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Abstract: In breast cancer (BC), STAT3 is hyperactivated. This study explored the design of
imidazopyridine-tethered pyrazolines as a de novo drug strategy for inhibiting STAT3 phospho-
rylation in human BC cells. This involved the synthesis and characterization of two series of com-
pounds namely, 1-(3-(2,6-dimethylimidazo [1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-
pyrazol-1-yl)-2-(4-(substituted)piperazin-1-yl)ethanone and N-substituted-3-(2,6-dimethylimidazo[1,2-
a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazoline-1-carbothioamides. Compound 3f with
2,3-dichlorophenyl substitution was recognized among the tested series as a lead structure that inhibited
the viability of MCF-7 cells with an IC50 value of 9.2 µM. A dose- and time-dependent inhibition of
STAT3 phosphorylation at Tyr705 and Ser727 was observed in MCF-7 and T47D cells when compound
3f was added in vitro. Calculations using density functional theory showed that the title compounds
HOMOs and LUMOs are situated on imidazopyridine-pyrazoline and nitrophenyl rings, respectively.
Hence, compound 3f effectively inhibited STAT3 phosphorylation in MCF-7 and T47D cells, indicating
that these structures may be an alternative synthon to target STAT3 signaling in BC.

Keywords: human breast cancer; STAT3; imidazopyridine; pyrazolines; DFT; de novo design

1. Introduction

Breast cancer (BC) is the most common cancer in women [1–4]. As shown in nu-
merous studies, various drugs such as tamoxifen, vinflunine, anastrazole, 5-fluorouracil,
Doxorubicin, paclitaxel/docetaxel, ribociclib, olaparib, and other drugs have been shown
to possess therapeutic potential for women with BC depending on the stage and the specific
molecular subtype [5–12]. Genes that encode transcription factors are directly involved
in breast cancer progression, proliferation, apoptosis, metastasis, and chemotherapy resis-
tance [13,14]. STAT3 is one such transcription factor that harbors six functional domains,
including the terminal-NH2 domain, the coiled-coil domain, the DNA-binding domain,
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the SRC homology 2 domain, and the transactivation domain [15,16]. STAT3 is activated
by both tyrosine and serine phosphorylation and translocates into the nucleus to regulate
transcription [17–19].

De novo drug design retains the potential for the discovery of new and potent lead
molecules for oncology [20]. Pharmacology has heavily utilized imidazopyridine scaffolds
in drug development [21]. Ten approved drugs contain imidazopyridine, and another 12
are in active clinical development [22,23]. A synthetic imidazopyridine compound 16, was
synthesized, tested, and determined to reduce the level of phospho-STAT3 and downstream
signaling cascades in hepatocellular carcinoma cells, which was attributed to an increase
in SHP-1A [24]. Furthermore, the design and synthesis of an imidazopyridine scaffold-
bearing compound (P3971) has been identified as a potent STAT3 inhibitor with an IC50
value of 350 nM and demonstrated significant antiproliferative activity against a variety
of cancerous cell lines including HCT116 and H460 [25]. Additionally, pyrazoles may
provide better pharmacological effects, and have also generated a number of drugs such as
pyrazofurin, celecoxib, ramifenazone, lonazolac, and rimonabant [26–30]. We reported the
synthesis of pyridine-fused pyrazoles as a STAT3 inhibitor and an inhibitor of cancer cell
growth [31]. Additionally, the pyrazole-based compound MNS1-Leu inhibited IL-6-induced
STAT3 phosphorylation in patient-derived HGG cells without adversely affecting Akt,
STAT1, JAK2, or ERK1/2 phosphorylation [32]. Compound C6 was also discovered to be a
STAT3-specific inhibitor that had the strongest anti-proliferation activities against breast
cancer cells with an IC50 value of 160 nM [33]. In light of this, we developed a conventional
de novo design and identified the essential output structures comprising imidazopyridine,
pyrazole, pyrrole, and proposed a series of imidazopyridine-tethered pyrazolines (ITP)
that could target STAT3 in breast cancer cells based on synthetic accessibility and chemical
stability (Figure 1).
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2. Results and Discussion

Using the literature method, we initially synthesized an intermediate (1-[2-methyl-
imidazo[1,2-α] pyridine-3-yl]ethanone) by reacting 2-aminopridine with 3-bromopentane-
2,4-dione [34]. Further, the chalcone [(E)-1-(2,6-dimethylimidazo[1,2-α]pyridin-3-yl)-3-
(3-nitrophenyl)prop-2-en-1-one] was synthesized by the condensation reaction between
the intermediateate and 3-nitro-benzaldehyde in presence of alcoholic NaOH, using the
literature protocol [35]. The 2-pyrazoline compound 1 [(2,6-dimethyl-3-(5-(3-nitrophenyl)-
4,5-dihydro-1H-pyrazol-3-yl)imidazo[1,2-a]pyridine)] was synthesized by refluxing the
chalcone and hydrazine hydrate in ethanol solvent. The synthesis of compound 2 [(1-(3-(2,6-
dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)] was



