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Abstract: This study aimed to develop a noninvasive, economical and effective subclinical renal
damage (SRD) risk assessment tool to identify high-risk asymptomatic people from a large-scale
population and improve current clinical SRD screening strategies. Based on the Hanzhong Adolescent
Hypertension Cohort, SRD-associated variables were identified and the SRD risk assessment score
model was established and further validated with machine learning algorithms. Longitudinal
follow-up data were used to identify child-to-adult SRD risk score trajectories and to investigate the
relationship between different trajectory groups and the incidence of SRD in middle age. Systolic
blood pressure, diastolic blood pressure and body mass index were identified as SRD-associated
variables. Based on these three variables, an SRD risk assessment score was developed, with excellent
classification ability (AUC value of ROC curve: 0.778 for SRD estimation, 0.729 for 4-year SRD
risk prediction), calibration (Hosmer—Lemeshow goodness-of-fit test p = 0.62 for SRD estimation,
p = 0.34 for 4-year SRD risk prediction) and more potential clinical benefits. In addition, three child-to-
adult SRD risk assessment score trajectories were identified: increasing, increasing-stable and stable.
Further difference analysis and logistic regression analysis showed that these SRD risk assessment
score trajectories were highly associated with the incidence of SRD in middle age. In brief, we
constructed a novel and noninvasive SRD risk assessment tool with excellent performance to help
identify high-risk asymptomatic people from a large-scale population and assist in SRD screening.

Keywords: subclinical renal damage; machine learning; risk assessment tool; group-based trajectory
modeling; screening strategy

1. Introduction

Chronic kidney disease (CKD) is defined as abnormalities in kidney structure or
function for at least 3 months with implications for health [1]. CKD has become a major
public health concern due to its high prevalence and all-cause mortality [2,3]. The Global
Burden of Disease Study reported that 697.5 million individuals suffered from CKD in 2017,
with an overall prevalence of 9.1% [4]. A systematic review on the regional prevalence
of CKD in Asia showed a substantial variation in CKD prevalence ranging from 7.0%
in South Korea to 34.3% in Singapore, while China and India had the highest absolute
number of people with CKD (159.8 million and 140.2 million, respectively) [5]. CKD is
associated with a high risk of hospitalization, cardiovascular events, cognitive dysfunction,
morbidity and all-cause mortality [6–8]. In addition, CKD may be accompanied by several
other complications, including anemia, secondary hyperparathyroidism and electrolyte
disturbances, creating substantial health care costs [9–11] and indicating the urgent need
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to prevent and manage renal damage progression at an early stage. Subclinical renal
damage (SRD) is an early, asymptomatic renal abnormality characterized by a moderate
increase in urinary albumin excretion or a moderate reduction in the glomerular filtration
rate [12]. SRD can be defined by an estimated glomerular filtration rate (eGFR) between
30 and 60 mL/min/1.73 m2 or an elevated urinary albumin-to-creatinine ratio (uACR)
more than 2.5 mg/mmol in men and 3.5 mg/mmol in women. The Hanzhong Adolescent
Hypertension Cohort showed that the incidence of SRD in northern China was 13.1% [13].
Individuals with SRD tend to also have hypertension and diabetes mellitus [14], which
further worsen renal function [1]. Early SRD detection and screening are essential to slow
disease progression and reduce the risk of complications, morbidity and mortality, because
the SRD condition can correspond to the stages of CKD (G3a stage, G3b stage in GFR
Category and A2 stage, A3 stage in persistent albuminuria category) according to the
2012 KDIGO Clinical Practice Guideline for the Evaluation and Management of CKD [1].
Patients in these stages are mainly assessed as having moderately increased risk or high
risk for concurrent complications and future outcomes; these are also the critical periods for
early diagnosis and intervention for CKD. Currently, the detection and screening of renal
function rely on biochemical assays with blood or urine samples. Serum creatinine can be
used to evaluate eGFR and urine microalbumin, and creatinine can be used to evaluate
uACR [15]. Biochemical analysis is the gold standard but is costly for long-term follow-up
or large-scale population screening [16,17]. In addition, SRD is clinically asymptomatic
and despite that renal function can be estimated by the measurement of serum creatinine
concentration, urine protein or albumin concentration, it is still difficult to apply routine
large-scale SRD screening, especially for asymptomatic adults, due to the lack of more
economical and effective noninvasive risk assessment tools for SRD [1,18]. Hence, a simple
and noninvasive risk assessment tool is urgently needed for SRD screening.

