friendly CVD recognition solutions can encourage individuals to
integrate regular heart screenings into their routine. Although many automatic CVD screening
methods have been proposed, most of them rely on complex prepocessing steps and heart cycle
segmentation processes. In this work, we introduce a simple and efficient approach for recognizing
normal and abnormal PCG signals using Physionet data. We employ data selection techniques
such as kernel density estimation (KDE) for signal duration extraction, signal-to-noise Ratio (SNR),
and GMM clustering to improve the performance of 17 pretrained Keras CNN models. Our results
indicate that using KDE to select the appropriate signal duration and fine-tuning the VGG19 model
results in excellent classification performance with an overall accuracy of 0.97, sensitivity of 0.946,
precision of 0.944, and specificity of 0.946.

Keywords: CVD classification; data selection; convolutional neural network; pretrained model; deep
learning; transfer learning

1. Introduction

The World Health Organization (WHO) report [1] states that cardiovascular diseases
(CVDs) are a leading cause of death, with 17.3 million deaths annually and an estimate
of over 23.6 million deaths by 2030. Early and accurate CVD diagnosis can save lives
by reducing the risk of heart failure [2]. One effective method for diagnosing CVDs is
acoustic or PhonoCardioGram (PCG) pattern classification. This method recognizes ab-
normal blood flow sounds from heart valve dysfunction using acoustic signals. However,
obtaining accurate results from classical CVD auscultation requires a highly skilled cardi-
ologist. Screenings performed by primary care physicians or medical students have only
40% accuracy [3,4] and even experienced cardiologists have a screening accuracy of only
80% [3,5].

The neglect of regular heart screenings, due to unhealthy lifestyle habits, exacerbates
the issue of CVDs. Making accessible and accurate CVD recognition solutions would
encourage individuals to integrate regular heart screenings into their daily routine. Many
studies have been conducted to diagnose CVDs using PCG signals, with a focus on improv-
ing classification results. However, these studies often rely on complex preprocessing steps,
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optimized heart cycle segmentation, and combined classifier techniques applied to private
or modified public PCG datasets. There is no objective comparative benchmark reference
for future PCG-based CVD classification.

This paper addresses these issues by presenting a new CVD classification benchmark
dedicated to the PCG Physionet dataset and a simple classification architecture based on
PCG signal selection with CNN fine-tuning and transfer learning techniques.

The prepocessing of the acoustic signal prior to feeding it into a convolutional neural
network (CNN) for classification can significantly impact the accuracy of the results. How-
ever, it is important to note that filtering may also remove essential information required
by the CNN for proper classification, leading to a reduction in the signal’s dynamic range
and obscuring critical spectral features necessary for class differentiation. Our approach
leverages strategies that avoid harmful filtering while still improving performance. By
carefully selecting the training samples based on sample length and/or signal-to-noise
ratio in the prepocessing phase, we have demonstrated the ability to significantly enhance
the accuracy of the classification results.

The paper is organized as follows. In Section 2, we present some related work. In
Section 3, we introduce the dataset setting and the different data selection methods. In
Section 4, we present our classification model. In Section 5, experimental results are pre-
sented. In Section 6, we conclude the paper and indicate future and related research directions.

Contributions

Our research focuses on the classification of normal and abnormal PhonoCardioGram
(PCG) signals from the Physionet dataset using Convolutional Neural Network (CNN)
technology. Our work presents two main contributions:

1. Development of a common benchmark for Physionet PCG dataset based on CNN
transfer learning and fine-tuning techniques. This includes the presentation of classi-
fication results such as accuracy, sensitivity, specificity, and precision based on raw
Physionet data.

2. Proposal of a simple and effective classification architecture without any prepocessing
steps. Our approach is based on a simple PCG data selection technique to improve the
normal and abnormal Physionet signal classification results using CNN technology.

2. Related Works

Automatic classification of Cardiovascular Diseases (CVDs) is considered a challenging
task due to the difficulty in acquiring a large labeled PCG dataset that covers the majority
of CVDs. Despite these difficulties, numerous studies have been conducted in recent years.
One such study by Grzegorczyk et al. [6] used a hidden Markov model for automatic
PCG segmentation and neural networks for PCG signal training. The authors tested their
approach on the Physionet dataset [7] and applied pretreatment to eliminate abnormal
PCG records. They achieved a classification result with a specificity of 0.76 and a sensitivity
of 0.81.

