
Citation: Lee, J.; Shin, M. Method for

Solving Difficulties in Rhythm

Classification Caused by Few

Samples and Similar Characteristics

in Electrocardiograms. Bioengineering

2023, 10, 196. https://doi.org/

10.3390/bioengineering10020196

Academic Editor: Mario Petretta

Received: 4 January 2023

Revised: 31 January 2023

Accepted: 1 February 2023

Published: 2 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

Method for Solving Difficulties in Rhythm Classification Caused
by Few Samples and Similar Characteristics in Electrocardiograms
Jaewon Lee 1 and Miyoung Shin 2,*

1 Bio-Intelligence & Data Mining Laboratory, School of Electronic and Electrical Engineering,
Kyungpook National University, Daegu 41566, Republic of Korea

2 School of Electronic and Electrical Engineering, Kyungpook National University,
Daegu 41566, Republic of Korea

* Correspondence: shinmy@knu.ac.kr; Tel.: +82-53-950-7562

Abstract: A method for accurately analyzing electrocardiograms (ECGs), which are obtained from
electrical signals generated by cardiac activity, is essential in heart disease diagnosis. However,
rhythms are typically obtained with relatively few data samples and similar characteristics, making
them difficult to classify. To solve these issues, we proposed a novel method that distinguishes a given
ECG rhythm using a beat score map (BSM) image. Through the proposed method, the associations
between beats and previously used features, such as the R–R interval, were considered. Rhythm
classification was implemented by training a convolutional neural network model and using transfer
learning with the created BSM image. As a result, the proposed method for ECG rhythms with small
data samples showed significant results. It also showed good performance in differentiating atrial
fibrillation (AFIB) and atrial flutter (AFL) rhythms, which are difficult to distinguish due to their
similar characteristics. The performance for rhythms with a small number of samples of the proposed
method is 20% better than an existing method. In addition, the performance based on the F-1 score
for classifying AFIB and AFL of the proposed method is 30% better than the existing method. This
study solved the previous limitations caused by small sample numbers and similar rhythms.

Keywords: ECG rhythms; rhythm classification; deep learning; convolutional neural network (CNN)

1. Introduction

An electrocardiogram (ECG) is a recording of the electrical response of a heart caused
by its movement; thus, an ECG can be used to determine the activity of the heart [1]. It
is generally used to identify a patient’s health condition by classifying the status of each
stage of cardiac activity through changes in the ECG signals’ form or value; hence, these
signals can be the most intuitive data in determining heart disease. The task of analyzing
an ECG and classifying a patient’s abnormal symptoms based on the ECG characteristics is
very important in determining the health of the patient’s heart. A typical disease studied
using ECG is arrhythmia, which refers to an irregular pattern or phenomenon occurring in
an ECG. It is classified according to the type of occurrence: atrial fibrillation (AFIB), atrial
flutter (AFL), and sinus bradycardia (SBR), which are rhythmic conditions that have been
identified as major threats to a heart’s health [2,3].

Experts visually check the waveforms of ECG signals and classify them based on
their experience and background knowledge of cardiac rhythms [4]. However, due to
the many patterns of heart activity and various environmental factors, diagnosis based
on experience and background knowledge can lead to misjudgments, which hinders
the timely application of an appropriate treatment method [5]. Indeed, the number of
patients suffering from AFIB has been increasing, and about 15% of deaths caused by heart
disease worldwide are caused by such misjudgments [6–8]. Therefore, if ECG signals are
analyzed well, and cardiac rhythms are identified more accurately, an accurate diagnosis is
likely possible.
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In the past, ECG signals were analyzed by methods based on experts’ knowledge
and finding known abnormal patterns. For example, ECG features (e.g., time elapsing
between two consecutive R waves in an ECG, called the R–R interval) were calculated
and judged by these methods. Meanwhile, a machine learning technique has been used
to classify heart-related abnormal symptoms through learning based on collected data,
which were accumulated gradually from patients [9,10]. However, previous studies have
focused mainly on finding locations that correspond to R peaks in ECG signal patterns and
classifying the types of beats found [11–13].

