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Abstract: Optical Coherence Tomography (OCT) technology is essential to obtain glaucoma diagnostic
data non-invasively and rapidly. Early diagnosis of glaucoma can be achieved by analyzing the
thickness and shape of retinal layers. Accurate retinal layer segmentation assists ophthalmologists in
improving the efficiency of disease diagnosis. Deep learning technology is one of the most effective
methods for processing OCT retinal layer images, which can segment different retinal layers and
effectively obtain the topological structure of the boundary. This paper proposes a neural network
method for retinal layer segmentation based on the CSWin Transformer (CTS-Net), which can achieve
pixel-level segmentation and obtain smooth boundaries. A Dice loss function based on boundary
areas (BADice Loss) is proposed to make CTS-Net learn more features of edge regions and improve
the accuracy of boundary segmentation. We applied the model to the publicly available dataset of
glaucoma retina, and the test results showed that mean absolute distance (MAD), root mean square
error (RMSE), and dice-similarity coefficient (DSC) metrics were 1.79 pixels, 2.15 pixels, and 92.79%,
respectively, which are better than those of the compared model. In the cross-validation experiment,
the ranges of MAD, RMSE, and DSC are 0.05 pixels, 0.03 pixels, and 0.33%, respectively, with a slight
difference, which further verifies the generalization ability of CTS-Net.

Keywords: glaucoma; deep learning; loss function; retinal layer segmentation; optical
coherence tomography

1. Introduction

Glaucoma is an eye disease that can lead to blindness. Early diagnosis and treatment
with ophthalmologists can prevent further deterioration [1]. It is estimated that the number
of glaucoma patients worldwide will increase from 76.5 million in 2020 to 111.8 million in
2040 [2]. Glaucoma is characterized by thinning of the retinal nerve fiber layer (RNFL) and
optic disc depression. The main factors that form glaucoma are age, elevated intraocular
pressure (IOP), and genetic background [3]. The main parameter for early diagnosis of
glaucoma is the thickness of the RNFL layer: the smaller the thickness, the more severe the
symptoms [4]. Thanks to the non-invasive, fast scanning speed, high resolution, and 3D
imaging advantages of OCT technology [5], it soon became a necessary technical means for
diagnosing ophthalmic diseases [6]. Ophthalmologists analyze OCT images to determine
eye or body health conditions, such as glaucoma, multiple sclerosis [7], and Alzheimer’s [8].
Different tissue layers of the retina have strict topological edge order. OCT retinal layer
image segmentation results are significant for thickness [4,9] and surface shape analysis [10].
However, images collected by OCT technology are usually rough due to noise, and the
layer boundary is unclear. Ophthalmologists must carefully analyze retinal OCT images to
identify the retinal layer and its edge, which usually takes plenty of time. From the above,
there is an urgent need for OCT automatic segmentation technology.

Many automatic retinal layer segmentation methods have been proposed to help
doctors analyze OCT images. Their main goal is to obtain the correct and smooth retinal
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layer surface. Graph-based methods [11–13], which only use hand-designed features, are
vulnerable to the noise and distortion of OCT images. In recent years, deep learning has
developed rapidly and is widely used in the medical field [14]. The U-shaped [15] neural
network framework based on convolutional neural network (CNN) is the most widely
used in ophthalmic retinal layer segmentation [16], e.g., Ref. [17] uses a fully convolutional
neural network to predict each OCT image pixel and then extract the edge, Ref. [18]
divides the pixel into ten categories and applies the shortest path to obtain the edge of
each layer, and Ref. [19] uses ResUnet to directly predict the retinal layer category of
each OCT image’s pixel and each layer’s edge position. Although the CNN-based model
achieves good performance, it cannot learn the interaction of semantic information between
global and long range due to the limitation of the convolution operation. On the contrary,
the model constructed based on the Transformer has the ability of global modeling, and
its performance surpasses the model based on CNN [20]. Among them, the modified
model based on Transformers such as Swin Transformer [21] and CSWin Transformer [22]
have outstanding performance in terms of accuracy. The model based on the Transformer
achieves satisfactory performance, but there are fewer applications in OCT images in retinal
layer segmentation.

