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Abstract: Deep-learning methods for auto-segmenting brain images either segment one slice of the
image (2D), five consecutive slices of the image (2.5D), or an entire volume of the image (3D). Whether
one approach is superior for auto-segmenting brain images is not known. We compared these three
approaches (3D, 2.5D, and 2D) across three auto-segmentation models (capsule networks, UNets, and
nnUNets) to segment brain structures. We used 3430 brain MRIs, acquired in a multi-institutional
study, to train and test our models. We used the following performance metrics: segmentation accu-
racy, performance with limited training data, required computational memory, and computational
speed during training and deployment. The 3D, 2.5D, and 2D approaches respectively gave the
highest to lowest Dice scores across all models. 3D models maintained higher Dice scores when the
training set size was decreased from 3199 MRIs down to 60 MRIs. 3D models converged 20% to 40%
faster during training and were 30% to 50% faster during deployment. However, 3D models require
20 times more computational memory compared to 2.5D or 2D models. This study showed that 3D
models are more accurate, maintain better performance with limited training data, and are faster to
train and deploy. However, 3D models require more computational memory compared to 2.5D or
2D models.

Keywords: auto-segmentation; deep learning; neuroimaging; magnetic resonance imaging

1. Introduction

Segmentation of brain magnetic resonance images (MRIs) has widespread applications
in the management of neurological disorders [1–3]. In patients with neurodegenerative
disorders, segmenting brain structures such as the hippocampus provides quantitative
information about the amount of brain atrophy [4]. In patients undergoing radiotherapy,
segmentation is used to demarcate important brain structures that should be avoided
to limit potential radiation toxicity [5]. Pre-operative or intra-operative brain MRIs are
often used to identify important brain structures that should be avoided during neuro-
surgery [6,7]. Manual segmentation of brain structures on these MR images is a time-
consuming task that is prone to intra- and inter-observer variability [8]. As a result, deep
learning auto-segmentation methods have been increasingly used to efficiently segment
important anatomical structures on brain MRIs [9].

Compared to two-dimensional (2D) auto-segmentation tasks, the three-dimensional
(3D) nature of brain MRIs makes auto-segmentation considerably more challenging. There
have been three proposed approaches to handling auto-segmentation of 3D images: (1) an-
alyze and segment a two-dimensional slice of the image at a time (2D), [10] (2) analyze
five consecutive two-dimensional slices at a time to generate a segmentation of the middle
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slice (2.5D), [11] and (3) analyze and segment the image volume in three-dimensional
space (3D) [10]. Although each approach has shown some promise in medical image seg-
mentation, a comprehensive comparison and benchmarking of these approaches for auto-
segmentation of brain MRIs is lacking. Prior studies on comparing these auto-segmentation
approaches have often not evaluated their efficacy in segmenting brain MRIs, or have lim-
ited their comparison narrowly to one deep learning architecture [10,12–14]. Additionally,
previous studies have focused primarily on segmentation accuracy and failed to evaluate
more practical metrics such as computational efficiency or accuracy in data-limited settings.
As a result, it is difficult for clinicians and researchers to easily choose the appropriate auto-
segmentation method for a desired clinical task. There is a need to compare and benchmark
these three approaches for brain MRI auto-segmentation across different models and using
comprehensive performance metrics.

In this study, we comprehensively compared 3D, 2.5D, and 2D approaches to brain
MRI auto-segmentation across three different deep learning architectures and used metrics
of accuracy and computational efficiency. We used a multi-institutional cohort of 3430 brain
MRIs to train and test our models, and evaluated the efficacy of each approach across three
clinically-relevant anatomical structures of the brain.