Recently, methods using deep learning have been used in various fields and problems,
and such methods have been used in analyzing ECG signals (e.g., classifying AFIB and
a rhythm) [14–22]. Nevertheless, a problem in analyzing an ECG is the difference in
the number of data samples. Depending on the frequency of occurrence of rhythms,
there could be few and many samples for rhythms with low and frequent occurrence,
respectively. For this reason, an imbalance among rhythms exists in ECG databases such
as the Massachusetts Institute Of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia
database, which is widely used and public [23]. This imbalance is a hindrance when
learning and distinguishing various ECG rhythms, and it causes difficulties during the
classification of correct ECG rhythms. For these reasons, research on how to classify
multiple rhythms is insufficient. However, as mentioned above, the limitations are the
difficulty of classifying rhythms using relatively few samples from the measured data and
properly distinguishing similar patterns or characteristics between rhythms [24–27].

In this paper, to compensate for these limitations, we maximized the information
present in an ECG. In analyzing rhythms, we assumed that the arrangement of beats in
ECG signals is correlated with ECG rhythms. We then used the arrangement pattern of
ECG beats to differentiate the various rhythms. In addition, we developed a method that
considers not only these patterns but also features such as the R–R interval related to
rhythm classification.

Through the proposed method, we tried to solve the difficulties caused by rhythms
with similar characteristics and the existing limitations of imbalanced data. To achieve these
goals, two datasets were constructed to classify various rhythm labels by the proposed
method using MIT-BIH arrhythmia data. Finally, we determined the performance of the
proposed model. Our main contributions can be summarized as follows.

1. We consider ECG rhythm as an arrangement of beats and classify various ECG
rhythms by utilizing the arrangement of this pattern of beats. For this purpose, a
series of ECG beat segments divided by a specific criterion are obtained from each
ECG rhythm and are employed to train a beat classification model. The prediction
score vector for each beat segment in the classification model is then used to generate
an arrangement pattern of beats for each ECG rhythm. In doing so, some changes
in ECG rhythms of the same or different types can be reflected as much as possible
through the prediction score vector of the beat classification model.

2. The arrangement pattern of beats for a given ECG signal is converted into a beat
score map (BSM) image, of which a continuous wavelet transform (CWT) is then
fed to a deep convolutional neural network (CNN) for rhythm classification. Unlike
existing methods that mostly focus on the overall characteristics of various ECG
rhythms in the time or frequency domain, we subdivide the rhythms into a series
of beat segments and characterize each beat segment by the prediction score vector
of the beat classification model. The prediction score vectors for a series of beat seg-
ments are aligned along with time interval padding, leading to the production of the
BSM image.

3. The proposed method is effective in classifying various types of ECG rhythms with
data imbalance problems. Particularly, certain types of ECG rhythms with few samples
can be distinguished well from other types with many samples. In addition, our
method can well distinguish different ECG rhythms of similar characteristics, such
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as between AFIB and AFL, which have been known to be difficult to classify in
previous studies.

The remainder of this paper is organized as follows: Section 2 presents existing recent
research related to ECG rhythms. Section 3 describes the overall details of the proposed
method such as BSM image generation and structure of network. Experiments and results
are shown in Sections 4 and 5, respectively. Conclusions are provided with some discussion
in Section 6.

2. Related Works

Hand-crafted features based on background knowledge have been extracted and used
to analyze ECG signals. Recently, feature extraction, which is not done by humans, was
conducted for the desired purpose of using deep learning [22,28]. Through these studies,
hand-crafted features based on existing background knowledge were obtained by using
machine learning [29–31]. In deep learning, the trend is toward automatically obtaining
the most suitable features by methods such as CNN [32–34], long-short term network
(LSTM) [11,35,36], and CNN autoencoder [37]. In a recent study [38], matrix images using
the correlation between multi-channel EEG signals were created and analyzed using a
deep CNN. As such, methods of imaging various physiological signals and analyzing them
through CNN have been proposed.

Research has been undertaken on classifying ECG beats included in an ECG signal.
In previous studies, QRS complexes that are features created based on knowledge of
repetitive morphological patterns of ECG signals have been used [39]. However, rather
than quantifying and analyzing the repeated patterns in a beat classification, studies have
suggested the learning of the ECG signal’s one-dimensional (1-D) data itself to suit beat
classification [40–42]. Alternatively, the ECG signal is converted to an image through
transformation for use as an input of a 2D deep learning method [3,43]. Notably, the
method of converting and utilizing ECG using CWT to compensate for possible limitations
in an existing Fourier transform is performing well [44,45].

