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Abstract: The microbiota has proved to be one of the critical factors for many diseases, and re-
searchers have been using microbiome data for disease prediction. However, models trained on one
independent microbiome study may not be easily applicable to other independent studies due to the
high level of variability in microbiome data. In this study, we developed a method for improving
the generalizability and interpretability of machine learning models for predicting three different
diseases (colorectal cancer, Crohn’s disease, and immunotherapy response) using nine independent
microbiome datasets. Our method involves combining a smaller dataset with a larger dataset, and we
found that using at least 25% of the target samples in the source data resulted in improved model per-
formance. We determined random forest as our top model and employed feature selection to identify
common and important taxa for disease prediction across the different studies. Our results suggest
that this leveraging scheme is a promising approach for improving the accuracy and interpretability
of machine learning models for predicting diseases based on microbiome data.

Keywords: feature selection; machine learning; microbiome; random forest; support vector machine;
logistic regression

1. Introduction

With the growth of our understanding of microbial fields and the advancement of
sequencing technology, researchers across the globe have conducted various cohorts to
investigate the relationship between microbes and host health [1]. The results from these
studies have begun to unravel and confirm the critical role of microbiota in multiple
health conditions, such as inflammatory bowel disease [2–5], colorectal cancer [6–9], and
immune-related conditions, such as the response to immunotherapy [10–14].

One of the active fields from these studies focused on using compositional microbial
data for machine learning methods to investigate the model prediction accuracy and
determine which microbiota play a critical role in disease via feature selection [15,16]
and differential abundance analyses [17–20]. Most of the studies focused on using a
single dataset or multiple datasets from similar geographical locations to serve as the data
for the training and testing of different machine learning models, which resulted in the
overfitting of the machine learning models and reduced the generalizability of the results
on external populations who share the same phenotypes. This lack of generalizability
could contribute to different microbiota identification that could not be detected in another
study with dissimilar demographics. In microbiome research, two crucial factors that have
the potential to cause disparities in study results are the sample size and the microbial
composition. The differences can influence the study design’s sample size, which can, in
turn, affect the diversity of the microbial composition. For instance, studies with a larger
sample size, encompassing a more extensive range of participants, tend to exhibit a more
comprehensive range of microbial compositions, resulting in a higher number of unique
operational taxonomic units (OTUs) or amplicon sequencing variants (ASVs) and thereby
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leading to more extensive taxonomic identifications at higher levels (such as the genus level).
Conversely, studies with a smaller sample size are likely to yield fewer unique taxonomic
identifications at all levels, potentially undermining machine learning algorithms’ accuracy
and power. [21]. Moreover, microbial compositions can also vary due to factors such as
diet, ethnicity, physical activity, age, medical history, and other characteristics.

In our previous publication [16], we examined the impact of different machine learning
methods using microbial data for binary classification, which identified tree-based methods
such as random forest as the top performers, demonstrating consistency across different
diseases. One of the most important features researchers perform with random forest
models is to study the top features for microbial biomarker discovery [22–24]. However, the
inter-study variation caused by the known disease-related taxa can rank differently from
different datasets [25]. In addition, we noticed a drop in AUROC with cross-dataset analysis
compared to within-study AUROC from previous studies using metagenomics data [24,25].
Here, three critical areas must be addressed to advance the cross-study investigation with
microbiome data for disease prediction. Firstly, we need to understand the usefulness of
16S compared to metagenomics research since 16S is still the most cost-effective method
compared to metagenomics sequencing with the potential for larger cohorts. Secondly, we
need to develop a new method or approach that could retain the high model performance
without the reduction present in the cross-study model. Lastly, we need to ensure the
new method has the capability for microbial biomarker discovery of generalizable and
consistent disease-related taxa.

In this study, we evaluated the efficacy of a leveraging scheme, wherein we constructed
our predictive models by combining a portion of external data (target data) into a larger and
independent data set (source data) for prediction and evaluation of the remaining portion
of the external (target) data. The aim of this approach is to establish evidential relationships
between microbial data from larger datasets, therefore enhancing the cross-study prediction
performance and enabling the machine learning model to exhibit greater generalizability.
Furthermore, this leveraging scheme approach offers a solution to the three previously
identified problems. Similar leveraging schemes have been employed in the prediction
of hospital records, demonstrating their viability [26,27], and this would be the first time
records are evaluated using microbial data. We included nine different and independent
16S rRNA studies with three different diseases of interest: colorectal cancer (CRC), Crohn’s
disease (CD), and immunotherapy response. We examined a number of factors that could
affect the leveraging model prediction performances: 1. percentage of shared taxa between
the source and target data (6 levels); 2. percentage of target samples in the source data
(6 levels); 3. individual taxonomic levels and a stacked-taxa in which we combined data
from phylum to species levels (7 levels). For each of these combinations, we used 100
iterations to draw different target samples for evaluation randomly, and each generated
468 unique training and testing dataset pairs for the evaluation of 13 machine learning
methods. Our previous work confirmed good performance for random forest models on
higher taxonomic levels, i.e., phylum [16]. For example, the lowest intra-study AUROC on
the phylum level was around 0.75, which gradually increased to reach 0.875 at the genus level
for the classification of Crohn’s disease. As a result, we can harness more information by
stacking these taxonomic levels together to gain better model interpretability. In addition, our
previous study also illustrated the importance of studying the taxa–taxa relationship from
the cross-taxonomic level perspective, as individual species or groups of species under the
same family could both play major roles in disease differentiation within machine learning
models [28]. In the results, we showed this stacked-taxa dataset has competitive results to the
genus level performance and can be used to identify generalizable and consistent taxa.