2. Methods
2.1. Dataset

This study used a dataset of 3430 T1-weighted brain MR images belonging to 841 pa-
tients from 19 institutions enrolled in the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) study [15]. The inclusion and exclusion criteria of ADNI have been previously
described [16]. On average, each patient underwent four MRI acquisitions. Each patient un-
derwent MR imaging using a single scanner at each site. However, the diversity of scanners
in all study sites included nine different types of MR scanners. Supplementary Material S1
describes the details of MRI acquisition parameters. We downloaded the anonymized MRIs
of these patients from Image and Data Archive, which is a data-sharing platform [15]. The
patients were randomly split into training (3199 MRIs, 93% of data), validation (117 MRIs,
3.5% of data), and test (114 MRIs, 3.5% of data) sets at the patient level. Therefore, all
images belonging to a patient were assigned to either the training, validation, or test set.
Table 1 summarizes patient demographics. For external validation, we additionally trained
and tested a subset of our models on a dataset that contains 400 images of right and left
hippocampi. The details of these experiments are provided in Supplementary Material S2.

Table 1. Study participants tabulated by the training, validation, and test sets.

Data Partitions Number of MRIs Number of Patients Age (Mean ± SD) Gender † Diagnosis ††

Training set 3199 841 76 ± 7 42% F, 58% M 29% CN, 54% MCI, 17% AD
Validation set 117 30 75 ± 6 30% F, 70% M 21% CN, 59% MCI, 20% AD

Test set 114 30 77 ± 7 33% F, 67% M 27% CN, 47% MCI, 26% AD

† F: female; M: male. †† CN: cognitively normal; MCI: mild cognitive impairment; AD: Alzheimer’s disease.

2.2. Anatomic Segmentations

We trained our models to segment three representative structures of the brain: the
third ventricle, thalamus, and hippocampus. These structures represent varying degrees of
segmentation difficulty: the third ventricle is an easy structure to segment because it is filled
with cerebrospinal fluid (CSF) with a distinct image contrast compared to surrounding
structures; the thalamus is a medium-difficulty structure because it is bounded by CSF
on one side and is bounded by white matter on the other side, and the hippocampus is
a difficult structure because it has a complex shape and is neighbored by multiple brain
structures with different image contrasts. Preliminary ground-truth segmentations were
initially generated by FreeSurfer [4,17,18], and were manually corrected by a board-eligible
radiologist (AA).



Bioengineering 2023, 10, 181 3 of 12

2.3. Image Pre-Processing

MRI preprocessing included corrections for B1-field variations as well as intensity
inhomogeneities [19,20]. The 3D brain image was cropped around the brain after removing
the skull, face, and neck tissues [21]. The input to the 3D capsule networks and 3D UNets
were image patches sized 64 × 64 × 64 voxels. The inputs to the 2.5D capsule networks
and 2.5D UNets were five consecutive slices of the image. The inputs to the 2D capsule
networks and 2D UNets were one slice of the image. The inputs to the 3D and 2D nnUNet
models were respectively 3D and 2D patches of the images with self-configured patch sizes
that were automatically set by the nnUNet paradigm [22]. Supplementary Material S3
describes the details of pre-processing.

2.4. Auto-Segmentation Models

We compared the 3D, 2.5D, and 2D approaches (Figure 1) across three segmentation
models: capsule networks (CapsNets) [23], UNets [24], and nnUNets [22]. These models
are considered the highest-performing auto-segmentation models in the biomedical do-
main [9,22,23,25–29]. The 3D models process a 3D patch of the image as input, all feature
maps and parameter tensors in all layers are 3D, and the model output is the segmented
3D patch of the image. Conversely, 2D models process a 2D slice of the image as input,
all feature maps and parameter tensors in all layers are 2D, and the model output is the
segmented 2D slice of the image. The 2.5D models process five consecutive slices of the
image as input channels. The remaining parts of the 2.5D model, including the feature
maps and parameter tensors, are 2D, and the model output is the segmented 2D middle
slice among the five slices. We did not develop 2.5D nnUNets, because the self-configuring
paradigm of nnUNets was developed for 3D and 2D inputs but not for 2.5D inputs. Notably,
the aim of training and testing nnUNets (in addition to UNets) was to ensure that our
choices of hyperparameters did not cause one approach (such as 3D) to perform better than
other approaches. The nnUNet can self-configure the best hyperparameters for the 3D and
2D approaches but not for the 2.5D approach. As a result, we did not train or test 2.5D
nnUNets. The model architectures are described in Supplementary Material S4.