It has been reported that diabetes, hypertension, older age, obesity and smoking are
independent risk factors for the development and progression of renal dysfunction [6,19–21].
Some studies have established prediction models for CKD risk based on these factors [22–24].
However, little attention has been given to the establishment of SRD risk assessment tools
and the longitudinal observation of these tools. Recently, tracking trajectory patterns
over time has accounted for dynamic changes and provided an important dimension for
consideration. Group-based trajectory modeling is one of the approaches that considers
variations in time [25]. Previous studies have suggested that long-term BP trajectories and
long-term BMI trajectories are associated with the incidence of SRD [13,15,26]. However,
single-variable trajectory practices are generally far from making full use of multivariate
longitudinal data and the interrelationship of different variables.

In this study, we used data from Hanzhong Adolescent Hypertension Cohort to develop
a noninvasive, economical and effective SRD risk assessment tool to identify high-risk asymp-
tomatic people from a large-scale population and improve current clinical SRD screening strategies.

2. Materials and Methods
2.1. Cohorts and Participants

This study included participants from the Hanzhong Adolescent Hypertension Cohort,
an ongoing prospective study initiated in 1987 that is focused on cardiovascular risk
factor development. The Hanzhong Adolescent Hypertension Cohort recruited a total of
4623 schoolchildren from 26 rural sites of three towns in Hanzhong, Shaanxi, China in 1987,
and several follow-ups were conducted in the following 30 years [27]. The inclusion criteria
of the present study were as follows: aged 6–15 years in 1987, able to speak Mandarin to
ensure effective communication, participated in the latest follow-up and had laboratory test
data in 2017. For further trajectory analysis, complete blood pressure and BMI data during
the 30-year follow-up were required. During the selection, individuals who had a history of
myocardial infarction, heart failure, stroke, renal failure, or peripheral artery disease were
excluded from the analysis. We conducted data collection in 1989, 1992, 1995, 2005, 2013
and 2017. In the 30 years of follow-up time, migration, death, mental illness and military
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service mainly contributed to the loss of follow-up. This study was clinically registered
(NCT02734472) and approved by the Ethics Committee of First Affiliated Hospital of
Xi’an Jiaotong University (Ethical Approval number: XJTU1AF2015LSL-047). All subjects
gave written informed consent in advance. In addition, we obtained the consent of a
parent/guardian for participants <18 years of age.

2.2. Anthropometric Measurements

Baseline clinical information, including demographic characteristics, histories of hy-
pertension, hyperlipidemia, stroke and diabetes, history of cigarette smoking and alcohol
consumption and cardiovascular complications, was collected using a standardized self-
questionnaire. Body weight, height, waist circumference and hip circumference were
measured by trained staff via standardized procedures. Body mass index (BMI) was cal-
culated as weight in kilograms divided by height in meters squared (kilograms per meter
squared). The average values of replicate measurements were used for further analysis.

2.3. Blood Pressure Measurements

Systolic and diastolic blood pressure were measured three times by trained and certi-
fied staff via WHO recommended procedures (in a seated position in a quiet and comfort-
able environment, 5-min rest before measurement, 2-min interval between examinations).
Mean values of blood pressure were used for further analysis.

2.4. Biochemical Parameter Measurements

In this study, biochemical parameters, including total cholesterol (TC), triglyceride
(TG), LDL cholesterol (LDL-C), HDL cholesterol (HDL-C), total bilirubin, serum creatinine,
urinary uric acid (UA), creatinine and albumin levels, were measured according to stan-
dardized procedures. uACR (milligrams per millimole) was evaluated as urine albumin
(in milligrams) divided by urine creatinine (in millimoles). eGFR was estimated by the
Modification of Diet in Renal Disease (MDRD) calculation formula for Chinese patients
with chronic kidney disease: eGFR = 175 × serum creatinine (in milligrams per deciliter)
−1.234 × age (in years) −0.179 (×0.79 for females) [28].

2.5. Definitions

In this study, subclinical renal damage was defined as an eGFR between 30 and
60 mL/min/1.73 m2 or a uACR more than 2.5 mg/mmol in men and 3.5 mg/mmol in
women [15]. Cigarette smokers were defined as subjects with >six months of smoking
history during their lifetime (continuous or cumulative) [29]. Participants who reported
that they drank alcohol (liquor, beer or wine) every day and that their alcohol consumption
lasted for more than 6 months were defined as drinkers [30].