For the machine learning methods, we included support vector machine (SVM), which
is a powerful but unstable machine learning method, as its performance tends to vary [16].
We also examined simple logistic regression and a few of its variations. Logistic regression
with L2-regularization was evaluated to help improve the simple logistic regression with
penalty terms, and we included two instance weights with L2 logistic regression that
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could help shift the source data distribution closer to the target data distribution using
Euclidean [27,29] and Aitchison distances [30]. We also included k = 1, 2, and 3 weighted
clusters, as suggested by Gong et al. [27]. The last groups of machine learning models are
from the random forest, which has been shown to be one of the best and most consistent
methods for microbial data prediction [16,25]. We examined the random forest classifier with
case weights extracted from the two instance weights, which essentially gives samples closer
to the target distribution higher chances of being drawn when generating each tree. Last but
not least, we used feature selection methods for the random forest classifier to extract the core
features and their feature importance information from both source and target data among
our evaluated combinations for a better understanding of generalizable and consistent taxa.

Overall, we present a scheme for better understanding microbial features from dif-
ferent studies with the same disease of interest. We will also illustrate its application in
feature selection for generalizable features across studies.

2. Materials and Methods
2.1. Microbial Data Processing

We evaluated three diseases of interest, colorectal cancer (CRC), Crohn’s disease
(CD), and immunotherapy responses. For both CRC and CD, we obtained two indepen-
dent studies for each of these disease phenotypes. All of these datasets are 16S rRNA
datasets collected from human fecal matter. The colorectal cancer datasets are from PR-
JNA290926 [6] and PRJEB6070 [7], and the Crohn’s disease datasets are from PRJEB13679 [5]
and IBDMDB [2]. The preprocessing of the 16S rRNA was completed via QIIME2 (version
2021.4) with DADA2 algorithms using SILVA 138 reference database [31–34]. The finalized
data were saved into phyloseq objects for easier downstream data manipulation. The
immunotherapy data were downloaded in the format of phyloseq objects from GitHub
published by Limeta et al. [35]; each study ASV and taxonomic table was extracted from
the corresponding phyloseq objects to generate data frames similar to the CRC and CD
data. Next, we removed samples with less than 1000 reads as these samples tend to have
low-quality issues in terms of microbial diversity as well as sequencing-related issues [36].
We further filtered out any taxa with less than 10% prevalence across samples, representing
rare taxonomic assignments, and the taxonomy information is illustrated in Table 1.

Table 1. Study taxonomic summary.

Phenotypes Study and Design
Information

Number of Taxa
Categories

Taxonomic Level

Phylum Class Order Family Genus Species Stacked-Taxa

Colorectal
Cancer

Baxter et al. (Source)
N = 261

Unique Taxa Count 19 32 73 135 373 387 1019

Filtered Taxa Count 11 16 41 68 170 75 381

Zeller et al. (Target)
N = 91

Unique Taxa Count 22 39 91 159 400 384 1095

Filtered Taxa Count 13 19 53 92 207 107 491

Number of Shared Taxa between Target and
Source Datasets for Colorectal Cancer Studies 11 16 40 66 156 65 354

Crohn’s
Disease

Gevers et al. (Source)
N = 1052

Unique Taxa Count 34 72 180 311 727 554 1878

Filtered Taxa Count 9 12 34 53 117 34 259

IBDMDB (Target)
N = 128

Unique Taxa Count 35 70 162 247 489 315 1318

Filtered Taxa Count 12 17 40 68 142 44 323

Number of Shared Taxa between Target and
Source Datasets for Crohn’s Disease Studies 9 12 34 53 113 31 252

Immunotherapy
Responses

Routy et al. (Source)
N = 127

Unique Taxa Count 14 31 49 83 191 595 963

Filtered Taxa Count 12 23 33 55 110 251 484

Peters et al. (Target)
N = 27

Unique Taxa Count 13 26 41 69 155 409 713

Filtered Taxa Count 12 24 35 60 110 261 502
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Table 1. Cont.