The study by Nouraei et al. in [8] examined the effect of unsupervised clustering
strategies, including hierarchical clustering, K-prototype, and partitioning around medoids
(PAM), on identifying distinct clusters in patients with Heart failure with preserved ejection
(HFpEF) using a mixed dataset of patients. Through the examination of subsets of patients
with HFpEF with different long-term outcomes or mortality, they were able to obtain six
distinct results.

In [9], the authors conducted a comprehensive review of the relationship between
artificial intelligence and COVID-19, citing various COVID-19 detection methods, diag-
nostic technologies, and surveillance approaches such as fractional multichannel exponent
moments (FrMEMs) to extract features from X-ray images [10] and potential neutralizing
antibodies discovered for the COVID-19 virus [11]. They also discussed the use of multi-
layer perceptron, linear regression, and vector autoregression to understand the spread of
the virus across the country [12].
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Similarly, Chintalapudi et al. in [13] investigated the importance of utilizing machine
learning techniques such as cascaded neural network models, recurrent neural networks
(RNN), multilayer perception (MLP), and long short-term memory (LSTM) in the correct
diagnosis of Parkinson’s disease (PD).

We can also cite the work of [14] who proposed a public challenge based on the Phys-
ionet PCG dataset to improve the recognition score, which was initially 0.71
(sensitivity = 0.65, specificity = 0.76). During the competition, 48 teams submitted 348 open
source entries and the highest score achieved was 0.86
(sensitivity = 0.94, specificity = 0.78). In the work of [15], the authors proposed a CVD
classification technique using the Physionet dataset, which consisted of only 400 heart
sound recordings. They relied on the time and frequency domain transformation of the
phonocardiogram signal and used a logistic regression hidden semi-Markov model for
PCG segmentation. For the classification task, they used and compared three different
classifiers: support vector machines, convolutional neural network, and random forest.

In the study of [16], the authors proposed a classification method for cardiovascular
diseases (CVD) using deep convolutional neural networks (CNNs) and time/frequency
representations of the signals. In the work of [17], the authors used AdaBoost and CNNs to
classify normal and abnormal PCG signals from the Physionet dataset. They achieved a
sensitivity, specificity, and overall score of 0.9424, 0.7781, and 0.8602 respectively. In [18],
the authors proposed a CVD classification based on preprocessing, feature extraction, and
training with the Physionet dataset. They used neural networks to classify normal and
abnormal signals and obtained a sensitivity of 0.812 and a specificity of 0.860 with an
overall accuracy of 0.836.

The study in [19] used the Physionet dataset to perform anomaly detection using
signal-to-noise ratio (SNR) and 1D Convolutional Neural Networks. In [20], the researchers
presented a heart sound classification technique using multidomain features instead of
heartbeat segmentation. They achieved an accuracy of 92.47% with improved sensitivity of
94.08% and specificity of 91.95%. The researchers in [20] used a Butterworth bandpass filter
and a pretrained CNN model for CVD classification. In [21], the authors used deep neural
network architectures and one-dimensional convolutional neural networks (1D-CNN) with
a feed-forward neural network (F-NN) to classify normal and abnormal PCG signals from
the Physionet dataset.

In the work of [22], the authors used Logistic Regression-Hsmm for PCG segmentation
and feature extraction for CVD classification of normal and abnormal PCG signals from
the Physionet dataset. They obtained an accuracy of 79%. In the study of [23], the authors
used a pretrained CNN model (AlexNet) and achieved 87% recognition accuracy. The
study in [24] aimed to use a nonlinear autoregressive network of exogenous inputs (NARX)
for normal/abnormal classification of PCG signals from Physionet. In [25], the authors
proposed a deep CNNs framework for heart acoustic classification using short segments of
individual heartbeats. They used a 1D-CNN to learn features from raw heartbeats and a
2D-CNN to take inputs from two-dimensional time-frequency features.

3. Dataset

In this section, two different PCG datasets are presented. First, the raw Physionet
dataset without any data selection process is described. Then, three different data selection
methods applied on the original dataset are presented. The goal is to experiment with the
impact of selection on the classification results.

3.1. Raw Dataset

The publicly available Physionet dataset [14] is a not balanced PCG dataset which
contains 665 normal sample and 2575 abnormal sample in WAV format. As shown in
Figure 1, the majority of PCG samples are concentrated in the duration range between 8
and 40 s for normal and abnormal class.
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Figure 1. An overview of normal and abnormal sample distribution in function of duration in second.

If we look at Figure 2, we can deduce that for abnormal class, the highest density of
PCG samples is defined at duration 35 s. Concerning the normal class, we can also deduce
that the largest concentration of PCG samples are in signal duration 20 s.

Figure 2. An overview of the kernel density estimation function using Gaussian kernel for normal
and abnormal classes.