2.6. Statistical Analysis

To identify effective and reliable clinical parameters with high screening or early diag-
nostic value for SRD, we analyzed the cross-sectional data in 2017 (n = 2303) and provided
a novel feature selection strategy by combining three machine learning methods (complete-
case analyses), including LASSO regression, random forest and the SVM-REF algorithm.
LASSO regression was performed via the R package “glmnet” [31], the random forest
method was carried out by the R package “randomForest” and the SVM-REF approach
was achieved by the R packages “sigFeature” and “e1071”. A logistic regression model
was constructed based on the R package “rms”. The 2303 participants were randomly
assigned to the training set (70%, n = 1611) and the internal validation set (30%, n = 692).
The R package “pROC” was used to calculate the area under the curve (AUC) value of the
receiver operating characteristic (ROC) curve [32]. In addition, calibration curve analysis
and the Hosmer—Lemeshow goodness-of-fit test were performed using the R packages
“rms” and “ResourceSelection”. Decision curve analysis was conducted by the R package
“rmda” to evaluate the potential clinical application value and net benefit.
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Next, group-based trajectory modeling was achieved by the “traj” package [33] in R
software to identify the optimal number of subgroups with similar SRD risk score trajecto-
ries among those with complete blood pressure and BMI data during the 30-year follow-up
in this cohort (n = 1048, complete-case analysis). Categorical data are summarized as
frequencies and percentages. Continuous variables are reported as the mean ± standard
deviation (if normally distributed) or the median (25th and 75th percentile ranges). Inde-
pendent sample t-tests, one-way ANOVA, Mann—Whitney U tests and Kruskal—Wallis
tests were performed for the difference analysis of continuous variables according to their
group, distribution and variance. Logistic regression analysis was carried out by SPSS soft-
ware (SPSS Inc., Chicago, IL, USA). Statistical significance was considered at a two-sided
p value <0.05 for all analyses.

3. Results
3.1. Study Population

The flow chart of the present study was shown in Figure 1. Overall, the latest follow-up
data (the 7th follow-up, in 2017) of 2303 participants were included in the cross-sectional
analysis to perform the machine learning feature selection and identify variables highly
associated with SRD. Then, these 2303 participants were randomly assigned to the training
set (70%, n = 1611) and the internal validation set (30%, n = 692). The training set was
used to construct the SRD risk score model and the validation set was used to evaluate the
SRD estimation performance. The data in 2013 (the 6th follow-up) were also included to
evaluate the 4-year SRD risk prediction performance. The characteristics included in the
model construction and validation of the participants in the training and internal validation
sets are shown in Table 1. All variables have no significant differences between the training
and internal validation sets, which suggested the data consistency and reasonableness of
grouping. In addition, participants with complete blood pressure and BMI data during the
30-year follow-up were included in further group-based trajectory modeling analysis to
identify the SRD risk score trajectories (n = 1048).
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Table 1. Characteristics of the participants in the training and internal validation sets.

Characteristics Total Training Set Internal Validation Set p Value

SBP (mmHg) 121.3 (112.7–131.3) 121.7 (113.0–131.3) 120.8 (112.0–131.3) 0.363
DBP (mmHg) 76.0 (69.3–84.3) 76.3 (70.0–84.3) 75.3 (68.3–84.7) 0.096
BMI (kg/cm2) 23.8 (21.9–26.0) 23.8 (21.9–26.2) 23.8 (21.9–25.6) 0.397
eGFR (mL/min per 1.73 m2) 96.9 (87.1–106.1) 96.5 (86.8–105.8) 98.2 (88.0–106.6) 0.096
uACR (mg/mmol) 0.95 (0.62–1.68) 0.95 (0.62–1.69) 0.96 (0.63–1.65) 0.939
SRD (n, %) 276 (13.2) 203 (13.9) 73 (11.7) 0.177

SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; eGFR, estimated glomerular
filtration rate; uACR, urinary albumin-to-creatinine ratio; SRD, subclinical renal damage.