In order to apply the excellent performance of the Transformer to the segmentation of
retinal layers, our network adopts a design combining convolution and the Transformer.
Since the Transformer’s self-attention calculation consumes a lot of computing power [23]
and cannot directly process image data, it is necessary to use the convolutional layer to
convert the image into sequence data containing multiple tokens. The backbone layer
used by our network is the CSWin Transformer [22], which enables powerful modeling
capabilities while constraining computational cost; this is meaningful for improving the
convergence speed of model training and small dataset training. Our network model
follows the classic U-shaped structure design to enable the model to learn more features
at multiple scales. We apply the proposed method to the retinal layer segmentation data,
which is an essential reference for glaucoma, and compare it with the state-of-the-art
method to verify the effectiveness of our method. Inspired by [24], we propose a Dice loss
function based on the edge area and use it for neural network training. The results show
that this is effective for improving the characteristics of the edge area learned by the neural
network and the segmentation accuracy.

Our contributions can be summarized as follows:

1. We design a CSWin-Transformer-based OCT image segmentation network for glau-
coma retinal layers. After carefully analyzing the cross-attention mechanism of the
CSWin Transformer, it is found that its self-attention in the horizontal and vertical
directions matches the features of the retinal layer. Therefore, we developed the
neural network and applied it to the segmentation task of glaucomatous retinal layers,
which provides a new reference direction for using an attention mechanism for retinal
layer segmentation.

2. We present a Dice loss function based on edge regions. In retinal layer segmentation
tasks, features are often condensed in edge regions. Based on the Dice loss function,
we developed a loss function that only calculates the overlapping loss of the edge
region, which can guide the depth learning model to learn more edge features to
improve the accuracy of edge segmentation.

2. Related Works
2.1. Retinal Layer Segmentation

In the images of the retina layer collected by OCT technology [5], the change in gray
intensity depicts the tissue characteristics of different retina layers, such as the nerve
fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear
layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), inner segment outer
segment junction (ISOSJ), outer segment layer (OSL), outer segment photoreceptors (OPR),
subretinal virtual space (SRVS–zero thickness in normals), and retinal pigment epithelium
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(RPE) [25]. The thickness change of a single layer may be a precursor of retinal disease,
which is of great significance for early clinical diagnosis. For example, glaucoma is an
optic nerve disease that causes irreversible vision loss, resulting in loss of nerve fibers
(i.e., thinning of the RNFL) and depression of the optic nerve head [2]. Deep learning is a
complex algorithm in machine learning, which has strong learning ability, robustness, and
can obtain the desired results from data with complex noise. Although deep learning is
computationally intensive and requires many data, it is relatively affordable for modern
technology. It has achieved excellent results in language translation and image recogni-
tion [26] and has also been widely used in pathological recognition and tumor segmentation
in the medical field [4,14]. CNN-based deep learning technology has been widely used in
analyzing fundus OCT images [27]. However, there are few retinal segmentation networks
based on CSWin Transformer.

2.2. Transformer

Proposed initially by [28], the Transformer was applied to natural language processing
and made significant progress. Inspired by the achievements of the Transformer, researchers
applied it to the field of computer vision [23] and designed the Vision Transformer (ViT).
Previously, the basic framework of the deep learning model used for computer vision
tasks was CNN; however, now, the model using the Transformer as the basic structure
has achieved better results [20]. Transformer-based models have been widely used in
visual tasks such as image classification, object detection, semantic segmentation, and
video understanding. Their excellent results are due to the attention mechanism. The deep
learning model draws on the human attention mechanism, which quickly screens high-
value information from a large amount of information using limited attention resources.
Various attention mechanisms have been proposed, such as sparse attention, linearized
attention, and multi-head attention [29]. Among them, multi-head self-attention is the most
widely used, and the representative model for this mechanism is Swin Transformer. Swin
Transformer proposes a moving window attention mechanism to solve the computationally
intensive problem of self-attention on the entire image. It divides the image into windows
of different sizes and performs self-attention calculations separately. In order to increase
the attention span but reduce the amount of calculation, Ref. [22] proposes a cross-attention
mechanism, which divides the image into non-overlapping stripes in both horizontal and
vertical directions and performs self-attention calculations in each stripe. Compared with
the moving window attention mechanism, the cross-attention mechanism can achieve a
more comprehensive attention range and realize parallel computing of attention. Inspired
by the operation method of the cross-attention mechanism and combined with the hierar-
chical feature analysis of the OCT retina, we found that this segmentation task is suitable for
applying the cross-attention mechanism, which can perform self-attention calculations on
the retinal layers in the horizontal and vertical directions. This is believed to help improve
the accuracy of image segmentation. Therefore, we desire to utilize the CSWin Transformer
to design a neural network model.