Concerning the signal-to-noise ratio (SNR) sample distribution in the function of
density (as seen in Figure 3), we can deduce that the highest KDE value of SNR for normal
and abnormal classes is zero. This means that the majority of Physionet PCG samples are
approximately clean with an acceptable noise signal.

Figure 3. Signal-to-noise ratio in function of density related to normal and abnormal classes.

In the same manner, if we look at the Figure 4, it is visually clear that the highest
concentration of PCG sample distribution related to normal and abnormal classes in
function of SNR is approximately zero.
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Figure 4. PCG sample distribution in function of signal-to-noise ratio of normal and abnormal classes.

3.2. PCG Data Selection

Based on the different results issued in the previous subsection, in this subsection, we
present three main data selection process: data selection based on KDE for optimal signal
duration determination, data selection based on optimal SNR, and data selection based on
clustering. Notice that we will experiment the impact of these three data selection process
on the classification results in the experimentation section.

3.2.1. Data Selection Based on Kernel Density Estimation for Optimal Signal
Duration Determination

Kernel density estimation (KDE) [26] is a non-parametric method for estimating the
probability density function of a random variable. Given a set of points Xi with i = 1...n
in a d dimension space Rd, the kernel multivariate density estimation is obtained with a
kernel K(x) and with window width h as following:

f̂ (x) =
1

nhd

n

∑
i=1

K
(
|Xi − x|

h

)
(1)

With K(u): is a kernel function (using a Gaussian kernel (Formula (2)). The estimator
f̂ (x) determines the percentage of observations closest to a given x. If there are several
observations close to x then f̂ (x) widens. Conversely, if there are only a few Xi close to x
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then f̂ (x) remains weak. In other words, the h parameter of the Equation (1), determines
the degree of smoothing of the KDE function.

k(u) = e−
u2

2σ2 (2)

Based on the discovery issued from the KDE curve shown in Figure 2, the idea is to
select all the PCG samples for normal classes with signal duration equal to 20 s and 35 s
for abnormal class. As seen in Figure 5, after applying this simple selection process, we
obtain 238 PCG samples from abnormal class and 1291 PCG samples from normal class. If
we look at the Figures 6 and 7, the obtained PCG samples after the KDE duration selection
process for normal and abnormal classes have acceptable SNR values with a high SNR
concentration, very close to zero.

Figure 5. An overview of the PCG sample distribution in function of duration after selecting samples:
35 s from abnormal class and 20 s from normal class.

Figure 6. An overview of the SNR distribution in function of KDE density related to normal and
abnormal samples after applying the KDE duration selection process.

Figure 7. The PCG sample distribution in function of SNR of normal and abnormal classes after KDE
duration selection process.
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3.2.2. Data Selection Based on Optimal SNR

Signal-to-noise ratio (SNR) is defined as the ratio of signal power to the background
noise power [27]. Based on the analysis of Figures 3 and 4, which show the highest
concentration of SNR related to PCG samples for both normal and abnormal classes, we
decided to select PCG samples with SNR greater than or equal to zero. As a result of
this selection process, we obtained 221 PCG samples for the abnormal class and 822 PCG
samples for the normal class, as shown in Figure 8. Additionally, Figures 9–11 provide
an overview of the PCG sample distribution in terms of duration after the data selection
process with SNR greater than or equal to 0, the KDE curve of PCG samples related to
normal and abnormal classes in terms of duration after the SNR greater than or equal to
zero in the data selection process, and the PCG sample distribution of normal and abnormal
classes in terms of SNR greater than or equal to zero.

Figure 8. PCG sample distribution in function of duration after SNR greater than or equal to 0 in data
selection process.

Figure 9. KDE curve of PCG samples related to normal and abnormal classes in function of duration
after SNR greater than or equal to 0 in data selection process.

Figure 10. KDE curve of PCG samples related to normal and abnormal classes in function of SNR
greater than or equal to 0.
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Figure 11. PCG samples distribution of normal and abnormal classes in function of SNR greater than
or equal to 0.

3.2.3. Data Selection Based on Clustering

In this part, we chose to use biclustering as our data selection process. The main idea
behind biclustering data selection is to suppose that the highest dense cluster constitutes
our useful PCG data. In other words, we discard the remaining noise cluster and we
preserve only the PCG samples belonging to the big cluster.