2.5. Training

We trained the CapsNet and UNet models for 50 epochs using Dice loss and the Adam
optimizer [30]. Initial learning rate was set at 0.002. We used dynamic paradigms for
learning rate scheduling, with a minimal learning rate of 0.0001. The hyperparameters for
our CapsNet and UNet models were chosen based on the model with the lowest Dice loss
over the validation set. The hyperparameters for the nnUNet model were self-configured
by the model [22]. Supplementary Material S5 describes the training hyperparameters for
CapsNet and UNet.

2.6. Performance Metrics

For each model (CapsNet, UNet, and nnUNet), we compared the performance of 3D,
2.5D, and 2D approaches using the following metrics: (1) Segmentation accuracy: we used
the Dice score to quantify the segmentation accuracy of the fully trained models over the
test set.31 We compared Dice scores between the three approaches for three representative
anatomic structures of the brain: the third ventricle, thalamus, and hippocampus. The mean
Dice scores for the auto-segmentation of these brain structures are reported together with
their 95% confidence interval. To compute the 95% confidence interval for each Dice score,
we used bootstrapping to sample the 114 Dice scores over the test set, with replacement,
1000 times. We then calculated the mean Dice score for each of the 1000 samples, giving
us 1000 mean Dice scores. We then sorted these mean Dice scores and found the range
that covered 95% of them, which is equivalent to the 95% confidence interval for each
Dice score. (2) Performance when training data is limited: we trained the models using
the complete training set and random subsets of the training set with 600, 240, 120, and
60 MR images. The models trained on these subsets were then evaluated over the test
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set. (3) Computational speed during training: we compared the time needed to train
the 3D, 2.5D, and 2D models per training example per epoch until the model converged.
(4) Computational speed for segmenting an MR image: we compared how quickly each of
the 3D, 2.5D, and 2D models segment one brain MRI volume. (5) Computational memory:
we compared how much GPU memory is required, in units of megabytes, to train and
deploy each of the 3D, 2.5D, and 2D models.
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Figure 1. We compared three segmentation approaches: 3D, 2.5D, and 2D. The 2D approach analyzes
and segments one slice of the image, the 2.5D approach analyzes five consecutive slices of the image
to segment the middle slice, and the 3D approach analyzes and segments a 3D volume of the image.

2.7. Implementation

Image pre-processing was carried out using Python (version 3.10) and FreeSurfer
(version 7). PyTorch (version 1.12) was used for model development and testing. Training
and testing of the models were run on GPU-equipped servers (4 vCPUs, 16 GB RAM,
16 GB NVIDIA GPU). The code used to train and test our models is available on our lab’s
GitHub page: https://github.com/Aneja-Lab-Yale/Aneja-Lab-Public-3D2D-Segmentation
(accessed on 4 November 2022).

3. Results

The segmentation accuracy of the 3D approach across all models and all anatomic
structures of the brain was higher than that of the 2.5D or 2D approaches, with Dice scores
of the 3D models above 90% for all anatomic structures (Table 2). Within the 3D approach,
all models (CapsNet, UNet, and nnUNet) performed similarly in segmenting each anatomic
structure, with their Dice scores within 1% of each other. For instance, the Dice scores of 3D
CapsNet, UNet, and nnUNet in segmenting the hippocampus were respectively 92%, 93%,

https://github.com/Aneja-Lab-Yale/Aneja-Lab-Public-3D2D-Segmentation
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and 93%. Figure 2 shows auto-segmented brain structures in one patient using the three
approaches. Likewise, our experiments using the external hippocampus dataset showed
that 3D nnUNets achieved higher Dice scores compared to 2D nnUNets. Supplementary
Material S2 details the results of our experiments with the external hippocampus dataset.