Phenotypes Study and Design
Information

Number of Taxa
Categories

Taxonomic Level

Phylum Class Order Family Genus Species Stacked-Taxa

Immunotherapy
Responses

Number of Shared Taxa between Target and
Source Datasets for Immunotheapy

Response Studies
12 22 32 53 97 221 437

Gopalakrishnan et al.
(Target)
N = 25

Unique Taxa Count 13 27 38 64 133 342 617

Filtered Taxa Count 9 17 25 42 89 195 377

Number of Shared Taxa between Target and
Source Datasets for Immunotherapy

Response Studies
9 17 25 40 82 180 353

Matson et al. (Target)
N = 39

Unique Taxa Count 13 24 39 68 154 482 780

Filtered Taxa Count 12 22 34 60 113 261 502

Number of Shared Taxa between Target and
Source Dataset for Immunotherapy

Response Studies
12 20 30 51 96 204 413

Frankel et al. (Target)
N = 39

Unique Taxa Count 14 28 43 75 175 533 868

Filtered Taxa Count 11 23 36 60 129 317 576

Number of Shared Taxa between Target and
Source Dataset for Immunotherapy

Response Studies
11 20 30 51 100 216 428

2.2. Evaluation Scheme

The evaluation scheme is illustrated in Figure 1, which can be divided into four
three sections.
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Figure 1. Leveraging scheme workflow.

2.2.1. Source and Target Data Handling

The source and target data for each of the comparisons were extracted from the
corresponding phyloseq objects at each of the phylum, class, order, family, genus, and
species levels, the raw count matrices were accumulated to form the individual taxonomic
level count matrices and the stacked-taxa count matrices were created by stacking all the
taxonomic levels matrices together. This step resulted in seven source-target paired datasets
for each disease of interest comparison.

2.2.2. Training and Testing Data

When creating the training and testing data, we used a seed to randomly draw the
designated proportion of the features/taxa between the source and target, followed by
randomly selecting part of the target data to be added to the source data. This generates
the training dataset. The remaining target data will be the testing dataset. Here, we are
examining six different levels of shared features/taxa: 10%, 25%, 50%, 75%, 90%, and
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100%, and we randomly selected target samples at 0%, 10%, 25%, 50%, 75%, and 90%. The
0% target samples in the source data serve as the baseline performance. We will use the
newly generated training and testing to calculate the instance weights for each sample in
the training set. We ran these combinations for 100 iterations, which gives 25,200 unique
training and testing pairs for each disease of interest comparison.

2.2.3. Machine Learning Scheme and Evaluations

For each of the 25,200 training-testing pairs, we ran 13 machine-learning methods
as detailed in Section 2.3, and for each of the machine-learning results, we extracted the
Recall, Precision, F1, and AUROC metrics using the corresponding packages as detailed in
Section 2.5.

2.3. Machine Learning Models
2.3.1. Logistic Regression

Logistic regression is a common supervised machine learning method that can be
used for the estimation of the log odds of the probability in a binary outcome based on the
linear combination of the independent variables (features). While this method is popular,
our previous investigation has shown that it is not a top-performing method for microbial
data. In this study, we also explored adapted versions of logistic regression that incorporate
sample weights. Specifically, we examined L2-regularized logistic regression with weighted
instances and clusters, as described in [22]. The weighted instances were determined based
on the Euclidean distance between each sample in the source dataset and the centroid
of the target samples. In contrast, the weighted clusters were determined based on the
k-nearest neighbors of 1, 2, or 3 clusters in the source dataset. The weights for the cluster
method were based on the mean of the target data relative to the mean of each cluster in
the source data. These methods aim to assign higher weights to source samples that are
more similar to the target samples to improve model performance on testing data closer to
the target dataset.

Additionally, we employed a modified version of the instance weights, which utilized
the Aitchison distance [25] instead of the Euclidean distance. This modification was
intended to better accommodate the compositional microbial data and improve the model’s
fit. All of these approaches were implemented using the instance-weight function in
LIBLINEAR [33] with L2-regularization and 5-fold cross-validation. For simplicity, we will
refer to these models as L2 in this paper.

2.3.2. Random Forest

Random forest is one of the most high-performing supervised learning methods in
many fields. Essentially, random forest creates multiple decision trees (i.e., 500 trees in our
analyses) on subsets of the training dataset, and the prediction of the decision is based
on the combinatory power of these decision trees on the testing dataset. To better train
the data, we also utilized the feature selection method from the Boruta package, and the
random forest classifier is from the randomForest R package [38,39]. Essentially, the Boruta
feature selection algorithm duplicates and randomly shuffles each row of each column to
generate an artificial data frame and merges back with the original data. The random forest
classifier will then run on the merged dataset, and the importance (Z-scores) for each of the
real features will be evaluated and compared with its shuffled replicas, and if the original
features performed better, it is considered a “Hit”. This will be run at multiple iterations,
and the normalized hit will be extracted from these runs, representing the percentage
of runs in which the features are considered important. In addition, we also used the
Euclidean and Aitchison instance weights as the case weights (probability for the samples
to be drawn during permutation) to evaluate the impact of the model using the ranger R
package [40]. These case weights adjust the chance for the samples with higher values to
be selected when generating the tree. Lastly, the “Normalized Hit” features are extracted



Bioengineering 2023, 10, 231 6 of 18

from each of the 100 iterations, and an average normalized hit is calculated for each of the
selected features/taxa.

2.3.3. Support Vector Machine

SVM is another popular supervised learning algorithm for classification problems.
SVM aims to identify the optimal decision boundary known as the hyperplane in the
high-dimensional that segregates the data points into classes. In this study, we focused on
the linear SVM as our previous study has shown its high performance with microbial data
for disease prediction [15].