For this aim, we have chosen the mixture Gaussian model (GMM) [28] which is a
parametric unsupervised clustering model. This model is used for data partitioning into
several groups according to the probabilities of belonging and association to each Gaussian
characteristics. GMM is based on a mixture of Gaussian models relying on learning the
laws of probability that generated the observation data xn (see Equation (3)).

f (xn|θk) =
M

∑
k=1

πk N(xn|µk, σ2
k ) (3)

N(xn|µk, σ2
k ) =

1
(2π)d/2σ1/2 e

(− 1
2σ2

k
(xn−µk)

2)
, πk ∈ 1..M is the probability of belonging to

a Gaussian k; k ∈ 1..M ), µk ∈ 1..M is the set of the M Gaussian averages, σ2
k ∈ 1..M the

set of covariances matrices, and θk = πk, µk, σ2
k . Similarly, the multidimensional version

of the Gaussian is as follows: N(xn|µk, Σk) =
1

(2π)d/2Σ1/2 e(−
1
2 (xn−µk)

T−Σ−1
k (xn−µk)). The best-

known method for estimating the GMM parameters (πk, µk and σ2
k ), is the iterative method

of maximum likelihood calculation (expectation-maximization algorithm or EM [29]). The
EM algorithm could be defined through 3 steps:
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- Step 1: Parameter initialization θk : πk, µk, σ2
k

- Step 2: Repeat until convergence

• Estimation step: Calculation of conditional probabilities tik that the sample i comes

from the Gaussian k. t(i,k) =
πk N(xi |µk ,σ2

k )

∑m
j=1 πk N

(
xi |µj ,σ2

j

) with j ∈ 1, . . . , m: the set of Gaussians.

• Maximization step : Update settings θestim
k = argmaxθk

(
θk, θold

k

)
and

πestim
k = 1

n ∑N
i=1 ti,k , σ2estim

k =
∑N

i=1 ti,k(xi−µestim
k )

2

∑N
i=1 ti,k

, µestim
k = ∑N

i=1 ti,kxi

∑N
i=1 ti,k

The time complexity of EM algorithm for GMM parameters estimation [28–31] is as
following: If X : is the dataset size, M: the Gaussian number, and D: the dataset dimension.

EM estimation step O(XMD + XM).
EM maximization step O(2XMD).
As seen in Figure 12, the result of the selection process based on the highest dense

cluster issued from GMM biclustering gives us a 334 PCG sample for the abnormal
class and a 1626 PCG sample for the abnormal class. The KDE curve in the function of
duration and SNR related to normal and abnormal PCG samples is shown, respectively, in
Figures 13 and 14. Furthermore, Figure 15 gives us an overview of the KDE curve in
function of SNR for normal and abnormal PCG classes after the GMM data selection
process.

Figure 12. The PCG data distribution of normal and abnormal classes after selecting the highest
dense cluster issued from GMM biclustering.

Figure 13. An overview of KDE curve in function of duration for normal and abnormal PCG classes
after GMM data selection process.
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Figure 14. An overview of KDE curve in function of SNR for normal and abnormal PCG classes after
GMM data selection process.

Figure 15. PCG data distribution in function of SNR for normal and abnormal classes after GMM
data selection process.

4. The Process of Our CNN Benchmark

In this paper, we present a CNN classification system based on transfer learning and
fine-tuning. Our system starts with the Physionet dataset, which we use to train the model.
Figure 16 shows the architecture of our system, which is built on pretrained CNN models
from ImageNet dataset. The first step involves transforming the wav PCG signals into mel
spectrogram images using an FFT window of 1024 and a sample rate of 44,100. The second
step defines the CNN parameters, including a two-class recognition, an input image size of
width = 640 and height = 480, a batch size of 5, 30 epochs, and stochastic gradient descent
as the optimizer with a learning rate of 0.0001. In the third step, we fine-tune the layers by
using convolutional layers from the pretrained CNN models as feature extraction layers.
Additionally, we add six layers including a GlobalAveragePooling2D layer for averaging
and better representation of our training vector, three dense layers for the full connected
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network, a BatchNormalization layer to limit covariate shift, and a dense layer with a
sigmoid activation function to obtain a classification value between 0 and 1 (probability).

Figure 16. The architecture of our CNN system.

4.1. Mel Spectrogram Representation

The fast Fourier transform is a powerful method to decompose acoustic signal ampli-
tude over time into a multifrequency non periodic signal. However, if we need to represent
the spectrum of these frequencies in function of time, we need to perform FFT over several
windowed partitioned segments of the input signal. In fact, inspired by measured responses
from the human auditory system, studies [32–35] have shown that humans perception does
not perceive the frequencies on a linear scale. For this reason, a dedicated unit to transform
frequencies was proposed by Stevens, Volkmann, and Newmann in 1937. This is called
the mel scale, which performs mathematical operation on frequencies to convert them to
mel scale. In order to obtain the mel spectrogram, we perform the following steps (as seen
in Figure 17:

1. Specify the signal into short frames.
2. Windowing in order to reduce spectral leakage.
3. Work out the discrete Fourier transformation.
4. Applying filter banks.
5. Applying the log of the spectrogram values to obtain the log filter-bank energies.
6. Applying discrete cosine transform to decorrelate the filter bank coefficients.
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Figure 17. Mel spectrogram steps.