In addition to ECG beat classification, studies have been conducted to identify the
rhythm of ECG signals [28]. Among these studies, the most active is in the field of single
rhythm classification using AFIB. AFIB is a common ECG rhythm in many databases; thus,
it is suitable for research. Methods for AFIB classification calculate features related to
AFIB, and they analyze changes in the calculated features [46–48]. Current methods have
preferred using deep learning over traditional features. Recent studies have integrated
the use of CNNs and other network structures, and they obtained good performance for
classifying ECG rhythms [49–53]. In addition, research is being conducted on real-life
applications to reduce computational costs while maintaining the performance of deep
CNNs. [54]. However, they have not paid much attention to the various ECG rhythms
existing in real life. As such, studies on single rhythm classification have shown good
performance but failed to distinguish well between several rhythms.

Meanwhile, many studies have been conducted to classify several rhythms [26,27,55–
57]. However, they have shown severe degradation in classifying some rhythms with data
imbalance problems. Moreover, they had some difficulties in differentiating between ECG
rhythms of similar characteristics, such as between AFIB and AFL.

Finally, many researchers have studied the beat and rhythm of ECG signals using
various features and network structures [58–60]; however, we have not found research on
the correlation between the listings of beats and rhythms. Thus, we intend to solve the
problem of the existing threshold by utilizing the association between the listings of beats
and rhythm in the proposed method.

3. Methods

The proposed model for classifying ECG rhythms employs a 10-s ECG signal as an
input. The proposed method is divided into three main parts: (1) beat unit analysis that
trains a beat classification model using CWT and obtains a beat score vector from the
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trained model; (2) the creation of a BSM image by integrating the obtained beat score vector
into a beat score matrix and applying time interval padding based on the R-peak position in
the matrix; and (3) rhythm classification implemented by utilizing the information related
to the existing feature and the correlation between the list of beats in an ECG signal and
ECG rhythms.

A general overview of the proposed model is provided in Figure 1. In the first part,
a given ECG signal of an input is created with beat segments based on R peak detection,
and the ECG signal of the created segments is then converted into an image by the CWT
method. The converted image is applied to classify the beats contained in a segment. As a
result, we construct a beat score vector by taking the predicted score values rather than the
label values for each beat class to preserve information about differences in ECG signals. In
the second part, the beat score vectors created from each segment are merged with interval
padding to form a beat score matrix, where the interval padding is applied to consider
the R–R interval in the created matrix. For this purpose, the location of the R peaks used
to create the beat segments is utilized. Thus, beat score map (BSM) images conveying
both listing patterns of beats and R–R intervals are created by this part of the method. In
the third part, a two-dimensional (2-D) convolutional neural network (CNN) structure
model is trained using the created BSM images by transfer learning, and the ECG rhythms
are classified.

Figure 1. General overview of the proposed method.

3.1. Preprocessing

We carry out the removal of baseline drift and high-frequency noise in a signal by
discrete wavelet transform. For removing baseline drift, the decomposition scale was set to
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9 in Daubichies-4 (db4). For high-frequency noise filtering, the decomposition scale was set
to 6 in the same db-4, and the frequencies ranging from 50 Hz to 100 kHz were filtered. In
rhythm classification, each window was slid every 1 s, and the rhythm label corresponding
to a sequence in each 10-s unit was recorded.

3.2. BSM Image Generation

To compensate for known limitations, BSM image generation is designed to utilize
beat prediction scores obtained in the beat classification process and information from the
R–R interval through interval padding.

3.2.1. Beat Classification

Beat classification was implemented based on the structure of a recently studied
method that creates a spectrogram image using ECG signal CWT [44]. To create images
by CWT, a 2.4-s chunk for each R-peak position was created, and each chunk consisted of
ECG signals from 1.2 s before to 1.2 s after an R peak. Using the created images as input,
the model was trained via images created for the classification of the given beat.

3.2.2. Interval Padding and Resizing

A beat score vector for each beat was obtained using the prediction score value from the
learned beat classification model. All vectors included in a 10-s ECG segment were merged
to form a beat score matrix. If the vectors contained in an ECG signal were combined
simply to form a matrix, the association between the beats and rhythms was considered;
however, information on the R–R interval associated with the rhythm classification was
lost. Thus, a BSM image was created by applying interval padding in which the beat score
vector was entered at the location where the R peak exists, while the rest were filled with
zero. Information such as the location of the overall R peaks within a unit ECG signal and
the R–R interval obtained therefrom were also included in the BSM image.