2.4. Statistical Analysis

We used R (v4.1.0) [41] for data manipulation and statistical analyses for most of
the analyses except for the logistic regression with L2-regularization performed using the
LIBLINEAR [42] libraries in python (v3.7.10). The weight calculations were performed in R
based on the methods from Gong et al. [27]. The alpha and beta diversities were calculated
using vegan [43] and phyloseq [44] R packages. The Shannon index was used for alpha di-
versity with the pairwise Wilcoxon test for statistical difference evaluation. The Bray-Curtis
dissimilarity [45] and permutational multivariate analysis of variance (PERMANOVA) [46]
were used to analyze the beta-diversity when the sample size differences between the groups
were less than 5-fold, and analysis of similarities (ANOSIM) [47] was performed otherwise.
Both analyses were performed using 1000 permutations. Both diversities are performed on
the genus-level after removing rare taxa that do not present in more than 10% of the samples.

The model evaluation metrics were calculated in R with caret [48] and pROC [49]
packages, and for LIBLINEAR models, we used the Scikit-learn [50] library for extracting
the evaluation metrics.

2.5. Evaluation Metrics

To evaluate the binary classification performance from the machine learning models,
we focus on two parameters: F1 score and area under the receiver operating curve (AUROC)
to give an overall performance of the models.

The F1 score (Equation (3)) is the summary of precision (Equation (1)) and recall
(Equation (2)) using a harmonic mean. Precision represents the fraction of positive predic-
tions which are correctly identified by the method (true positives) and recall details the
fraction of positive cases which are correctly identified by the method. The F1 score provides
an accurate measurement of the classification for both balanced and imbalanced datasets:

precision =
True Positive

True Positive + False Positive
(1)

recall =
True Positive

True Positive + False negative
(2)

F1 = 2 × precision × recall
precision + recall

(3)

AUROC is used to examine the accurate binary classification of the outcome; the closer
the AUROC to 1, the better the model’s ability to distinguish between the two classes, and
an AUROC of 0.5 represents random guessing.

2.6. Machine Learning Model Baseline

To help evaluate the improvement or decline of the leveraging scheme, we use the 0%
of the target samples in the source data as the baseline performance for the machine learning
classifiers: SVM, simple logistic regression, logistic regression with L2-regularization, and
all types of random forest models. For the logistic regression models with instance weights
or weighted clusters, the logistic regression with L2-regularization at 0% target samples in
the source data is used.
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3. Results
3.1. Microbial Differences among Study and Diagnosis

In this study, we examined three different phenotypes—colorectal cancer (CRC),
Crohn’s disease (CD), and immunotherapy response—using nine independent datasets
as described in Table 1. For each of these datasets, we compared disease cases to control
patients, selecting the larger dataset as the source and the smaller dataset as the target. In
general, the larger datasets contained a greater number of taxa, and our filtering procedures
resulted in the removal of an average of 58.89%, 80.85%, and 37.50% of taxa for the CRC, CD,
and immunotherapy comparisons, respectively. We focused on the shared taxa between
the source and target datasets, which further reduced the number of taxa by 3% to 30%.
Overall, we retained 354, 252, 437, 353, 413, and 428 taxa across six taxonomic levels for the
CRC, CD, and four immunotherapy comparisons, respectively.

3.2. Microbial Inter and Intra-Diversity among Studies and Phenotypes

To understand the variations between the studies that shared the disease of interest,
we evaluated the observed taxa variations between the studies and phenotypes using
alpha (intra) and beta (inter) microbial diversities. Given larger datasets tend to generate
more rare taxa, as illustrated by the comparison between Gevers et al. and IBDMBD data
for Crohn’s disease, we will evaluate the alpha and beta diversities on filtered taxa after
removing rare taxa that are not present in more than 10% of the samples. This filtering
procedure reduces the complexity of the microbiome data while reserving the data integrity
for better reproducibility and comparable data analysis [51].

As depicted in Figure 2A, the alpha diversity of most datasets at the genus level
showed no significant differences, with the exception of the datasets from IBDMDB [2] and
Gopalakrishnan et al. [11], which had Wilcoxon p-values of 0.046 and 0.019, respectively.
In contrast, both the CRC (Figure 2B) and immunotherapy response (Figure 2D) datasets
demonstrated significant differences between the studies at the genus level, with p-values
less than 0.001. By contrast, the Crohn’s disease (Figure 2C) datasets showed no significant
differences between the studies, with a p-value of 0.81.
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for each study. (B) Nonmetric multidimensional scaling plot of the Bray-Curtis dissimilarity matrix
between two colorectal cancer studies. (C) Nonmetric multidimensional scaling plot of the Bray-Curtis
dissimilarity matrix between two Crohn’s disease studies. (D) Nonmetric multidimensional scaling
plot of the Bray-Curtis dissimilarity matrix among five immunotherapy studies. The PERMONAVA
or ANOSIM p-values are shown for the beta-diversity plots. Note: For clear visualization, one sample
from Routy et al. in panel D was removed from plotting due to its extremely high MDS1 values
compared to all other samples.