In this work, we have chosen MFCC signal by converting the output features into a
png image, which will be applied to the CNN classifier. Figure 18 gives an overview of a
normal and abnormal MFCC representation of the input PCG signal.

Figure 18. Overview of PCG spectrogram output (normal and abnormal, respectively).

4.2. CNN Models

Recently, deep learning and more especially convolutional neural network (CNN) has
trended as an image analysis and classification tool. In fact, many research has [36–39] have
been conducted using CNN to propose neural network models that enable powerful image
classification results. Moreover, it is known that CNNs can perform high-level feature
extraction while tolerating image distortion conditions and illumination changes, and can
provide invariance of image translation. For these reasons, we chose to adopt CNN as our
PCG image trainer and classifier.

In fact, in 1998 LeCun [40] introduced the first CNN architecture, designed to rec-
ognize handwritten characters. Since the last decade, due to their satisfactory results in
computer vision tasks such as face detection [41–43], handwritten recognition [44–46], and
image classification [47–49], CNNs are the most-used technology for classifying images.
However, in order to design new powerful CNN models, CNN requires large training
datasets. Thanks to the knowledge-transfer technique also known as transfer learning
appellation [50], it becomes possible to take the advantages of the already trained CNN
models on ImageNet by applying some modifications called fine-tuning. Therefore, we can
customize these pretrained CNN models in order to be trained on a small dataset without
a huge drop in the classification results.

In our work, we used several pretrained CNN models to classify normal/abnormal
PCG spectrogram images. Based on the small public dataset PhysioNet, we fine-tuned and
trained the 17 pretrained Keras CNN models (see Table 1). We preserved the convolutional
layers which will be used for feature extraction then the additional layers are added:

1. GlobalAveragePooling2D layer for averaging and better representation of our training
vector.

2. Three dense layers to define our full connected network.
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3. BatchNormalization layer to limit covariate shift by normalizing the activations of
each layer.

4. Dense layer with sigmoid activation function in order to obtain classification values
between 0 and 1 (probability).

Keras CNN models are trained on the following dataset using the Google Colab
plateform to allow the use of dedicated GPU facilities: 1×Tesla K80 , having 2496 CUDA
cores, compute 3.7, 12 GB (11.439 GB Usable) GDDR5 VRAM:

1. Raw PhysioNet dataset.
2. PhysioNet dataset with data selection using KDE for duration extraction.
3. PhysioNet dataset with data selection using optimal SNR.
4. PhysioNet dataset with data selection using GMM biclustering.

Table 1. Keras CNN models.

Model Citation Layers Size Parameters

Xception [51] 71 85 MB 44.6 million

VGG19 [52] 26 549 MB 143.6 million

VGG16 [52] 23 528 MB 138.3 million

ResNet152V2 [53] - 98 MB 25.6 million

ResNet152 [53] - 232 MB 60.4 million

ResNet101V2 [53] - 171 MB 44.6 million

ResNet101 [53] 101 167 MB 44.6 million

ResNet50V2 [53] 98 MB 25.6 million

ResNet50 [53] - 98 MB 25.6 million

NASNetMobile [54] - 20 MB 5.3 million

MobileNetV2 [55] 53 13 MB 3.5 million

MobileNet [56] 88 16 MB 4.25 million

InceptionV3 [57] 48 89 MB 23.9 million

InceptionResNetV2 [58] 164 209 MB 55.9 million

DenseNet201 [59] 201 77 MB 20 million

DenseNet169 [59] 169 57 MB 14.3 million

DenseNet121 [59] 121 33 MB 8.06 million

5. Experiments and Results

The effect of selecting data on the accuracy of the classification is being studied. First,
we concentrate on training and classifying CNN models using the raw dataset without any
data selection. Next, we train our CNN models on the data that has been selected based
on a 20 s duration for normal PCG signals and 35 s for abnormal PCG signals. Finally, we
examine the impact of selecting data based on SNR greater than 0 in the third section. It
is worth mentioning that all the classification results have been obtained by taking the
average of the results from the three-fold cross validation.