3.2. Feature Selection

A heatmap (Figure S1 in Supplementary Materials) showed the correlation among
SRD and other 25 SRD-associated variables (anthropometric parameters, blood pressure
level, biochemical parameters, diabetes history, etc.). Considering the data multicollinearity,
it is necessary to conduct feature selection to identify the most important variables and then
construct SRD risk models. In this study, we combined three machine learning algorithms
to achieve accurate feature selection, including LASSO regression analysis, the random
forest algorithm and the SVM-RFE algorithm. In LASSO regression analysis, 10-fold
cross-validation was performed to detect the optimal AUC value and minimal parameters.
Finally, we selected six features among 25 variables: systolic blood pressure, diastolic blood
pressure, BMI, triglyceride, heart rate and diabetes (Figure 2A). The SVM-RFE algorithm
was also used to achieve feature selection according to the optimal classification accuracy.
Four variables were identified as key features: diastolic blood pressure, systolic blood pres-
sure, BMI and body weight (Figure 2B). In addition, the random forest algorithm suggested
six features (diastolic blood pressure, systolic blood pressure, BMI, triglyceride, serum
chloride and serum potassium) to reach the minimum cross-validation error (Figure 2C).
Meanwhile, based on the mean decrease in the Gini coefficient, the importance of variables
in the random forest model were calculated (Figure 2D). Finally, by combining these three
machine learning feature selection algorithms, we selected diastolic blood pressure, systolic
blood pressure and BMI as hub variables for further analysis and model construction.
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algorithm feature selection. Four features were identified: DBP, SBP, BMI and body weight. (C) Ran-
dom forest algorithm feature selection. Six features were selected: DBP, SBP, BMI, triglyceride, serum
chloride and serum potassium. (D) Importance of the parameters was assessed by a random forest
algorithm. AUC, area under the curve; RMSE, root mean square error; mDBP, mean diastolic blood
pressure; mSBP, mean systolic blood pressure; BMI, body mass index; TG, triglyceride; Cls, serum
chloride iion; Ks, serum potassium; Nas, serum sodium; WHR, weight-to-height ratio; TBil, total
bilirubin; UA, uric acid; HR, heart rate; TC, total cholesterol.

3.3. Construction and Validation of the SRD Risk Assessment Model

Logistic regression analysis was performed to establish an SRD risk assessment model
based on data from the training set: SRD index = 0.020143 × SBP + 0.039718 × DBP +
0.063076 × BMI − 9.211994, SRD risk score = 1/(1 + e−SRD index). Meanwhile, a correspond-
ing nomogram was constructed to achieve more efficient clinical application (Figure 3A).
In detail, according to SBP, DBP and BMI data, total points can be calculated to evaluate
the diagnostic possibility of SRD. High possibility indicates the need for further blood or
urine testing to determine renal function, while low possibility indicates little need to take
further tests, so as to achieve large-scale screening or self-monitoring. Next, we validated
the classification ability of the model, and the AUC value of the ROC curve reached 0.778
(for SRD real-time estimation) and 0.729 (for 4-year SRD risk prediction) in the internal
validation set (Figure 3B,C). The optimal cutoff value for SRD real-time estimation is 0.153,
which leads to a sensitivity of 0.685 and specificity of 0.779. Meanwhile, the optimal
cutoff value for 4-year SRD risk prediction is 0.117 which leads to a sensitivity of 0.767
and a specificity of 0.598. The calibration curve analysis and the Hosmer—Lemeshow
goodness-of-fit test (p = 0.62 for SRD real-time estimation, p = 0.34 for SRD 4-year risk
prediction) indicated that this model had good calibration in both SRD real-time estimation
and SRD 4-year risk prediction (Figure 3D,E). In addition, as the SRD estimation decision
curve analysis (DCA) showed, compared to the SRD screening decision strategies currently
used in clinical practice, which mainly focus on the specific higher-risk conditions, such as
hypertension, obesity and diabetes, more potential net benefit can be obtained in all ranges
of risk thresholds using this SRD assessment model to assist in SRD screening decision
making (Figure 3F,G). The results of the SRD 4-year risk prediction DCA also supported
this conclusion. In fact, SBP, DBP and BMI data are easy to collect in clinical practice by
noninvasive examination, which indicates that it is possible for our models to evaluate
or predict the SRD risk and identify high-risk asymptomatic people from a large-scale
population, which can improve existing SRD screening strategies.
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curve in the internal validation set. The SRD estimation AUC value can reach 0.778 and the 4-year SRD
risk prediction AUC value can reach 0.729. (D,E) Calibration analysis for this SRD risk assessment
model. (F,G) Decision curve analysis for hypertension, diabetes, BMI and this SRD risk assessment
model, which showed this model had greater potential clinical benefits than each individual variable
used to assess SRD risk in current clinical practice such as hypertension, diabetes and BMI. SRD,
subclinical renal damage; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass
index; AUC, area under the curve; DCA, decision curve analysis.