3.3. Impact of Percentage of Shared Features/Taxa between Source and Target

In order to mimic real-world scenarios in which the number of taxa found can vary
between studies, we analyzed the target and source using a range of percentages of shared
features/taxa between them. We present the evaluation using the interquartile range (IQR)
of the F1 score from colorectal cancer datasets across different combinations in Figure 3. It
is ideal for these IQRs to be low and narrow, as this indicates consistent machine learning
performance across our sampling schemes. We observed noticeable higher variations in
most methods at 10% shared features/taxa between the target and source compared to
higher percentages of shared features/taxa. Additionally, higher IQRs were more evident
at higher taxonomic levels, such as the phylum and order levels. In general, we found that
leveraging schemes that produce stable machine learning models contain at least 25–50%
shared features between the target and source. In addition, the models are more consistent
to the family, genus, species, and stacked-taxa levels, which are good candidates for our
leveraging scheme evaluations.
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representative machine learning methods, and the y-axis represents the interquartile range calculated
from 100 iterations of our random sampling scheme, and the solid black dot represents the outliers.
The plot illustrated the results from colorectal cancer datasets.
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3.4. Impact of Percentage of Target in Source Data Set

To evaluate the impact of combining different percentages of target samples and their
impact on the model performance, we average the AUROC across each of the 100 ran-
dom sampling iterations. From Section 3.3, we confirm the minimal number of shared
features/taxa for consistent results is 25%, and here we use 75% shared features/taxa
combinations from our leveraging scheme. In Figure 4, we included the baseline results
with 0% of the target sample in the source data. As the percentage of target samples in the
source data increases, we observe a steady increase in the AUROC. However, at around 75%
of target samples in the source data, the resulting AUROC becomes unstable, as indicated
by the widened box-and-whisker ranges. This observation suggests that, when using our
leveraging scheme, it is advisable to use at most 50% of the target samples in order to
maintain stable results. The genus and stacked-taxa levels generate the highest AUROC
compared to other methods, and the random forest with or without feature selections
performed the best, followed by the SVM. The other methods did not perform as well as
random forest and SVM.
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different examined combinations. The x-axis represents the percentage of target samples combined
into the source data to form the training data frame, which ranged from 0% (baseline, no leveraging)
to 90%. The y-axis represents the area under the receiver operating curve, and the solid black dot
represents the outliers. The plot illustrated the results from 75% of features/taxa shared between two
colorectal cancer datasets.

3.5. Machine Learning Performance

Based on our results illustrated in Sections 3.3 and 3.4, the evaluation of the machine
learning models will use 25% and 50% percentage of target samples in the source data with
75% shared features/taxa between the target and source data. In Table 2, we compared the
results of the leveraged models with their corresponding baseline models (i.e., 0% target
samples in the source data), and we observed an increase in AUROC for most of the genus
and stacked-taxa among the source-target comparisons. The random forest with or without
feature selection is generally the top model, with SVM performing best for a few of the
models. In general, by leveraging at least 50% of the target samples, the average model
AUROC improved at most 0.042, 0.075, and 0.089 for the CRC, CD, and Immunotherapy
data. All machine learning methods metrics summaries are in Supplementary Table S1.
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Table 2. Machine learning area under the curve (AUROC) for 25% and 50% target samples in source data. Gray-lighted cell contains the highest machine learning
average AUROC for the taxonomic level and disease of interesting comparison set.

Disease of Interest
Taxonomic

Levels

AUROC (AUROC Improvement from the Baseline Models)

Logistic Logistic—L2
Logistic—L2 with

Weighted Instance:
Euclidean

Logistic—L2 with
Weighted Clusters

(k = 3)

Random Forest with
Case Weights

(WI: Euclidean)

Random Forest
with Feature

Selections

Random
Forest

Support
Vector

Machine

Colorectal
Cancer

Genus 0.621(+0.031) 0.605(+0.112) 0.602(+0.109) 0.576(+0.083) 0.712(+0.075) 0.753(+0.020) 0.789(+0.042) 0.697(+0.050)
Stacked-Taxa 0.574(+0.077) 0.607(+0.096) 0.606(+0.095) 0.610(+0.098) 0.743(+0.055) 0.773(+0.022) 0.807(+0.031) 0.718(+0.043)

Genus 0.756(+0.012) 0.515(+0.024) 0.545(+0.055) 0.554(+0.064) 0.783(+0.073) 0.842(+0.068) 0.841(+0.064) 0.784(+0.050)
Crohn’s Disease

Stacked-Taxa 0.750(+0.034) 0.500(0.000) 0.567(+0.067) 0.500(0.000) 0.775(+0.086) 0.825(+0.075) 0.830(+0.074) 0.825(+0.043)

Immunotherapy
Dataset 1

Genus 0.601(+0.056) 0.500(+0.010) 0.499(+0.009) 0.500(+0.010) 0.503(+0.003) 0.683(+0.040) 0.649(+0.015) 0.591(+0.039)
Stacked-Taxa 0.595(+0.043) 0.498(−0.005) 0.506(+0.003) 0.499(−0.004) 0.498(+0.003) 0.686(+0.103) 0.631(−0.017) 0.624(+0.104)