5.1. Classification Using Raw Dataset

After performing CNN training on the raw Physionet dataset, we can notice that
VGG19 gives the best classification results with accuracy = 0.854, sensitivity = 0.860,
precision = 0.794, and specificity = 0.860 (as seen in Table 2).
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Table 2. Average metric results related to the raw dataset.

Average Accuracy TPR (Sensitivity) Precision (PPV) TNR (Specificity)

VGG16 0.6 0.527 0.502 0.527

VGG19 0.854 0.860 0.794 0.860

Xception 0.783 0.797 0.714 0.797

ResNet152V2 0.659 0.679 0.665 0.679

ResNet152 0.580 0.689 0.634 0.689

ResNet101V2 0.282 0.537 0.575 0.537

ResNet101 0.404 0.585 0.596 0.585

ResNet50v2 0.792 0.702 0.702 0.702

ResNet50 0.538 0.624 0.638 0.624

NasNetMobile 0.619 0.496 0.347 0.496

MobileNetV2 0.435 0.476 0.460 0.476

MobileNet 0.558 0.595 0.653 0.595

Inceptionv3 0.676 0.758 0.673 0.758

InceptionResNetV2 0.825 0.807 0.748 0.807

DenseNet201 0.576 0.657 0.658 0.657

DenseNet169 0.704 0.771 0.715 0.771

DenseNet121 0.424 0.622 0.620 0.622

In addition, we can see that the classification results related to InceptionResNetV2
are close VGG19 with accuracy = 0.825, sensitivity = 0.807, precision = 0.748, and speci-
ficity = 0.807. Similarly, Figure 19 gives an overview of the validation and training curves
related to VGG19 and InceptionResNEtV2. If we look at Figure 20, we can see that, if we
consider the training step duration, mobileNet is the fastest CNN model and ResNet101
is the lowest CNN model. On the other hand, we can see that despite the number of
layer of VGG19 (best accuracy result) which is 26 (as seen in Table 1) compared to deeper
architecture (such as DenseNet201 with 201 layers) VGG19 is slower than DenseNet201
and is ranked as the fourth-slowest CNN model in term of training time.

Classification Using Kernel Density Estimation as Data Selection Method for Signal
Duration 20 s Normal and 35 s Abnormal

After performing data selection on Physionet through the use of signal duration
extraction with 20 s for normal PCG signals and 35 s for abnormal PCG signals, we trained
all the 17 pretrained CNN models (see Table 1 and we obtained the classification results
presented in Table 3. We can notice that through the use of this simple data selection, we
obtained an enhancement of all the classification results compared to those without any
data selection. As seen in Table 3, we obtained an improvement of VGG19 accuracy from
0.854 (raw dataset) to 0.970, for sensitivity from 0.860 to 0.946, for precision from 0.794
to 0.944, and for specificity from 0.860 to 0.946. Similarly, Figure 21 gives an overview
of the validation and training curves related to VGG19 and VGG16. In addition, as seen
in Figure 22, the training phase related to VGG19 becomes faster (fourth position after
mobilenet, inceptionV3 and resnet50) than the one without data selection. This means that
this data selection method allows us to speed up the training phase related to VGG19. On
the other hand, we performed an experimental test in order to argue the choice of 20 s and
35 s signal duration extraction, respectively, for normal and abnormal signals. In this test
we chose a random signal duration extraction value equal to 50 s for normal and abnormal
signals. The classification results related to this experiment is shown in Table 4. If we
compare the classification results presented in Tables 3 and 4, we can see that for VGG19
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(best model), the accuracy decreases from 0.970 to 0.870, sensitivity decreases from 0.946 to
0.851, precision decreases from 0.944 to 0.801, and specificity decreases from 0.946 to 0.851.
All these results support the idea behind our duration selection method (explained in data
selection based on kernel density estimation for optimal signal duration determination
subsection).

Figure 19. VGG19 and InceptionResNetV2 training and validation curves using raw dataset.

Figure 20. Training time vs. validation accuracy using raw dataset.
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Figure 21. VGG19 and VGG16 training and validation curves using data selection based on KDE.

Figure 22. Training time vs. validation accuracy using signal-duration selection based on KDE.
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Table 3. Average metric results related to KDE (duration = 20 s normal, duration = 35 s abnor-
mal) datasets.