3D models maintained higher accuracy, compared to 2.5D and 2D models, when
training data were limited (Figure 3). When we trained the 3D, 2.5D, and 2D CapsNets using
the full training set containing 3199 MRIs, their Dice scores in segmenting the third ventricle
were respectively 95%, 90%, and 90%. When we trained the same models on smaller subsets
of the training set containing 600, 240, 120, and 60 MRIs, the performance of 3D, 2.5D,
and 2D CapsNets gradually decreased down to 90%, 88%, and 87% for the 3D, 2.5D, and
2D CapsNets, respectively (Figure 3). Importantly, the 3D CapsNet maintained higher
Dice scores (over the test set) compared to 2.5D or 2D CapsNets in all these experiments.
Similarly, when we trained 3D, 2.5D, and 2D UNets using the full training set, their Dice
scores in segmenting the third ventricle were respectively 96%, 91%, and 90%. Decreasing
the size of the training set down to 60 MRIs resulted in Dice scores of 90%, 88%, and 87%
for the 3D, 2.5D, and 2D UNets, respectively. Again, the 3D UNet maintained higher Dice
scores compared to 2.5D or 2D UNets in all these experiments. Lastly, when we trained
3D and 2D nnUNets using the full training set, their Dice scores in segmenting the third
ventricle were respectively 96% and 90%. Decreasing the size of the training set down to
60 MRIs resulted in Dice scores of 92% and 87% for the 3D and 2D nnUNets, respectively.
Once more, the 3D nnUNet maintained higher Dice scores compared to the 2D nnUNet in
all these experiments (Figure 3).

The 3D models trained faster compared to 2.5D or 2D models (Figure 4). The 3D,
2.5D, and 2D CapsNets respectively took 0.8, 1, and 1 s per training example per epoch
to converge during training. The 3D, 2.5D, and 2D UNets respectively took 1.6, 2.2 and
2.9 s per training example per epoch to converge during training. The 3D and 2D nnUNets
respectively took 2 and 2.9 s per training example per epoch to converge during training.
Therefore, 3D models converged 20% to 40% faster compared to 2.5D or 2D models. Sup-
plementary Material S6 also compares total convergence times between the 3D, 2.5D, and
2D approaches.

Table 2. Comparing the segmentation accuracy of 3D, 2.5D, and 2D approaches across three auto-
segmentation models to segment brain structures. The three auto-segmentation models included
CapsNet, UNet, and nnUNet. These models were used to segment three representative brain
structures: third ventricle, thalamus, and hippocampus, which respectively represent easy, medium,
and difficult structures to segment. The segmentation accuracy was quantified by Dice scores over
the test (114 brain MRIs).

CapsNet

Brain Structure 3D Dice (95% CI) 2.5D Dice (95% CI) 2D Dice (95% CI)

3rd ventricle 95% (94 to 96) 90% (89 to 91) 90% (88 to 92)
Thalamus 94% (93 to 95) 76% (74 to 78) 75% (72 to 78)

Hippocampus 92% (91 to 93) 73% (71 to 75) 71% (68 to 74)

UNet

Brain Structure 3D Dice (95% CI) 2.5D Dice (95% CI) 2D Dice (95% CI)

3rd ventricle 96% (95 to 97) 92% (91 to 93) 91% (89 to 91)
Thalamus 95% (94 to 96) 92% (91 to 93) 90% (88 to 92)

Hippocampus 93% (92 to 94) 86% (84 to 88) 88% (86 to 90)

nnUNet nnUNet nnUNet nnUNet

Brain Structure Brain Structure Brain Structure Brain Structure

3rd ventricle 3rd ventricle 3rd ventricle 3rd ventricle
Thalamus Thalamus Thalamus Thalamus

Hippocampus Hippocampus Hippocampus Hippocampus
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and nnUNet. Target segmentations and model predictions are respectively shown in green and red.
Dice scores are provided for the entire volume of the right hippocampus in this patient (who was
randomly chosen from the test set).
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Figure 3. Comparing 3D, 2.5D, and 2D approaches when training data is limited. As we decreased the
size of the training set from 3000 MRIs down to 60 MRIs, the CapsNet (a), UNet (b), and nnUNet (c)
models maintained higher segmentation accuracy (measured by Dice scores).
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Figure 4. Comparing computational time required by 3D, 2.5D, and 2D approaches to train and
deploy auto-segmentation models. The training times represent how much time it would take per
training example per epoch for the model to converge. The deployment times represent how much
time each model would require to segment one brain MRI volume. The 3D approach trained and
deployed faster across all auto-segmentation models, including CapNet (a), UNet (b), and nnUNet (c).