Immunotherapy
Dataset 2

Genus 0.534(+0.022) 0.500(−0.004) 0.500(−0.004) 0.497(−0.007) 0.500(+0.000) 0.564(+0.044) 0.651(+0.058) 0.615(+0.079)
Stacked-Taxa 0.604(+0.025) 0.500(+0.006) 0.508(+0.015) 0.531(+0.037) 0.500(+0.000) 0.605(+0.066) 0.627(+0.089) 0.710(−0.007)

Immunotherapy
Dataset 3

Genus 0.581(+0.034) 0.500(+0.000) 0.501(+0.001) 0.507(+0.007) 0.528(+0.028) 0.581(+0.064) 0.594(+0.052) 0.567(+0.040)
Stacked-Taxa 0.588(+0.030) 0.500(+0.005) 0.523(+0.028) 0.527(+0.032) 0.492(−0.003) 0.589(+0.041) 0.577(+0.066) 0.576(+0.007)

50
%

of
Ta

rg
et

Sa
m

pl
es

in
So

ur
ce

D
at

a

Immunotherapy
Dataset 4

Genus 0.580(+0.050) 0.497(−0.005) 0.488(−0.014) 0.490(−0.012) 0.476(−0.024) 0.606(+0.004) 0.600(−0.006) 0.579(+0.012)
Stacked-Taxa 0.564(+0.026) 0.475(−0.024) 0.445(−0.054) 0.446(−0.053) 0.512(+0.018) 0.610(+0.014) 0.583(−0.009) 0.572(+0.010)

Colorectal
Cancer

Genus 0.598(+0.007) 0.592(+0.099) 0.585(+0.092) 0.571(+0.078) 0.689(+0.052) 0.745(+0.011) 0.772(+0.025) 0.670(+0.023)
Stacked-Taxa 0.548(+0.051) 0.604(+0.092) 0.592(+0.080) 0.604(+0.093) 0.723(+0.036) 0.765(+0.014) 0.795(+0.020) 0.709(+0.035)

Genus 0.754(+0.010) 0.515(+0.024) 0.538(+0.048) 0.544(+0.054) 0.749(+0.039) 0.812(+0.038) 0.812(+0.035) 0.765(+0.030)
Crohn’s Disease

Stacked-Taxa 0.745(+0.029) 0.500(0.000) 0.557(+0.057) 0.500(0.000) 0.737(+0.048) 0.791(+0.041) 0.798(+0.043) 0.810(+0.029)

Immunotherapy
Dataset 1

Genus 0.557(+0.012) 0.500(+0.010) 0.500(+0.010) 0.500(+0.010) 0.493(−0.006) 0.643(+0.000) 0.630(−0.003) 0.566(+0.013)
Stacked-Taxa 0.572(+0.020) 0.500(−0.003) 0.498(−0.005) 0.496(−0.007) 0.502(+0.007) 0.630(+0.047) 0.622(−0.026) 0.568(+0.048)

Immunotherapy
Dataset 2

Genus 0.530(+0.017) 0.500(−0.004) 0.500(−0.004) 0.499(−0.005) 0.500(0.000) 0.568(+0.048) 0.626(+0.034) 0.570(+0.034)
Stacked-Taxa 0.563(−0.016) 0.500(+0.006) 0.502(+0.008) 0.524(+0.030) 0.500(0.000) 0.567(+0.028) 0.594(+0.056) 0.693(−0.024)

Immunotherapy
Dataset 3

Genus 0.555(+0.008) 0.501(+0.001) 0.500(+0.000) 0.502(+0.002) 0.516(+0.016) 0.560(+0.043) 0.566(+0.025) 0.555(+0.028)
Stacked-Taxa 0.571(+0.012) 0.500(+0.005) 0.506(+0.011) 0.519(+0.024) 0.505(+0.010) 0.554(+0.006) 0.548(+0.037) 0.547(−0.022)

Immunotherapy
Dataset 4

Genus 0.580(+0.050) 0.499(−0.003) 0.495(−0.007) 0.498(−0.004) 0.487(−0.013) 0.592(−0.010) 0.591(−0.015) 0.554(−0.013)

25
%

of
Ta

rg
et

Sa
m

pl
es

in
So

ur
ce

D
at

a

Stacked-Taxa 0.548(+0.011) 0.490(−0.009) 0.473(−0.026) 0.474(−0.025) 0.504(+0.010) 0.577(−0.020) 0.586(−0.006) 0.552(−0.010)
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The logistic regression models with L2-Regularization performed poorly in com-
parison to the simple logistic regression models, as indicated by their AUROCs around
0.5 in Table 2. These models also tended to have convergence issues and failed to make
predictions on the testing data, resulting in the assignment of all zeros to test samples.
Similarly, the random forest model with case weights performed worse than the random
forest models with or without feature selection.