2.3. Loss Function

Various deep learning models have been proposed and applied to different fields,
among which training a well-performing model is inseparable from the loss function
used. A loss function measures the degree of difference between the prediction and the
ground truth, and the loss result guides the model learning through the backpropagation
mechanism of the neural network. In medical image segmentation, the generally used
loss functions of neural network models are the cross-entropy loss function and Dice
loss function [24]. Cross-entropy comes from information theory and is used in machine
learning to evaluate the class probability distribution of the model output and the accurate
distribution. The dice coefficient was initially used to measure the coincidence of two
images. Milletari et al. [24] improved the dice coefficient into a loss function and applied it
to the MRI image segmentation task of the prostate. We assign priority to the edge regions
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in the retinal layer segmentation task. To enable the model to learn more edge area features
of retinal OCT images, we improved the Dice loss function, called BoundaryAreaDiceLoss,
which only selects an area of a certain width at the edge of each layer to calculate the loss.
Then, using BoundaryAreaDiceLoss in combination with other loss functions (such as Dice
Loss), the model will obtain more gradients from the edge area of each category during
training—that is, assign priority to the features of the edge area.

3. Method
3.1. Network Architecture

As shown in Figure 1, our neural network model includes an encoder, decoder, and
skip connections. The backbone network used by our model is the CSWin Transformer
Block (CTB). For the encoder, the original image is processed by Pre-processing (PreP)
to obtain multiple square images that are of the same size and non-overlapping; these
images are input to the CC layer as a batch. Following the method of [22], the sub-layer
ConvEmbed layer in the CC layer operates overlapping convolution (kernel size is 7 × 7,
the stride is 4) to convert the picture into a sequence. The number of channels can be
arbitrarily amplified to C. Then, via the Patch Merging (PM) layer and the continuous CTB
layer, we can obtain multi-scale feature representation. The PM layer is responsible for
downsampling to expand the receptive field, and the CTB is used for feature representation
learning. The decoder upsamples deep-scale features through three network layers (PEC,
CC, and PE) and then fuses shallow elements through skip connections. Multiple feature
maps are generated by the PEC layer and then input to the CC layer for further feature
analysis, and double upsampling is performed through the PE layer again. The last layer
of PEC outputs a pixel-level prediction map for each retinal layer. After Post-processing
(PostP), the image with the input size of the original image is obtained. PreP and PostP will
be explained in Section 4.2.

Figure 1. The architecture of CTS-Net. Among them, PE, CTB, PM, PreP, and PostP are the ab-
breviations of Patch Expanding, CSWin Transformer Block, Patch Merging, Pre-processing, and
Post-processing, respectively.
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3.2. CSwin Transformer Block

The CSWin transformer block (CTB) consists of 2 layers of LayerNorm (LN), cross-
shaped window self-attention, multi-layer perceptron (MLP), and skip connections. As
shown in Figure 2. CTB is built based on the cross-shaped windows attention mechanism,
its input and output dimensions are consistent, and the operation process is expressed by
Equation (1).

X̂l = CSWin−Attention(LN(Xl−1))+Xl−1

Xl+1 = MLP(LN(X̂l)) + X̂l
(1)

where X̂l is obtained by splicing the output of Cross-Shaped Window Self-Attention and
the input Xl−1 ∈ R(H×W)×C. Xl+1 is obtained by concatenating the output of the MLP
layer with X̂l .

Figure 2. Structure of CSWin Transformer Block.

The cross-window self-attention mechanism achieves efficient global attention by
simultaneously performing self-attention computations in both horizontal and vertical
directions. When performing attention calculations, the image is divided into multiple
stripes of the same size in the two directions, and the width of the stripes can be customized.
The stripe width is an essential parameter of this attention module: the larger it is, the more
connection between categories can be established in a more extensive range, but the amount
of calculation will increase slightly. The horizontal attention calculation is expressed by
Equation (2), and the final attention calculation result is defined by Equation (3).