BSM images were produced initially in a 3600 × 15 structure because the data used in
the experiment had a sampling rate of 360 Hz, resulting in 3600 time points in 10 s. The
size was reduced by one-tenth and adjusted to 360. In a value corresponding to 15, the
number of labels for all beats in the provided data is given. The created matrices resized to
360 × 150 are suitable for CNN learning. The structure of a created 360 × 15 matrix is
shown in Figure 2. The x- and y-axis represent the 360 time points and each beat label,
respectively. The figure confirms that the beat interval, beat type, and prediction score
value for each beat are configured differently for each rhythm class.

Figure 2. BSM image generation of an ECG signal.

3.3. BSM Image Classification

Based on the created BSM image, rhythm classification was implemented by a 2D
CNN. For image classification by transfer learning, the commonly used 2D CNN structure
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of VGG16 [61] was utilized. Therefore, the pre-trained weight was the initial value, and the
weight was learned newly with a given image. The network consisted of five convolution
blocks and three layers that were connected fully in a large structure.

4. Experiments

The proposed method used labels for the rhythm of ECG records obtained from the
MIT-BIH arrhythmia database and the locations of R peaks. We constructed two ECG
rhythm datasets using the given rhythm labels, and the performance of the method was
evaluated for each dataset.

4.1. Dataset

In our experiment, we used the MIT-BIH arrhythmia database containing 48 half-hour
records with various labels. The database was measured in MLII and V5 at a sampling
rate of 360 Hz from two leads. The experiment was conducted using only the MLII among
the two leads. Annotations created by two or more experts are provided for each record,
and they provide the locations of beats based on the R peak. The labels of the beats in
16 categories are also provided, which also provide the labels for ECG rhythms within
each record. Sections corresponding to each rhythm in the database were defined as the
label of the rhythm. The beat label ‘?’ was excluded because it was not found; thus,
only 15 beat labels were used in the experiment. The rhythm labels were the following:
normal sinus rhythm (N), AFIB, AFL, SBR, supraventricular tachyarrhythmia (SVTA),
ventricular bigeminy (B), ventricular trigeminy (T), and paced rhythms (P). Representative
10-s ECG segments for four rhythm labels, N, AFL, AFIB, and SBR, are presented in
Figure 3. The green and red circles represent the R-peak locations and beats (not normal
beats), respectively.

Figure 3. Representative ECG rhythm sequences.

We configured two ECG rhythm sets for various ECG rhythms. First, we classified five
rhythm classes: N, AFIB, SVTA, B, and T, which aimed to evaluate the performance of the
model for rhythms with relatively few samples. Then, we evaluated AFIB and AFL, which
are difficult to classify owing to their similar ECG rhythms. The second dataset consisted of
six ECG rhythm classes: N, AFIB, B, P, AFL, and SBR. The number of samples per rhythm
in each experimental dataset is summarized in Tables 1 and 2.

Table 1. Number of samples in the 5-class dataset used to classify ECG rhythms with few samples.
Abbreviations are defined in the text.

5-Class N AFIB B T SVTA

Number of samples 8756 7215 823 410 91
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Table 2. Number of samples in the 6-class dataset difficult to distinguish ECG rhythms with similar
characteristics, such as AFIB and AFL. Abbreviations are defined in the text.

6-Class N AFIB P SBR B AFL

Number of samples 8756 7215 1796 1796 823 549

Frequently occurring rhythms contain many data samples, while relatively rare T and
SVTA contain fewer data samples. These result in data imbalance; thus, when configuring
the data of a mini-batch in the learning process, different sampling weights were designated
for each rhythm. Each mini-batch was obtained by weighted random sampling, and the
value of the batch size was 16.

4.2. Hyperparameters and Settings

CNN weights were learned by transfer learning; hence, after a pre-trained initialized
weight was called, the learning was carried out using an Adam optimizer. To search for the
optimal values for hyperparameters, such as the learning rate and the number of epochs,
a grid search was performed on the validation dataset. The learning rate was chosen as
the best value in the range of 0.1 to 0.0001, and the number of epochs was chosen as the
best value in the range of 10 to 50. As a result, the optimal performance on the validation
dataset was at a learning rate of 0.001 and an epoch of 30. We also set the batch size to 4,
which is the largest value that can be selected in the experimental environment settings.
Five-fold cross-validation was conducted on all experiments.