Average Accuracy TPR (Sensitivity) Precision (PPV) TNR (Specificity)

VGG16 0.966 0.930 0.946 0.930

VGG19 0.970 0.946 0.944 0.946

Xception 0.828 0.877 0.732 0.877

ResNet152V2 0.824 0.873 0.730 0.873

ResNet152 0.490 0.667 0.640 0.667

ResNet101V2 0.438 0.665 0.422 0.665

ResNet101 0.690 0.592 0.812 0.592

ResNet50v2 0.698 0.736 0.728 0.736

ResNet50 0.620 0.763 0.685 0.763

NasNetMobile 0.203 0.489 0.350 0.489

MobileNetV2 0.228 0.497 0.526 0.497

MobileNet 0.671 0.679 0.673 0.679

Inceptionv3 0.659 0.791 0.686 0.791

InceptionResNetV2 0.863 0.908 0.765 0.908

DenseNet201 0.571 0.725 0.719 0.725

DenseNet169 0.493 0.675 0.606 0.675

DenseNet121 0.601 0.734 0.714 0.734

Table 4. Average metric results related to duration = 50 s dataset.

Average Accuracy TPR (Sensitivity) Precision (PPV) TNR (Specificity)

VGG16 0.668 0.747 0.703 0.747

VGG19 0.870 0.851 0.801 0.851

Xception 0.702 0.781 0.689 0.781

ResNet152V2 0.501 0.669 0.636 0.669

ResNet152 0.785 0.677 0.687 0.677

ResNet101V2 0.457 0.628 0.606 0.628

ResNet101 0.600 0.616 0.674 0.616

ResNet50v2 0.433 0.626 0.611 0.626

ResNet50 0.473 0.581 0.636 0.581

NasNetMobile 0.451 0.494 0.329 0.494

MobileNetV2 0.576 0.535 0.541 0.535

MobileNet 0.562 0.680 0.657 0.680

Inceptionv3 0.751 0.740 0.729 0.740

InceptionResNetV2 0.667 0.687 0.687 0.687

DenseNet201 0.694 0.744 0.713 0.744

DenseNet169 0.609 0.703 0.699 0.703

DenseNet121 0.495 0.637 0.621 0.637

5.2. Classification Using Data Selection Based on Optimal SNR

The idea behind this data selection method is to select all the PCG signals with a
signal-to-noise ratio greater than or equal to 0. In other words, we experiment the impact
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of selecting signals with SNR ≥ 0 on the classification result without performing any
prepocessing steps or denoising methods. After applying this data selection method, we
trained all the 17 pretrained CNN models (Figure 23 gives an overview of training and vali-
dation curves related to VGG19, VGG16, DenseNet169, and InceptionResNetV2). As seen
in Table 5, we obtained very good classification results with VGG19, VGG16, DenseNet169,
and InceptionResNetV2. The best result was obtained with VGG19 (accuracy = 0.96, sen-
sitivity = 0.943, precision = 0.94 and specificity = 0.943). This result is very close to the
classification result obtained after applying data selection based on signal duration.

In fact, if we look at Figure 24, we notice that the VGG19 training time is at the fifth
position compared to the fourth position obtained with VGG19, trained on 20 s and 35 s
normal and abnormal PCG signals. In other words, the best results in term of training time
and classification results was obtained using VGG19 trained on 20 s and 35 s normal and
abnormal PCG signals.

Figure 23. VGG19, VGG16, DenseNet169, and InceptionResNetV2 training and validation curves
using data selection based on SNR ≥ 0.

Figure 24. Training time vs. validation accuracy using data selection based on SNR ≥ 0.
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Table 5. Average metric results related to SNR ≥ 0 dataset.

Average Accuracy Sensitivity Precision Specificity

VGG16 0.960 0.938 0.944 0.938

VGG19 0.960 0.943 0.940 0.943

Xception 0.860 0.895 0.807 0.895

ResNet152V2 0.815 0.845 0.790 0.845

ResNet152 0.474 0.660 0.665 0.660

ResNet101V2 0.525 0.687 0.561 0.687

ResNet101 0.346 0.581 0.611 0.581

ResNet50v2 0.669 0.773 0.745 0.773

ResNet50 0.653 0.746 0.566 0.746

NasNetMobile 0.568 0.492 0.344 0.492

MobileNetV2 0.405 0.561 0.521 0.561

MobileNet 0.537 0.696 0.712 0.696

Inceptionv3 0.885 0.893 0.855 0.893

InceptionResNetV2 0.930 0.939 0.880 0.939

DenseNet201 0.703 0.789 0.612 0.789

DenseNet169 0.945 0.938 0.907 0.938

DenseNet121 0.709 0.800 0.810 0.800

5.2.1. Classification Using Clustering as Data Selection Method

In this subsection, we investigate the impact of selecting training data using unsuper-
vised biclustering. We used GMM biclustering with the hypothesis to consider the cluster
with the maximum number of sample as our training data. As shown in Table 6 and in
Figure 25, we obtained good classification results compared to results without using any
data selection method. However, if we compare with the previous results, we can conclude
that the best results are obtained using signal selection, based on duration 20 s for normal
and 35 s for abnormal PCG data. In this configuration, VGG16 gives the best classification
metrics compared to the remaining 16 CNN models with an acceptable training time (sixth
position) as seen in Figure 26.