X = [X1, X2, ..., XM]

Yi
k = Attention(XiWQ

k , XiWK
k , XiWV

k )

H−Attentionk(X) = [Y1
k , Y2

k , . . . , YM
k ]

(2)

where Xi ∈ R(sw×W)×C, M = H/sw, and i = 1, ..., M. WQ
k ∈ RC×dk , WK

k ∈ RC×dk , and
WV

k ∈ RC×dk represent the query, key, and value matrix of the kth head, respectively, and
each head has dimension dk.
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CSwin−Attention(X) = Concat(head1,..., headk)WO

headk =

{
H−Attentionk(X) k = 1, ..., K/2
V−Attentionk(X) k = K/2 + 1, ..., K

(3)

where WO ∈ RC×C is the projection matrix that maps self-attention results to the target
output dimension (C).

3.3. Encoder

The encoder contains three network layers: CC, PM, and CTB. A batch of original
images is obtained through Pre-processing and input to the CC layer. ConvEmbed comes
from [22], which can convert images into sequence data for continuous CTB learning feature
representation. After the PM [21] layer divides the input patches into 4 parts and connects
them, the number of channels increases to 4×. Then, PM uses a linear layer to change the
number of channels to 2× of the original input patches. Then, the representation learning of
this scale is performed through 4 consecutive CTBs. In the encoder, the calculation process
of PM and CTBx4 will be repeated twice. Thanks to CTB’s cross-attention mechanism, the
encoder can perform self-attention calculations in an extensive range in the height and
width directions of the image, which is beneficial for learning the hierarchical features of
the OCT fundus images.

3.4. Decoder

Each decoder block consists of PEC, CC, PE, and CTB, where the structure of CC is the
same as mentioned in the Encoder section. The PEC layer contains PE and convolutional
layers (Conv). The PE [21] layer uses the linear layer to 2× upsample the input patches.
Conv restores the input patches to the feature map of the current scale. The first PEC layer
outputs a feature map of N categories and size H

8 ×
W
8 from the deep features. The PEC,

CC, and PE are equivalent to feature extraction and feature learning at the current scale and
then perform feature fusion on the shallow features passed by skip connections through
two consecutive CTBs. After repeating two decoder blocks, the feature map size of the final
PEC layer output is H ×W.

3.5. Loss Function

Inspired by the Dice loss function proposed in [24] and combining the OCT fundus
image segmentation task with high requirements for edge segmentation, we designed a
Dice loss function based on the edge area, named BoundaryAreaDiceLoss (LBADice). This
loss function can guide the model to learn more about the edge area features of the retinal
layer to improve the accuracy of edge segmentation. As shown in Figure 3a, cyan is the
prediction Pi of the i-th category and green is the ground truth Gi for which we take the
area whose edge width is d, as shown in Figure 3b, to calculate the Dice loss. LBADice is
represented by Equation (4).

LBADice =
1
N

N−1

∑
i=0

(1−
2|Pba

i ∩ Gba
i |+ ε

|Pba
i |+ |Gba

i |+ ε
) (4)

where N is the number of categories. Pba
i and Gba

i are the predicted and ground-truth
results for the i-th class of edge regions, respectively. In order to prevent the situation
where both the numerator and the denominator are 0, a constant ε is added.

To ensure precise prediction of the middle area of each category, we use the Dice loss
function (LDice) and BoundaryAreaDiceLoss (LBADice) jointly; then, the loss function of the
final network training is

L = w1 ∗ LDice + w2 ∗ LBADice (5)

where w1, w2 are the weighted hyperparameters.
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Figure 3. (a) The prediction results and ground truth of the i-th category. (b) The prediction result of
the i-th class and the edge area of the ground truth; d is the width of the edge area.

4. Experiments
4.1. Dataset

We applied the proposed method to a segmentation competition dataset GOALS [30],
provided by the Zhongshan Ophthalmology Center of Sun Yat-sen University in Guangzhou,
China. We utilized 100 sample data obtained by peripapillary circular scanning, half of
which were glaucoma patients. The label image size is 800 × 1000, with segmentation
marks of the retinal nerve fiber layer (RNFL), ganglion cell plexiform layer (GCIPL), and
choroid layer (CL).