Moreover, we could also observe the trends of performance across different taxonomic
levels in Figure 4. With our best-performing methods, i.e., random forest with or without
feature selection and support vector machine, the AUROC improves along with more de-
tailed taxonomic information (i.e., phylum to stacked-taxa). However, we observed a drop
in performance at the species level, which can be explained by three main factors. Firstly,
16S data do not have enough information to fully characterize the reads into species-level
assignments, which directly relate to the sequencing length/quality, reference database
completeness/correctness, etc. [52]. If the taxonomic assignment method cannot assign
the reads to a species-level, it will cumulate the reads to a higher level (i.e., genus). Sec-
ondly, there are known misannotations of the species-level assignments (i.e., Pseudomonas
species [53]), and some of the species undergo re-assignments with advanced research into
a particular microbe (i.e., species under the genus Bacillus [54]). Lastly, as we have noticed
in this study and previous study, more than 50% of the reads have missing assignments
on the species-level, which negatively impact the machine learning performance [16]. All
these factors diminish the quality of the species-level data, which reduces their correspond-
ing performance.

For the immunotherapy studies, the results have lower performance compared to CRC
and CD, which is likely caused by the indirect relationship between the immunotherapy
response and gut microbe. Four-fifths of these datasets had previously undergone meta-
analysis using 3/5 of these immunotherapy studies (Gopalakrishnan et al., Matson et al.,
and Frankel et al.) as training and 1/5 (Peter et al.) as testing using random forest, which
resulted in AUROC of 0.6. As shown in Table 2, our leveraging scheme was able to improve
this for two of the four testing datasets in our design and enabled us to study generalizable
taxa, as illustrated later. Even with the low model performance, the generalizable and
consistent taxa investigation allows us to identify critical taxa that played major roles in
immunotherapy responses (Section 2.6).

3.6. Random Forest Top Predictors

We further examined our best model random forest with feature selection methods to
gain more biological relevance of the results. Here, we focused on the models with 100%
features/taxa shared between the target and source. The top features were defined as the
highest average normalized hits across 100 iterations across the different percentages of
target samples in the source from 0% to 90% from both the individual taxonomic levels and
stacked-taxa levels extracted from random forest models. The high importance represents
more distinctive contributions to enable the random forest model to distinguish between
the binary outcomes.

Firstly, we observed high consistency between the individual taxonomic and the
stacked-taxa between the source and target across all comparisons; the CRC and CD are
shown in Figure 5A,B, respectively. By analyzing a larger number of target samples in the
source data, we noticed that the importance of certain features tended to stay the same,
while others either increased or decreased in importance. If the importance of certain taxa
remains stable, this may suggest that they are generalizable features that are applicable
across both the source and target datasets. On the other hand, an increase or decrease in
importance may indicate that the taxa in question play different functional roles in the
two studies. To make the interpretation of these findings easier, we defined an increase
or decrease as a change of more than 0.15 in the average normalized hit between the
baseline and 50% target samples in the source data. From Figure 5A,B, we can see that the
stacked-taxa version has slightly lower average normalized hits due to the larger number
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of features/taxa in the data, but the overall trends are similar between the individual
taxonomic and stacked-taxa versions. This supports the use of the stacked-taxa version for
improved machine learning model interpretability while maintaining similar performance.
Additionally, the results from the CRC and CD suggest that the leveraged random forest can
consistently select stable features with at least 25% of the target samples in the source data.
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cancer datasets at the individual taxonomic and stacked-taxa levels, while (B) shows the changes in the
top 64 features for the Crohn’s disease datasets. (C) displays the log-transformed relative abundances
for the consistent taxa identified between the individual taxonomic and stacked-taxa levels for the
colorectal cancer and Crohn’s disease datasets. The solid black dots represent outliers. Taxa with a
change of less than 0.15 between the baseline and importance with 50% of target samples in the source
data were labeled as stable. Changes greater than 0.15 or less than −0.15 were labeled as increases
or decreases, respectively. Taxa that were not selected as important by any of the models were
labeled as “Not Present”. The p-value significance levels for taxa labeled as differentially abundant
by ANCOM-BC are also shown. * indicates p < 0.05; ** indicates p < 0.001; *** indicates p < 0.0001.

For CRC, as shown in Figure 5A, the genus-level taxa Fusobacterium [55,56], Pavi-
monas [57,58], Peptostreptococcus [59], and Porphyromonas [60] (and Porphyromonas asaccha-
rolytica [61]) are stable for both individual taxonomic and stacked-taxa levels models, and
these are known to be associated with colorectal cancer. In Figure 5B, the importance for
all individual taxonomic levels is rounded up to 1.00, indicating minimal impact with
adding the target samples, and this is likely due to the much smaller target sample size
compared to the source. The importance trends are more obvious in the stacked-taxa
results. We focus on the genus-level taxa, which did not greatly lose more than 0.15 of their
importance with the addition of target samples. These consistent taxa include many genus
taxa that have documented connections with inflammatory bowel disease: the Eubacterium
eligens group [62], the Ruminoccocus torques group [63], Agathobacter [64], Bacteroides [63,65,66],
Blautia [63,65], Butyricicoccus [62], Fusicatenibacter [65], Intestinibacter [67], Lachnospira [66],
the Lachnospiraceae_NK4A136 group, Lachnospiraceae_UCG-008, Monoglobus [68], and Rose-
buria [63–66]. The log-transformed relative abundances of these taxa from CRC and CD
were illustrated in Figure 5C, and most of these consistent taxa were differentially abundant
between the corresponding disease and control. Statistically significant differential taxa in
both source and target are important for biomarker discovery for generalizable markers
across studies. The ANCOM-BC results shown in Figure 5C identified many of these
top-ranked taxa were differentially abundant between the case and controls from source or
target datasets.