Fully-trained 3D models could segment brain MRIs faster during deployment com-
pared to 2.5D or 2D models (Figure 4). Fully-trained 3D, 2.5D, and 2D CapsNets could
respectively segment a brain MRI in 0.2, 0.4, and 0.4 s. Fully-trained 3D, 2.5D, and 2D
UNets could respectively segment a brain MRI in 0.2, 0.3, and 0.3 s. Lastly, fully-grained 3D
and 2D nnUNets could respectively segment a brain MRI in 0.3 and 0.5 s. Therefore, fully-
trained 3D models segmented a brain MRI 30% to 50% faster compared to fully-trained
2.5D or 2D models.

The 3D models needed more computational memory to train and deploy as compared
to the 2.5D or 2D models (Figure 5). The 3D, 2.5D, and 2D CapsNets respectively required
317, 19, and 19 megabytes of GPU memory during training. The 3D, 2.5D, and 2D UNets
respectively required 3150, 180, and 180 megabytes of GPU memory. The 3D and 2D
nnUNets respectively required 3200 and 190 megabytes of GPU memory. Therefore, 3D
models required about 20 times more GPU memory compared to 2.5D or 2D models.
Notably, CapsNets required 10 times less GPU memory compared to UNets or nnUNets.
Therefore, 3D CapsNets only required two times more GPU memory compared to 2.5D or
2D UNets or nnUNets (Figure 5).
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Figure 5. Comparing the memory required by the 3D, 2.5D, and 2D approaches. The bars represent
the computational memory required to accommodate the total size of each model, including the
parameters plus the cumulative size of the forward- and backward-pass feature volumes. Within
each auto-segmentation model including the CapsNet (a), UNet (b), and nnUNet (c), the 3D approach
required 20 times more computational memory compared to the 2.5D or 2D approaches.
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4. Discussion

In this study, we compared the 3D, 2.5D, and 2D approaches of auto-segmentation
across three different deep learning architectures, and found that the 3D approach is more
accurate, faster to train, and faster to deploy. Moreover, the 3D auto-segmentation approach
maintained better performance in the setting of limited training data. We found the major
disadvantage of 3D auto-segmentation approaches to be increased computational memory
requirement compared to similar 2.5D and 2D auto-segmentation approaches.

Our results extend the prior literature [10,12,13,31–34] in key ways. We provide the
first comprehensive benchmarking of 3D, 2.5D, and 2D approaches in auto-segmenting of
brain MRIs, measuring both accuracy and computational efficiency. We compared 3D, 2.5D,
and 2D approaches across three of the most successful auto-segmentation models to date,
namely capsule networks, UNets, and nnUNets [22,23,26,30,33–36]. Our findings provide
a practical comparison of these three auto-segmentation approaches that can provide
insight when attempting auto-segmentation in settings where computational resources are
bounded or when the training data are limited.

We found that the 3D approach to auto-segmentation trains faster and deploys more
quickly. Previous studies that compared the computational speed of 3D and 2D UNets have
concluded conflicting results: some suggested that 2D models converge faster, [10,13,32],
whereas others suggested that 3D models converge faster [22]. Notably, one training
iteration of 2.5D or 2D models is faster than 3D models because 2.5D and 2D models have
20 times fewer trainable parameters compared to 3D models. However, feeding a 3D
image volume into a 2.5D or 2D model requires a for loop that iterates through multiple
slices of the image, which slows down 2.5D and 2D models. Additionally, 3D models can
converge faster during training because they can use the contextual information in the
3D image volume to segment each structure [10]. Conversely, 2.5D models can only use
the contextual information in a few slices of the image [11], and 2D models can only use
the contextual information in one slice only [12]. Since the 3D approach provides more
contextual information for each segmentation target, the complex shape of structures such
as the hippocampus can be learned faster, and, as a result, the convergence of 3D models
can become faster. Lastly, each training iteration through a 3D model can be accelerated
by larger GPU memory, since the training of learnable parameters can be parallelized.
However, each training iteration through a 2.5D or 2D model cannot be accelerated by
larger GPU memory because iterations through the slices of the image (for loop) cannot be
parallelized. We propose that our findings, that 3D models converge faster, resulted from
using state-of-the-art GPUs and efficient 3D models that learn contextual information in
the 3D volume of the MR image faster. Our results also show that the 3D models are faster
during deployment since they can process the 3D volume of the image at once, while 2.5D
or 2D models must loop through 2D image slices.