4.2. Image Processing
4.2.1. Pre-Processing

Due to the high resolution of sample images and the limitation of GPU memory,
the batch size must be reduced in the training stage. If the batch size is too small, the
convergence of the model will be unstable [31], and if it is too large, the convergence will be
slow [32]. To solve this problem, we intercept the range of pixel index 63–613 in the length
direction of the original image, which can include all retinal layer areas to obtain a new
length size of 550 and then downsize it to 256. Meanwhile, the width direction is directly
reduced to 1024. The newly generated size is 256 × 1024. Then, divide the image into four
non-overlapping parts, each with a size of 256 × 256. The processing flow is shown in
Figure 4.

Figure 4. Image pre-processing flow.

The processing of labels requires further improvement based on the process shown
in Figure 4. The retinal layer area we want to segment has three layers, as mentioned in
Figure 5b, but there are five retinal layer edges. To reduce the impact of background pixels



Bioengineering 2023, 10, 230 8 of 15

occupying the majority and resulting in highly unbalanced categories, we divide the pixels
into six categories according to the number of boundaries.

Figure 5. (a) OCT image with boundary naming. (b) Labels with instructions for retinal layers. The
edge of each retinal layer in (a) is extracted from (b) using the Canny [33] algorithm.

4.2.2. Post-Processing

The output of the proposed neural network in the last PEC layer is the pixel-level
segmentation prediction map of each sub-eye layer. However, the edges between layers
need further processing to obtain. We first use the Canny algorithm [33] to extract edge
pixels, which will result in jagged edges because pixels cannot be further divided. These
edges are then fitted by the Savitzky–Golay [34] algorithm to obtain smooth retinal layer
edges. The Savitzky–Golay filtering algorithm is a window-based data weighting filter
that performs polynomial fitting according to the least squares method. It can improve the
accuracy of the data without changing the signal trend and width, which can be expressed
by Equation (6). We set the window size to 33, and the result is shown in Figure 6.

xk,smooth = x̄k =
1
H

+w

∑
i=−w

xk+ihi (6)

where xk,smooth is the i-th point after smoothing, 2w is the window size, and hi
H is the

smoothing coefficient, obtained by fitting polynomials by the least squares method.

Figure 6. (a) Pixel-level prediction map extracted by Canny algorithm; (b) effect of the Savitzky–Golay
filter algorithm to fit the edge.

4.3. Implementation Details

Our neural network is implemented based on Python 3.8 and Pytorch 1.10.1. We
employ the last 80 images of the labeled 100-image dataset as the training set and the first
20 images as the test set. For all training data, random rotation and flipping are operated
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to diversify the data to improve the robustness of the model. CTS-Net is initialized using
the CSWin Transformer pre-trained model on the ImageNet dataset. The hyperparameters
w1 and w2 of the loss function are both set to 0.5, and d is set to 10. We set the epoch to
150 and the batch to 4 (because an original OCT image is divided into four images). The
optimizer we use is Stochastic Gradient Descent (SGD) with an initial learning rate of 0.05, a
momentum of 0.9, and a weight_decay of 1e-4. Furthermore, the change law of the learning
rate is shown in Equation (7).

lr = lr0 ∗ (1.0− it
itmax

)0.95 (7)

where lr is the current learning rate, lr0 is the initial learning rate, it is the current iteration
count, and itmax is the maximum number of iterations.

4.4. Evaluation Metrics

The performance comparison analysis of the models uses three evaluation metrics,
namely, mean absolute distance (MAD), root mean square error (RMSE), and dice-similarity
coefficient (DSC), which are expressed by Equation (8). We compute the MAD and RMSE
between the predicted and ground-truth edges along each column of pixels in the image.

MAD = 1
N

N−1
∑
i
|pi − gi|

RMSE =

√
1
N

N−1
∑
i

(pi − gi)
2

DSC = 2·|P∩G|
|P|+|G| × 100%

(8)

where N is the maximum number of columns; pi and gi denote the predicted and ground-truth
edge positions, respectively; |P|, |G| represent the number of predicted and ground truth pixels;
and |P∩G| represents the number of overlapping pixels between prediction and ground truth.

4.5. Experimental Results
4.5.1. Analysis of Retinal Image Segmentation Results

To verify the effectiveness of our method, we compared it with three start-of-the-art models,
namely, FCN [35], RelayNet [36], and Swin-Unet. FCN is a neural network model built with
convolution as the backbone network and was employed to segment retinal layers. RelayNet is
also a fully convolutional neural network model that can perform pixel-level segmentation of
retinal layers. Swin-Unet is a U-shaped model with Swin Transformer as the backbone network,
which first achieved good results in heart segmentation and multi-organ segmentation tasks
and was later applied to various medical image segmentation tasks.