In contrast to the comparisons between the individual taxonomic and stacked-taxa
levels for colorectal cancer and Crohn’s disease datasets, the immunotherapy comparisons
showed reduced consistency. This is largely due to the low performance of the models
that were trained using only microbiome data for immunotherapy response prediction.
Nevertheless, we were still able to identify stable taxa that consistently served as good
predictors for immunotherapy responses across all studies, as shown in Figure 6A. On
the genus level, we observed two taxa Coprococcus [11] and Lactococcus [69], which have
previously been identified as taxa with associations with immunotherapy. On the species
level, our method was able to identify immunotherapy-related identities: Clostridium
asparagiforme [70], Akkermansia mucinphila [70–72], Bacterium LF-3 [73], Blautia wexlerae [71],
and Lactococcus lactis [69]. Moreover, we also utilized a taxon from the class level to the
genus level, referred to as an incertae sedis, in our random forest classifier. This decision was
made due to the observed high significance of this unknown bacteria in the immunotherapy
samples, which suggests there might be another group of microbes that play a significant
role in immunotherapy that have yet to be identified. In addition, ANCOM-BC did not
identify any genus and species-level taxa as being differentially abundant. This lack of
detection could be due to the inconsistent performance of differential abundance analysis
on microbial data, as noted in previous research [65]. Despite this limitation, our approach
of leveraging diverse taxa offers a unique method for studying critical taxa that can be
applied across multiple independent datasets. Figure 6B illustrates the log-transformed
relative abundances of a set of taxa across the respective samples in five immunotherapy
datasets. We observed that some taxa, such as genus Coprococcus and species Bacterium LF-3,
Akkermansia muciniphila, and Clostridium asparagiforme, had observable different relative
abundance range between the two outcomes group across all five studies.
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Figure 6. Top feature importance investigation changes for immunotherapy response datasets.
(A) Heatmap for the changes in the top 44 features from the random forest feature selections result
from individual taxonomic and stacked-taxa levels for colorectal cancer datasets across 50% of target
samples in the source data. (B) Log-transformed relative abundances for the consistent taxa identified
between the individual taxonomic and stacked-taxa for immunotherapy response. The solid black
dots represent outliers. If there is no more than 0.15 change between the baseline and importance
with 50% of target samples in the source for a taxon, it will be labeled as stable for the trend. For
changes greater than 0.15 or less than −0.15, the trend is labeled as increase or decrease, respectively.
If the features were not selected as important from any of the models, these taxa are labeled as “Not
Present”. The trend categories are divided into four groups corresponding to different target data:
1. Peters et al.; 2. Gopalakrishnan et al.; 3. Matson et al.; 4: Frankel et al.

4. Conclusions

In this work, we presented a strategy for using microbial compositional data from
one research to enhance the prediction of a second independent microbial dataset with
the same illness of interest but a distinct population. We have shown that with 25%
to 50% of the target samples in the source data, various machine-learning approaches
may achieve enhanced prediction performance, with the random forest being the most
effective. Next, we demonstrated that by using the feature selection methods in the
random forest models from different leveraging schemes, we could interactively evaluate
critical microbes at various taxonomic ranks to identify generalizable taxa that allow the
random forest classifier to distinguish between the disease and control samples. As a result,
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these consistently high-importance taxa are good candidates for disease-related microbial
biomarkers. Furthermore, we demonstrated the usefulness of the stacked-taxa data for
machine learning models to concurrently analyze microorganisms from multiple taxonomic
levels while retaining good model performance. Compared to previous work on cross-study
investigations, our leveraging schemes offer a unique perspective, and we demonstrated
its effectiveness and potential role in discovering generalizable disease-related taxa.

Among all the taxonomic levels examined, the genus-level served as the best-performing
level, and the species-level served as the most refined taxonomic level, albeit performing
worse than the genus-level. While the performance might have dropped, this should not
diminish the potentially useful information on the species-level, as many of these species
are differentially abundant. As a solution, we recommend using the stacked taxa as the
input for the leveraging scheme, which maintains a similar performance as the genus level
and, more importantly, allows the researchers to simultaneously evaluate crucial taxa across
all taxonomic levels with improved microbial interpretability of the results.

This study has some limitations, including the potential for variability in the quality
of the input data due to some samples being sequenced with shorter reads, which may
affect the resolution and quality of the microbial taxonomic assignments. Additionally, the
data on microbes alone may not provide a good prediction of immunotherapy response,
and further studies using shotgun metagenomics and metabolomics may be needed to
understand the role of various microbes more extensively in immunotherapy.
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