Our results do highlight one of the drawbacks of 3D auto-segmentation approaches.
Specifically, we found that within each model, the 3D approach requires 20 times more
computational memory compared to the 2.5D or 2D approaches. Previous studies that
compared 3D and 2D UNets have found similar results [10,31]. This seems to be the
only downside of the 3D approach compared to the 2.5D or 2D approaches. Notably,
the 2.5D approach was initially developed to achieve segmentation accuracy similar to
the 3D approach while requiring computational resources similar to the 2D approach.
In brain image segmentation, however, our results show that the 2.5D approach could
not achieve the segmentation accuracy of the 3D approach. This raises the question
of which approach to use when computational memory is limited. Our results show
that 3D CapsNets outperformed all 2.5D and 2D models while only requiring twice more
computational memory than the 2.5D or 2D UNets or nnUNets. Conversely, 3D UNets and
nnUNets required 20 times more computational memory compared to 2.5D or 2D UNets
and nnUNets. Therefore, 3D CapsNets may be preferred in settings where computational
memory is limited.
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Our results corroborate previous studies showing that deep learning is accurate in
biomedical image auto-segmentation [9,22,26–29]. Prior studies have shown that capsule
networks, UNets, and nnUNets are the most accurate models to auto-segment biomedical
images [9,11,22,23,25,26,28,33,34,36–38]. Prior studies have also shown that the 3D, 2.5D,
and 2D versions of these models can auto-segment medical images [9,11,22,23,28,29,34].
However, evidence was lacking about which of the 3D, 2.5D, or 2D approaches would be
more accurate in auto-segmenting brain structures on MR images. Our results also provide
practical benchmarking of computational efficiency between the three approaches, which is
often under-reported.

Our study has several notable limitations. First, we only compared the 3D, 2.5D, and
2D approaches to the auto-segmentation of brain structures on MR images. The results of
this study may not generalize to other imaging modalities or other body organs. Second,
there are multiple ways to develop a 2.5D auto-segmentation model [11,39,40]. While
we did not implement all of the different versions of 2.5D models, we believe that our
implementation of 2.5D models (using five consecutive image slices as input channels)
is the best approach to segment the neuroanatomy on brain images. Third, our results
about the relative deployment speed of 3D models as compared to 2.5D or 2D models
might change as computational resources change. If the GPU memory is large enough
to accommodate large 3D patches of the image, 3D models can segment the 3D volume
faster. However, in settings where the GPU memory is limited, the 3D model should loop
through multiple smaller 3D patches of the image, eroding the faster performance of the
3D models during deployment. However, we used a 16 GB GPU to train and deploy
our models, which is commonplace in modern computing units used for deep learning.
Finally, we compared 3D, 2.5D, and 2D approaches across three auto-segmentation models
only: CapsNets, UNets, and nnUNets. While multiple other auto-segmentation models
are available, we believe that our study has compared 3D, 2.5D, and 2D approaches across
the most successful deep-learning models for medical image auto-segmentation. Further
studies comparing the three approaches across other auto-segmentation models can be an
area of future research.

5. Conclusions

In this study, we compared 3D, 2.5D, and 2D approaches to brain image auto-segmentation
across different models and concluded that the 3D approach is more accurate, achieves better
performance in the context of limited training data, and is faster to train and deploy. Our
results hold across various auto-segmentation models, including capsule networks, UNets, and
nnUNets. The only downside of the 3D approach is that it requires 20 times more computational
memory compared to the 2.5D or 2D approaches. Because 3D capsule networks only need
twice the computational memory that 2.5D or 2D UNets and nnUNets need, we suggest using
3D capsule networks in settings where computational memory is limited.
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