We compare the results of each model test for quantitative analysis, as shown in
Tables 1 and 2. Overall, the results of CTS-Net in the three evaluation metrics of MAD,
RMSE, and DSC are better than those of other models. RelayNet ranks second in MAD and
RMSE. CTS-Net is 0.31 and 0.48 pixels lower than RelayNet in terms of MAD and RMSE,
respectively, and exceeds Swin-Unet (ranked 2) by 2.63% in DSC, which shows that it has
outstanding performance.

Table 1. Test results of MAD(Std) and RMSE(Std) of each method in the GOALS dataset, where Std
means standard deviation.

Boundary
MAD(Std) RMSE(Std)

FCN RelayNet Swin-Unet CTS-Net FCN RelayNet Swin-Unet CTS-Net

ILM 1.44(0.45) 1.23(0.35) 1.44(0.36) 1.40(0.41) 1.85(1.07) 1.62(0.84) 1.70(0.38) 1.63(0.41)
RNFL-GCIPL 2.24(0.69) 2.05(0.64) 1.97(0.59) 1.47(0.36) 3.05(0.98) 2.70(0.83) 2.53(0.76) 1.86(0.45)
GCIPL-INL 2.64(1.71) 1.84(0.72) 2.05(0.63) 1.58(0.53) 3.40(2.13) 2.29(0.83) 2.51(0.76) 1.89(0.57)

BM 1.76(0.52) 1.89(0.70) 1.97(0.60) 1.73(0.65) 2.38(0.95) 2.29(0.74) 2.41(0.68) 2.06(0.71)
CS 5.57(3.01) 3.51(1.27) 3.82(1.17) 2.77(0.92) 7.76(5.2) 4.25(1.46) 4.93(1.95) 3.30(0.94)

Overall 2.73(1.28) 2.10(0.74) 2.25(0.67) 1.79(0.57) 3.69(2.07) 2.63(0.94) 2.82(0.91) 2.15(0.62)
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Table 2. Test results of DSC of each method in the GOALS dataset.

Layer FCN RelayNet Swin-Unet CTS-Net

RNFL 91.93% 93.06% 93.14% 94.62%
GCIPL 78.96% 84.88% 85.36% 89.60%

CL 89.98% 92.44% 91.98% 94.14%
Overall 86.96% 90.12% 90.16% 92.79%

A qualitative comparison between CTS-Net and other models found that it has
smoother edges than other models and is closer to the ground truth, as shown in Figure 7.
We observe that the edge CS, Swin-Unet, RelayNet, and FCN significantly differ from
the ground truth labels, showing jagged, rough edges. As shown in Figure 8, CTS-Net
also performs well in pixel-level segmentation. It can segment a narrow layer such as
GCIPL well and ensure smooth edges of the area. For all six segmentation regions, CTS-Net
significantly outperforms all compared methods.

From both quantitative and qualitative analyses, CTS-Net exhibits excellent perfor-
mance, which can guarantee the topological structure of retinal layers and obtain smooth
retinal boundaries. It has much to do with the model’s system design, the CSWin Trans-
former’s cross-attention mechanism, and the proposed loss function for edge regions.

Figure 7. Retinal layer boundary results obtained by four methods.

Figure 8. Retinal layer segmentation results for four methods.
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4.5.2. Loss Function Experimental Results

The boundary region loss function proposed in this paper has a hyperparameter d:
the width of the edge region. We conduct several experiments to analyze this parameter’s
influence on the model performance. On the premise of only adjusting the hyperparameter
d, we train CTS-Net to obtain multiple models and test them to obtain the results in
Table 3. In these five groups of experiments, the test results of MAD, RMSE, and DSC
metrics are the best when d = 10. Compared with the five groups of experiments, the most
significant differences in MAD, RMSE, and DSC metrics were 0.19 pixels, 0.22 pixels, and
0.13%, respectively. This experiment shows that the test performance of the model can be
improved by selecting the hyperparameter d of the loss function.