3.4. SRD Risk Score Trajectory

SRD risk scores during the 30-year follow-up were calculated based on the diastolic
blood pressure, systolic blood pressure and BMI data. Then, we performed group-based
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trajectory modeling analysis and identified three SRD risk score trajectory groups: stable,
increasing-stable and increasing (Figure 4). The SRD risk scores of all three groups have
trends of increasing with age from childhood to middle age and have similar slope increases
before about 25 years old. After this age, the stable group (n = 376; 35.9%) endured relatively
lower SRD risk score levels and SRD risk scores compared to the other two group, which
continued to increase. The increasing-stable group (n = 404; 38.5%) was characterized by
SRD risk scores increasing to a relatively higher level and then holding steady after about
40 years old. Meanwhile, the increasing group (n = 268; 25.6%) was characterized by a
sustained increase from childhood to middle age and reached a higher level than both the
stable group and increasing-stable group.
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renal damage.

3.5. Cardiovascular Risk Factors for SRD Risk Score Trajectory Groups

Table 2 shows the data of partial anthropometry and biochemical indicator tests in 1987
and 2017 according to these three SRD risk score groups. Among these 1048 participants,
583 (55.6%) were males and 465 (44.4%) were females. The median age in 2017 was
43 years old. Differences in the proportion of males, age, incidence of hyperlipidemia,
incidence of hypertension, current smoking, alcohol consumption, waist circumference, hip
circumference, TC, TG, LDL-C, HDL-C, serum uric acid, serum creatinine, urine albumin
and uACR were statistically significant (p <0.05). Occupation, education, marital status,
incidence of carotid atherosclerosis, heart rate (both in 1987 and in 2007), urine uric acid
(uUA) and eGFR were not significantly different. Individuals in the SRD risk score stable
group were more likely to be females, and more likely to have a lower waist circumference,
hip circumference, TC, TG, LDL-C and serum UA. In addition, the SRD risk score increasing
group a higher incidence of hyperlipidemia and hypertension, as well as higher rate of
current smoking and alcohol consumption.
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Table 2. Demographic characteristics and cardiovascular risk factors by the SRD risk score trajec-
tory groups.

Total Stable Increasing-Stable Increasing p Value

Male (%) 583 169 (45.1) 258 (63.7) 156 (58.2) <0.001

Age (years) 43.0 (41.0–46.0) 43.0 (41.0–46.0) 43.0 (40.0–45.0) 43.0 (41.0–45.0) 0.049

Occupation (%) 1011 0.383

Farmer 408 146 (40.1) 157 (40.3) 105 (40.9)

Worker 194 63 (17.3) 82 (21.0) 49 (19.1)

Business 81 35 (9.6) 30 (7.7) 16 (6.2)

Governor 21 5 (1.4) 13 (3.4) 3 (1.2)

Other 307 115 (31.6) 108 (27.7) 84 (32.7)

Marital status (%) 1041 0.064

Unmarried or other 15 4 (1.1) 8 (2.1) 3 (1.2)

Married 1015 365 (97.1) 387 (97.0) 263 (98.9)

Divorced 11 7 (1.9) 4 (1.0) 0 (0.0)

Education (%) 1016 0.553

Primary school or less 73 24 (6.6) 27 (6.9) 22 (18.7)

Middle school 628 221 (60.5) 240 (61.2) 167 (64.5)

High school 226 82 (22.5) 92 (23.5) 52 (20.1)

College or more 89 38 (10.4) 33 (8.4) 18 (6.9)

Current smoking (%) 450 126 (34.8) 200 (51.9) 124 (49.2) <0.001

Alcohol consumption (%) 321 96 (26.5) 141 (36.6) 84 (33.3) 0.011

SRD (%) 138 33 (8.8) 54 (13.4) 51 (19.0) 0.001

AS (%) 139 48 (12.9) 55 (13.9) 36 (13.7) 0.922

Hyperlipidemia 424 119 (31.6) 170 (42.1) 135 (50.4) <0.001

Hypertension 172 10 (2.7) 65 (16.1) 97 (36.2) <0.001

Heart rate 1987
(beats/min) 78.0 (72.0–84.0) 78.0 (72.0–84.0) 78.0 (72.0–84.0) 78.0 (72.0–84.0) 0.983