5. Results

N and AFIB are studied often; thus, they were included. Two ECG rhythm datasets
were created, and an experiment was conducted on these datasets. The first dataset
consisted of rhythms with fewer samples than N and AFIB. Through this, we evaluated
the ability of the proposed algorithm to distinguish N and AFIB simultaneously and
differentiate rhythm classes with relatively few samples. The second rhythm dataset, which
was created to assess the ability of the proposed algorithm to distinguish between AFIB
and AFL, is discussed as a limitation of existing studies. For this goal, AFIB, AFL, N, and
three additional ECG rhythms were included. We analyzed the ability of the proposed
model for this rhythm dataset to classify AFIB and AFL.

The performance of the proposed algorithm was analyzed with respect to its accuracy
(Acc), precision (Pre, known as PPV), sensitivity (Sen, known as recall), specificity (Spec),
and F1 score.

5.1. Experiment to Classify ECG Rhythm with Few Samples

First, an experiment was conducted on the first rhythm dataset, and the five rhythm
classes used were N, AFIB, SVTA, B, and T. The number of data samples for each rhythm is
shown in Table 1. The results of the experiment are summarized in Table 3. The overall Acc
was 99.08%, and the proposed method is suitable for rhythm classes with a relatively small
number of data samples (e.g., B, T, and SVTA). Notably, the model was able to distinguish
SVTA with the smallest number of samples with 100% accuracy.

Table 3. Performance of classification model for ECG rhythms with a small number of samples.

Class Spec (%) Sen (%) Pre (%) F1 Score (%) Acc (%)

N 99.45 98.72 99.52 99.12 99.11
AFIB 98.74 99.56 98.98 99.27 99.39
SVTA 99.08 100 100 100 100

B 99.05 99.76 98.92 99.33 99.94
T 99.14 96.83 92.11 94.41 99.73
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A confusion matrix verifying the classification performance for each class is presented
in Table 4. According to the matrix, T is often misclassified as N because the definition of
T is the ECG signal that generates a prematurity ventricular contraction after two normal
beats in this class. Thus, a significant number of normal beats are included in the sequence,
which makes it difficult for the model to differentiate between T and N.

Table 4. Confusion matrix of the proposed approach for ECG rhythms with few samples.

N AFIB SVTA B T

N 8644 70 0 8 34
AFIB 31 7183 0 1 0
SVTA 0 0 91 0 0

B 1 1 0 821 0
T 10 3 0 0 397

5.2. Experiment for ECG Rhythms That Are Difficult to Distinguishable

The following is an experiment evaluating the performance of the proposed method
using the second rhythm dataset. A total of 6 six rhythms, N, AFIB, P, SBR, B, and AFL,
were tested. The number of samples for each rhythm is summarized in Table 2.

The purposes of this experiment include evaluating the ability of the proposed method
to classify different ECG rhythms, including AFIB and AFL, with similar characteristics
and determining whether the proposed method can be supplemented well. First, the
appearance of the ECG waveforms of AFIB and AFL was confirmed in Figure 4. After
comparing AFIB and AFL, we found that some parts are different, while many parts
are similar. Thus, we tried to distinguish AFIB and AFL, which are hard to separate, by
distinguishing various ECG rhythms with the proposed algorithm.

Figure 4. Examples of AFIB and AFL rhythms.

The results of this experiment are summarized in Table 5, which demonstrates that the
proposed method was able to classify all the considered rhythms. The overall accuracy was
99.24%, while the F-1 score was ~99%, except for the AFL. Based on the confusion matrix
shown in Table 6, we found that the proposed algorithm was successful in classifying AFIB
and AFL. Therefore, all rhythms except AFL are well classified. In the case of AFL, ~9%
of AFL rhythms were misclassified as AFIB. Nevertheless, the proposed method shows
significant performance for AFIB and AFL.
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Table 5. Classification performance for ECG rhythms with similar characteristics.