Table 3. Quantitative comparison results of modifying the hyperparameter d of the boundary area
loss function.

d MAD(Std) RMSE(Std)
DSC

RNFL GCIPL CL Overall

6 1.91(0.65) 2.28(0.71) 94.60% 88.81% 93.79% 92.40%
8 1.97(0.65) 2.35(0.69) 94.68% 88.71% 93.57% 92.32%
10 1.83(0.61) 2.22(0.68) 94.50% 89.01% 93.81% 92.44%
12 2.02(0.70) 2.44(0.79) 94.63% 88.90% 93.39% 92.31%
14 1.98(0.63) 2.37(0.68) 94.56% 88.86% 93.61% 92.34%

To analyze the impact of the proposed loss function on the model’s performance, we select
RelayNet, Swin-Unet, and CTS-Net to perform comparative experiments with different loss
functions. There are four combinations of loss functions used in each model, namely, CrossEn-
tropyLoss (CEL), CrossEntropyLoss + BoundaryAreaDiceLoss (CEL+BADL), DiceLoss (DL),
and DiceLoss + BoundaryAreaDiceLoss (DL+BADL). The experiment results are shown
in Table 4. After each model uses the loss function BADL, multiple evaluation metrics im-
proved. The best combination of the loss function used in the RelayNet model is DL+BADL,
which is 0.12 and 0.16 pixels lower in MAD and RMSE than the loss function used in the
original paper, and 1.42% higher in DSC. Swin-Unet also improved in various evaluation
metrics. The combination of CTS-Net’s loss function that performs best on MAD and RMSE
is CEL+BADL, while the combination that performs best on the DSC is DL+BADL, but
both cases are only slightly different. The results show that all the BADL loss functions will
improve when the model is trained because BADL can realize further supervision on the
edge area.

Table 4. The results of the model using different combinations of loss functions.

Model Loss Function MAD(Std) RMSE(Std)
DSC

RNFL GCIPL CL Overall

RelayNet

CEL 2.10(0.69) 2.58(0.79) 93.09% 84.51% 92.44% 90.01%
CEL+BADL 2.04(0.66) 2.69(1.31) 93.39% 86.37% 92.54% 90.77%

DL 1.98(0.74) 2.56(1.40) 93.85% 87.26% 93.08% 91.40%
DL+BADL 1.98(0.66) 2.47(1.06) 94.08% 87.81% 92.83% 91.58%

Swin-Unet

CEL 2.64(0.75) 3.44(1.21) 90.92% 79.35% 88.69% 86.32%
CEL+BADL 2.16(0.64) 2.71(0.85) 93.19% 85.25% 91.84% 90.09%

DL 2.17(0.64) 2.68(0.80) 93.56% 86.21% 92.39% 90.72%
DL+BADL 2.13(0.61) 2.65(0.88) 93.65% 86.73% 92.34% 90.91%

CTS-Net

CEL 2.03(0.64) 2.45(0.69) 94.12% 87.48% 93.40% 91.67%
CEL+BADL 1.78(0.55) 2.14(0.60) 94.62% 89.35% 93.80% 92.59%

DL 1.82(0.58) 2.19(0.61) 94.80% 89.43% 93.97% 92.73%
DL+BADL 1.79(0.57) 2.15(0.62) 94.62% 89.60% 94.14% 92.79%
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4.5.3. Cross Validation

A stable and reliable model is essential; so, we use the cross-validation method to
evaluate the robustness of CTS-Net. We perform a five-fold cross-validation experiment.
Based on the dataset divided in Section 4.3, we split the 80 samples of the training set into
five parts, one of which is the validation set, and the test set remains unchanged. Five
models are obtained by training CTS-Net without repeated selection of the validation set,
and the final results are shown in Tables 5 and 6.

Overall, the test results of CTS-Net are similar for each fold because the ranges of
MAD, RMSE, and DSC metrics are 0.05 pixels, 0.03 pixels, and 0.33%, respectively, with a
slight difference. The test results of CTS-Net have slight differences because of different
dataset partitions, which shows that the model has satisfactory robustness. The average
values of MAD, RMSE, and DSC metrics of cross-validation results are better than those of
FCN, RelayNet, and Swin-Unet, suggesting that CTS-Net has better generalization ability.

Table 5. Test results of MAD and RMSE with five-fold cross-validation.