Heart rate 2017
(beats/min) 73.0 (66.0–80.0) 72.5 (66.0–79.0) 73.0 (66.0–80.0) 75.0 (69.0–82.0) 0.072

Waist (cm) 84.8 (78.2–92.2) 80.8 (75.5–87.2) 87.0 (79.7–94.3) 89.4 (82.4–95.5) <0.001

Hips (cm) 92.2 (88.8–95.9) 90.7 (87.7–93.4) 93.4 (89.5–97.0) 93.7 (90.4–97.0) <0.001

TC (mmol/L) 4.48 (4.03–5.00) 4.40 (3.92–4.87) 4.49 (4.02–5.08) 4.58 (4.17–5.18) 0.001

TG (mmol/L) 1.39 (1.01–2.01) 1.20 (0.89–1.66) 1.44 (1.08–2.03) 1.64 (1.13–2.44) <0.001

LDL–C (mmol/L) 2.49 (2.11–2.88) 2.44 (2.05–2.78) 2.48 (2.13–2.95) 2.55 (2.22–3.00) 0.006

HDL-C (mmol/L) 1.13 (0.99–1.33) 1.20 (1.02–1.42) 1.12 (0.98–1.29) 1.09 (0.95–1.29) <0.001

Serum uric acid (µmol/L) 283.2 (226.2–338.8) 264.9 (212.5–316.8) 300.7 (239.7–352.6) 293.8 (243.3–352.2) <0.001

Urine uric acid
(µmol/L)

1298.5
(914.8–1984.5)

1291.5
(897.5–1994.5)

1317.0
(981.5–1951.0)

1283.0
(889.0–2090.0) 0.268

Serum creatinine
(µmol/L) 76.3 (66.7–86.8) 73.7 (65.3–82.9) 78.8 (68.6–88.8) 77.0 (69.7–88.0) <0.001

Urine albumin
(mg/L) 8.0 (4.1–13.7) 6.4 (3.1–11.1) 9.0 (4.8–14.2) 9.2 (5.2–22.5) <0.001

eGFR (mL/min per
1.73 m2)

97.2 (87.0–106.3) 97.2 (86.2–107.0) 97.7 (87.1–106.3) 94.3 (85.9–106.0) 0.260

uACR (mg/mmol) 0.98 (0.64–1.72) 0.85 (0.57–1.33) 0.99 (0.64–1.96) 1.25 (0.74–2.34) <0.001

AS, atherosclerosis; TC, total cholesterol; TG, triglycerides; LDL-C, low density lipoprotein cholesterol; HDL-C,
high density lipoprotein cholesterol.

3.6. Association between Novel SRD Risk Score Trajectories and Subclinical Renal Damage

SRD incidence was significantly different among the three SRD risk score groups
(p < 0.05). Figure 5A shows that the SRD risk score increasing group had a higher SRD
incidence rate in middle age (19%) compared to stable group (8.8%) and stable-increasing
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group (13.4%). We found that the uACR was significantly different among the three SRD
risk score groups (p < 0.05), whereas the GFR was not significantly different (p = 0.26).
The increasing group had a significantly higher uACR level (1.25 (0.74–2.34)) than the
increasing-stable group (0.99 (0.64–1.96)) and the stable group (0.85 (0.57–1.33)). Addi-
tionally, the uACR levels between the stable, stable-increasing and increasing group were
also significantly different (p = 0.002 for stable group compared to stable-increasing group,
p < 0.001 for stable group compared to increasing group, p = 0.011 for stable-increasing
group compared to increasing group). Moreover, the increasing group had a lower eGFR
(94.3 (85.9–106.0)) compared to stable group (97.2 (86.2–107.0)) and stable-increasing group
(97.7 (87.1–106.3)). The scatter diagrams of uACR levels and eGFR levels among these three
groups are shown in Figure 5B,C. Next, logistic regression was performed to investigate
the association between the SRD risk score trajectory groups and SRD incidence. The
trajectory groups were defined as dummy independent variables, and the stable group was
the control group in the logistic regression. Our results showed that the increasing group
and increasing-stable group had significantly greater odds of SRD incidence in middle age
than the stable group. The increasing-stable group had an OR of 1.6 (95% CI, 1.01 to 2.54),
and the increasing group had an OR of 2.44 (95% CI, 1.53 to 3.91). The adjusted logistic
regression model showed that ORs were slightly attenuated after adjustment for gender
and age. The increasing-stable group had an OR of 1.53 (95% CI, 0.96 to 2.43), and the
increasing group had an OR of 2.39 (95% CI, 1.49 to 3.84). Additional adjustment for waist
circumference, hip circumference, TC, TG, LDL-C and HDL-C also attenuated the ORs. The
increasing-stable group had an OR of 1.25 (95% CI, 0.77 to 2.05), and the increasing group
had an OR of 1.75 (95% CI, 1.05 to 2.91). Finally, after further adjusting for the incidence of
current smoking and alcohol consumption, the ORs of the increasing-stable group were
1.24 (95% CI, 0.76 to 2.03) and the ORs of the increasing group were 1.73 (95% CI, 1.04 to
2.89). These results indicated that these SRD risk score trajectories can serve as a strong
predictor for the SRD incidence risk in middle age (Table 3). In addition, through long-term
trajectory analysis, we can also demonstrate the good performance and reliability of this
SRD risk assessment score in longitudinal observation.
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Figure 5. Renal damage of different trajectories groups. (A) SRD incidence rate among the three SRD
risk score trajectory groups. (B,C) Scatter diagrams of eGFR levels and uACR levels among these
three SRD risk score trajectory groups. SRD, subclinical renal damage; eGFR, estimated glomerular
filtration rate; uACR, urinary albumin-to-creatinine ratio. # p < 0.05 vs. stable group and $ p < 0.05 vs.
increasing-stable group.
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Table 3. Adjusted odds ratios and 95% confidence intervals of the association of SRD risk score
trajectory groups with subclinical kidney damage.