Figure 25. VGG19 abd VGG16 training and validation curves using data selection based on clustering.
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Figure 26. Training time vs. validation accuracy using data selection based on clustering.

Table 6. Average metric results related to clustered dataset.

Average Accuracy TPR (Sensitivity) Precision (PPV) TNR (Specificity)

VGG16 0.915 0.873 0.860 0.873

VGG19 0.821 0.808 0.787 0.808

Xception 0.763 0.795 0.690 0.795

ResNet152V2 0.283 0.561 0.590 0.561

ResNet152 0.688 0.712 0.728 0.712

ResNet101V2 0.671 0.702 0.674 0.702

ResNet101 0.758 0.765 0.682 0.765

ResNet50v2 0.589 0.666 0.633 0.666

ResNet50 0.353 0.576 0.396 0.576

NasNetMobile 0.635 0.498 0.561 0.498

MobileNetV2 0.175 0.500 0.195 0.500

MobileNet 0.378 0.606 0.422 0.606

Inceptionv3 0.713 0.773 0.668 0.773

InceptionResNetV2 0.717 0.717 0.761 0.717

DenseNet201 0.674 0.746 0.672 0.746

DenseNet169 0.627 0.758 0.656 0.758

DenseNet121 0.739 0.683 0.762 0.683

5.2.2. Synthesis

We have undergone a general comparative study against the state-of-the-art methods,
as summarized in Table 7. As seen in this table, Dominguez et al. [60] achieved good
classification results (accuracy of 0.97, sensitivity of 0.93, specificity of 0.95) using a complex
recognition methodology based on heartbeat segmentation and a modified version of
the CNN AlexNet model. Philip et al. [61] obtained the worst classification results in
Table 7, and this is due to the elimination of the complex heart-cycle segmentation step.
The majority of the research work presented in this table employed complex segmentation
steps in their classification approach, and they obtained accuracy varying from 0.80 to
0.97, sensitivity from 0.76 to 0.96, and specificity from 0.72 to 0.95. In this work, our
main contribution is to obtain very good classification results using a simple classification
approach without any complex preprocessing steps, without any segmentation process,
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and without the use of any new CNN architecture. As seen in Table 7, compared to the
work of Dominguez et al. [60], we have achieved similar results with an accuracy equal
to 0.97, a slightly better sensitivity result of 0.946, and a slightly lower specificity result of
0.946.

Table 7. Comparative analysis of our method with state-of-the-art methods using whole datasets
from PhysioNet 2016.

Average Accuracy TPR (Sensitivity) Precision (PPV) TNR (Specificity)

our approach 0.970 0.946 0.944 0.946

[62] 0.8697 0.964 - 0.726

[17] - 0.942 - 0.778

[63] 0.824 - - -

[18] - 0.8095 - 0.839

[16] - 0.84 - 0.957

[64] 0.852 - - -

[65] - 0.885 - 0.921

[20] 0.879 0.885 - 0.878

[60] 0.97 0.932 - 0.951

[66] 0.915 0.983 0.846

[67] 0.892 0.90 - 0.884

[68] 0.88 0.88 - 0.87

[69] 0.85 0.89 - 0.816

[70] 0.826 0.769 - 0.883

[71] 0.801 0.796 - 0.806

[72] 0.9 0.93 - 0.9

[61] 0.79 0.77 - 0.8

6. Conclusions and Perspectives

In this work, we presented a simple classification architecture based on a data-selection
process designed to recognize normal and abnormal Physionet PCG signals. We compared
our work with the state-of-the-art approaches and concluded that using a data selection
process based on a signal duration of 20 s for normal and 35 s for abnormal PCG signals
obtained very good CNN classification results with an overall accuracy equal to 0.97, an
overall sensitivity equal to 0.946, an overall precision equal to 0.944, an overall specificity
equal to 0.946. This work was tested only on the most-used binary class dataset Physionet,
which can be considered as a limiting factor. We plan to test it on other public or private
multiclass datasets. In addition, the feature-selection process can be improved through the
exploitation of a large set of ML feature extraction/selection methods. Furthermore, we
plan to create our own multiclass PCG dataset which will be trained on a new CNN model
created especially for PCG spectrogram images.
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