Class Spec (%) Sen (%) Pre (%) F1 Score (%) Acc (%)

N 99.10 99.44 99.76 99.60 99.67
AFIB 99.27 99.18 98.72 98.95 99.27

B 99.21 99.88 99.04 99.46 99.96
P 99.17 100 100 100 100

AFL 99.47 90.84 93.06 91.94 99.58
SBR 99.17 100 100 100 100

Table 6. Confusion matrix for classification of indistinguishable ECG rhythms.

N AFIB B P AFL SBR

N 8707 43 6 0 0 0
AFIB 20 7156 2 0 37 0

B 1 0 822 0 0 0
P 0 0 0 1796 0 0

AFL 0 50 0 0 496 0
SBR 0 0 0 0 0 1796

5.3. Comparison with a Recent Study

To compare the performance of the proposed method with existing methods, we
refer to a recent paper that studied the same data and rhythms. The previous paper, for
comparison with the proposed method in the first rhythm dataset, implemented a rhythm
classification that combines beat unit and spectrogram unit features of an ECG signal [27].
A comparison of the proposed and previous models relative to small ECG rhythm samples
is shown in Table 7. The F1-score was used to evaluate their performance. The proposed
method showed better overall performance, and the performance for SVTA rhythms has
improved particularly by >20%. The poor performance of the previous method is due to
overfitting in N and AFIB, whereas our method classified the rhythms without overfitting
due to the presence of many samples.

Table 7. Comparison of proposed and recent (Pokaprakarn et al., 2021) methods for small ECG
rhythm samples.

Model N AFIB B T SVTA

Proposed method 99.12 99.27 100 99.33 94.41
Pokaprakarn

[27] 98.62 95.79 78.35 84.22 87.22

To evaluate the performance of the second rhythm dataset, a previous paper proposed
a method merging the 1D signal and R–R interval as inputs of CNN using an ECG signal in
one dimension and network, classifying rhythms through this approach [26]. A comparison
of the performance obtained for the previous and proposed methods on each class using
the F1-score is shown in Table 8. The performance of the proposed method for classifying
AFIB and AFL improved by about 37% compared with the previous study. Additionally,
the performance of other rhythms is ameliorated by 2%–3%.

Table 8. Comparison of proposed and recent (Chen et al., 2020) methods for rhythms with similar
characteristics.

Model N AFIB B P AFL SBR

Proposed method 99.60 98.95 99.46 100 91.94 100
Chen [27] 99.64 96.26 96.43 99.68 54.55 98.35
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To investigate the effect of noise in ECG signals on the performance of the proposed
method, we performed additional experiments. To this end, some randomly generated
noise was added to ECG signals at two different signal-to-noise ratio (SNR) levels of
6 dB and −6 dB, respectively. These noise-added ECG signals were used to produce BSM
images and train a beat classification model. The F1-score results of rhythm classification
with noise ECG signals are shown in Table 9. Some noises up to the SNR level of 6 dB do
not appear to affect the rhythm classification performance of our proposed method. On
the other hand, as the SNR level increases to −6 dB, the overall performance degrades
significantly. The overall accuracy also dropped from 99.24% to 94.03% at an SNR level of
−6 dB.

Table 9. Effect of noise in ECG signals on the performance of the proposed method.

SNR Level N AFIB B P AFL SBR

Original data 99.60 98.95 99.46 100 91.94 100
6 dB 98.58 96.32 97.83 100 70.73 100
−6 dB 96.03 93.08 95.00 94.97 57.48 99.17

6. Conclusions and Discussion

We classified various ECG rhythms through the proposed algorithm. We solved the
problems caused by differences in the number of data samples and distinguished between
AFIB and AFL, which have similar characteristics. Our method converts ECG signals into a
new type of image, which we refer to as a BSM image, and it classifies the created image
through CNN. The BSM image was designed to consider previously used features, such as
the R–R interval and the listing pattern of ECG beats. The proposed method can be used in
classifying difficult rhythms with few samples. It can also be used to distinguish AFIB and
AFL with similar characteristics. Based on this, it seems that the method can be helpful in
distinguishing rhythms that are less frequent but dangerous and similar but different.

There are some limitations of this study that need to be explored in future work. For
example, the locations of the R peaks obtained from the database were used to create the
BSM image; hence, when using databases that do not have information about the locations
of R peaks, peak detection is required separately. If there are many incorrect detection
results, the BSM image will be affected; thus, the overall performance of the method
may decrease.
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