Trajectory
Groups

No. of Subjects
with SRD in 2017 Unadjusted Model 1 Model 2 Model 3

Stable 33 (8.8) 1.00 1.00 1.00 1.00
Increasing-

stable 54 (13.4) 1.60
(1.01–2.54)

1.53
(0.96–2.43)

1.25
(0.77–2.05)

1.24
(0.76–2.03)

Increasing 51 (19.0) 2.44
(1.53–3.91)

2.39
(1.49–3.84)

1.75
(1.05–2.91)

1.73
(1.04–2.89)

Model 1 = gender, age in 2017. Model 2 = Model 1 + waist circumference, hip circumference, TC, TG, LDL-C and
HDL-C in 2017. Model 3 = Model 2 + current smoking and alcohol consumption in 2017.

4. Discussion
4.1. Main Findings

Three predictive factors (SBP, DBP and BMI) for SRD in middle age were identified
using an integrated feature selection strategy. Based on these three predictive factors,
a novel noninvasive SRD risk assessment model was established that showed excellent
classification ability, calibration and potential clinical benefits for SRD estimation and
SRD 4-year risk prediction. These results indicated that it is possible for our models
to identify high-risk asymptomatic people from a large-scale population and help the
clinical SRD early screening decision in middle age. Additionally, through subsequent
cohort analysis, we identified three trajectory groups for this novel SRD risk assessment
score using 30-year follow-up data. We found that the incidence of SRD in middle age
and uACR levels were highly associated with these risk score trajectories. Further logistic
regression analysis indicated that these SRD risk score trajectories can serve as a strong
predictor for the SRD incidence risk in middle age. Therefore, longitudinal observation
further confirmed the value of this risk score to generate individualized risk estimates and
further participate in clinical screening decisions for SRD in middle age. In summary, we
constructed a novel, simple and low-cost risk assessment tool for SRD screening, which
presented good performance in predicting SRD risk in middle age. The convenience of this
model makes it possible to assess the SRD risk of asymptomatic people and then carry out
further SRD screening.