Boundary
MAD(Std)

K = 1 K = 2 K = 3 K = 4 K = 5 Mean

ILM 1.30(0.36) 1.23(0.36) 1.41(0.40) 1.31(0.37) 1.36(0.38) 1.32(0.37)
RNFL-GCIPL 1.67(0.39) 1.71(0.48) 1.69(0.44) 1.79(0.48) 1.73(0.45) 1.72(0.45)
GCIPL-INL 1.73(0.54) 1.90(0.61) 1.53(0.53) 1.75(0.58) 1.58(0.53) 1.70(0.56)

BM 1.65(0.49) 1.67(0.52) 1.69(0.53) 1.67(0.54) 1.74(0.64) 1.68(0.54)
CS 3.12(1.07) 3.05(0.99) 3.03(1.14) 2.96(1.04) 2.90(0.86) 3.01(1.02)

Overall 1.89(0.57) 1.91(0.59) 1.87(0.61) 1.90(0.60) 1.86(0.57) 1.89(0.59)

RMSE(Std)

K = 1 K = 2 K = 3 K = 4 K = 5 Mean

ILM 1.52(0.37) 1.47(0.38) 1.64(0.39) 1.53(0.37) 1.60(0.38) 1.55(0.38)
RNFL-GCIPL 2.08(0.53) 2.12(0.64) 2.09(0.58) 2.19(0.61) 2.15(0.61) 2.13(0.59)
GCIPL-INL 2.05(0.57) 2.23(0.64) 1.86(0.59) 2.08(0.61) 1.92(0.55) 2.03(0.59)

BM 1.99(0.55) 2.01(0.59) 2.04(0.57) 2.00(0.60) 2.06(0.69) 2.02(0.60)
CS 3.75(1.20) 3.59(0.97) 3.61(1.18) 3.56(1.11) 3.55(0.99) 3.61(1.09)

Overall 2.28(0.64) 2.28(0.64) 2.25(0.66) 2.27(0.66) 2.26(0.64) 2.27(0.65)

Table 6. Test results of DSC with five-fold cross-validation.

Layer K = 1 K = 2 K = 3 K = 4 K = 5 Mean

RNFL 94.72% 94.75% 94.68% 94.71% 94.55% 94.68%
GCIPL 89.42% 89.12% 89.22% 89.04% 88.65% 89.09%

CL 93.85% 93.68% 93.78% 93.87% 93.78% 93.79%
Overall 92.66% 92.52% 92.56% 92.54% 92.33% 92.52%

5. Discussion

Retinal layer segmentation for glaucoma is challenging due to the high resolution of
the images involved and the high requirement for retinal layer edge segmentation. We
designed CTS-Net based on the analysis of the cross-attention mechanism of the CSWin
Transformer and the hierarchical characteristics of OCT retinal layer images. The proposed
method is superior to the comparison model in MAD and RMSE metrics and inferior to
the comparison model in Std, which shows that the test results of the model are relatively
stable. Although the results of the BADL+DL loss function are similar to those of the Dice
loss function (Table 4), when BADL is added, the MAD and RMSE metrics of the test results
of the RelayNet, Swin-Net, and CTS-Net models are reduced, which indicates that BADL
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can guide the model to improve the performance of edge segmentation. It also shows that
BADL can be used as a general loss function for image segmentation.

Our work also has some limitations. The proposed method must pre-process the
rectangular image into a square before it can be used. However, Refs. [19,35,36] can directly
input the rectangular image into the neural network. This problem can be solved by fine-
tuning the CSWin Transformer structure to make it available for rectangular images. Our
method is limited to 2D images and cannot process 3D data with rich information, which
may be our future research work.

6. Conclusions

The neural network model based on CSWin Transformer has excellent potential in
image segmentation but it is rarely used in OCT retinal layer image segmentation. The cross
attention of CSWin Transformer can achieve a wide range of self-attention calculations,
giving the model excellent remote modeling capability. In this paper, we built CTS-Net
based on the basic skeleton of CSWin Transformer to realize pixel-level segmentation of
OCT images of the glaucoma retinal layer and to obtain smooth and continuous retinal
layer boundaries. We proposed a Dice loss function based on the boundary area to guide
the model to discover more features around the edge region. The experimental results show
that the evaluation indexes of MAD, RMSE, and DSC are 1.79 pixels, 2.15 pixels, and 92.79%,
respectively, which are better than the contrast model. Further cross-validation experiments
show the robustness of the CTS-Net method. The proposed method can effectively promote
depth learning technology’s performance in retinal layer OCT image segmentation.
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