4.2. Prior Studies and the Focus of our Investigation

The detection and screening for SRD is critical because it can correspond to the
CKD stages (G3a stage, G3b stage in GFR Category and A2 stage, A3 stage in persistent
albuminuria category) which are associated with moderately increased risk (yellow risk)
or high risk (orange risk) for the concurrent complications and future outcomes; these are
also are the most critical periods for early diagnosis and intervention for CKD. However,
SRD is usually asymptomatic until an advanced disease stage, and estimation methods of
renal function, such as the measurement of serum creatinine concentration, urine protein
or albumin concentration are costly for long-term follow-up or large-scale screening [34,35].
In current clinical practice, only patients with specific higher-risk conditions, such as
hypertension, obesity and diabetes are recommended to be screened for renal function
conditions or SRD. It is still difficult to apply routine SRD screening in a large-scale general
population, especially for asymptomatic adults, due to the lack of a more economical
and effective noninvasive risk assessment tool for SRD [1,36]. Therefore, a simple and
noninvasive SRD risk assessment tool is urgently needed to assist in the SRD screening
decision and improve large-scale SRD screening strategies. SRD is attributed to several
risk factors, such as hypertension, diabetes, older age and obesity [37–39]. There have
been numerous efforts to construct prediction models for the risk of decreasing eGFR
in CKD [22,24]. However, the estimation or prediction of SRD can be more useful than
only predicting a decrease in eGFR from the perspective of identifying the prognostic
risk of CKD. In addition, too many variables and biochemical examination results were
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included in existing models, which complicated their translation to clinical practice for
large-scale screening. Hence, in this study, we provided a novel feature-selection strategy
by combining three machine learning methods, and first established an SRD risk assessment
model calculated only by SBP, DBP and BMI data, which may have greater utility in clinical
application. Additionally, our risk assessment model had better performance than those
in previous studies: excellent classification ability (AUC value of the ROC curve: 0.778
for SRD estimation, 0.729 for 4-year SRD risk prediction in the validation set), calibration
(Hosmer—Lemeshow goodness-of-fit test p = 0.62 for SRD estimation, p = 0.34 for 4-year
SRD risk prediction) and potential clinical benefits.

In addition, most existing prediction models lack a longitudinal cohort analysis, such
as group-based trajectory modeling analysis, which could reflect the relationship between
model trajectory and SRD incidence [40,41]. Therefore, in the current study, we combined
SBP, DBP and BMI data to calculate a novel SRD risk assessment score and then performed
a trajectory analysis. Ultimately, three trajectory groups (increasing, increasing-stable, and
stable) were identified based on 30-year follow-up data, and the incidence of SRD in middle
age and uACR levels were highly associated with these risk score trajectories. Compared
with the stable group, the increasing group and increasing-stable group had a significantly
higher uACR. In addition, the results of the logistic regression showed that these three
SRD risk assessment score trajectories could serve as ideal predictors of the incidence of
SRD in middle age. Several other studies and some of our previous works have tried to
investigate the relationship between SRD incidence and its risk-factor trajectories, such as
SBP trajectory, DBP trajectory, MAP trajectory and BMI trajectory [13,15]. However, single-
variable trajectory analyses have limitations because they ignore the interaction among
multiple factors [42]. Hence, the group-based trajectory analysis for the SRD risk assessment
score in the current work, which gives full consideration to the characteristics of SBP, DBP
and BMI, is also a breakthrough for SRD-associated trajectory modeling analysis strategies.

4.3. Limitations and Future Directions

The present study used a community-based cohort followed for 30 years, which
represents a large population. It is prospective in nature and consists of representative data
from the general population. However, it should be noted that this study has the following
limitations. First, our study used a racially-homogenous cohort from multiple rural areas
in northern China, which limited the generalizability of our results, and validation using
other cohorts with different backgrounds of ethnicities and populations will be performed
in our further studies. Second, this work was not externally validated, which may also
have limited the generalizability of our results. Notwithstanding this limitation, our
study provided a novel SRD risk assessment tool that has both good performance in
cross-sectional analysis and longitudinal analysis as well as the convenience of clinical
application. In addition, to our knowledge, this is the first study to perform a group-based
trajectory modeling longitudinal analysis for an SRD risk assessment tool, which revealed
that realistic SRD outcomes in middle age correspond to the development trend of the risk
score suggested by the SRD risk assessment model.

5. Conclusions

In conclusion, we used a large community-based cohort followed for 30 years to establish
a novel, simple and low-cost SRD risk assessment tool and performed longitudinal group-based
trajectory analysis for this tool. Internal validation suggested that our risk assessment model
has excellent classification ability (AUC value of the ROC curve: 0.778 for SRD estimation,
0.729 for 4-year SRD risk prediction), calibration (Hosmer—Lemeshow goodness-of-fit test
p = 0.62 for SRD estimation, p = 0.34 for 4-year SRD risk prediction) and potential clinical
benefits. Further longitudinal trajectory analysis also confirmed the reliability of this SRD
risk assessment score. Considering the good clinical utility, simplicity and convenience
as well as the excellent performance of our model, it can identify high-risk asymptomatic
people from a large-scale population and improve current clinical SRD screening strategies.
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