Bioengineering 2023, 10, 159 3 of 20

synthesized by reacting compound 1 with ethanol via acidic dehydration reaction. Fur-
thermore, the synthesis of 2-pyrazoline compounds (3a–i) [1-(3-(2,6-dimethylimidazo[1,2-
a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-(4-substitutted-piperazin-
1-yl)ethanones] was prepared by reacting the compound 1 with chloroactetyl chloride, and
substituted-piperazines under basic condition. The compounds 4(a–h) [3-(2,6-dimethylimidazo
pyridin-3-yl)-N-substituted-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide] were
synthesized by reacting compound 1 with substituted-isothiocyanates under basic condition
(Scheme 1, Table 1). All synthesized compounds were characterized by 1H NMR, 13C NMR,
and LCMS techniques. The NMR spectral peaks were assigned to all the compounds, which
were consistent with the theoretical calculations.
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3a Piperidone 170–172 97 
3b 1-Boc piperazine 166–168 96 
3c Piperazine 176–178 35 
3d 1-acetyl piperazine 208–210 98 
3e 1-(4-chlorophenyl)piperazine 180–182 96 
3f 1-(2,3-dichlorophenyl)piperizine 122–124 95 
3g 1-(4-chloro-2-fluorophenyl)piperazine 196–198 95 
3h 1-(3,4-difluorophenyl)piperazine 192–194 96 

Scheme 1. Synthesis of 2-pyrazolines: reagents and conditions: (a) AcOH, EtOH, reflux;
(b) (i) chloroactetyl chloride, toluene, 0–5 ◦C, (ii) substituted piperazines, acetone, NEt3, reflux;
(c) substituted isothiocyanates, toluene, NEt3, reflux.

Table 1. Physical data of 2-pyrazolines.

Compound
Code R1 or R2 Melting Point in ◦C Yield in %

3a Piperidone 170–172 97

3b 1-Boc piperazine 166–168 96

3c Piperazine 176–178 35

3d 1-acetyl piperazine 208–210 98

3e 1-(4-chlorophenyl)piperazine 180–182 96

3f 1-(2,3-dichlorophenyl)piperizine 122–124 95

3g 1-(4-chloro-2-fluorophenyl)piperazine 196–198 95

3h 1-(3,4-difluorophenyl)piperazine 192–194 96

3i 1-(2-fluorophenyl)piperazine 160–162 98

4a Aniline 210–212 98

4b 4-nitrophenylaniline 230–232 95

4c Cyclohexylamine 204–206 98

4d 4-chlorophenylaniline 240–242 98

4e 3-chlorophenylaniline 242–244 98

4f 4-methylphenylaniline 256–258 97

4g 3,5-bis(triflourophenyl)aniline 230–232 98%

4h n-butylamine 246–248 96%
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The goal herein was to assess the ability of imidazopyridine-tethered pyrazolines to
inhibit cell viability in mammary carcinoma cells (using the Alamar Blue assay), since
pyridine-fused pyrazoles were previously shown to inhibit cell viability in various breast
cancer cells [36,37]. Results of the study indicated that compounds such as (3f), (3e), (4g),
and 3g inhibited MCF-7 cell viability with IC50 values of 9.27, 13.24, and 10.90 µM, respec-
tively (Figure 2). These compounds, which contained substitutions of 2,3-dichlorophenyl,
4-chlorophenyl, 2,5-disubstituted trifluorophenyl, 2-fluoro,4-chloro-phenyl groups as the
side chain, exhibited relative inhibition of MCF-7 cell viability. The viability of T47D, BT-
474, and SK-BR-3 cells was inhibited in a dose-dependent manner by the lead compound
3f indicating that the compound was efficacious to decrease the viability of human breast
cancer cells (Table 2; Supplementary Figures). The low chemical stability of thio-urea-based
compounds may account for the inactivity of most thiourea-conjugated pyrazolines (ex-
cluding 4g) against TNBC cells. Further, compounds 3f, 3h, and 4b showed significant
effect against TNBC cells, but were not toxic to the normal MCF-10A cells, indicating their
selectivity towards cancer cell cytotoxicity.
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Figure 2. Inhibitory effect of compounds 3f (A), 3e (B), 4g (C), and 3g (D) on the viability of MCF-
7 cells. MCF-7 cells were treated with various concentrations of 2-pyrazolines for 72 h and the
viability of cells was analyzed by Alamar Blue assays. The results are presented as mean ± S.E.M. of
triplicate determinations.

Further, the in silico mode-of-action analysis was performed for lead compound 3f
using CHEMBL’s latest version as described by kalakoti et al., [38]. For this purpose, the
smile format of compound 3f was added into the similarity searching engine of CHEMBL,
which yielded 14,856 bio-activity profiles and which gave the choice of organism, cell type,
and also the predicted human targets in the similarity ranking order [39]. The analysis of the
results sheet identified STAT3 as a target for compound 3f with a ranking of 4783 indicating
the predicted score would be reasonable to test in in vitro functional studies.
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Table 2. Effect of newly synthesized imidazopyridine-tethered pyrazolines on various breast can-
cer/carcinoma cell viability.

Entry
IC50 (µM)

MCF-7 T47D BT-474 SK-BR-3 MCF-10A

2 >100 >100 97.82±1.76 >100 >100

3a 22.81 ± 1.36 23.31 ± 1.28 4.109 ± 0.41 >100 >100

3b 22.29 ± 1.35 15.15 ± 1.13 21.29 ± 1.32 28.28 ± 1.34 >100

3c 29.27 ± 1.47 39.95 ± 1.49 26.75 ± 1.37 95.17 ± 1.79 >100

3d 21.03 ± 1.32 >100 8.04 ± 0.47 32.14 ± 1.46 >100

3e 13.24 ± 1.12 29.9 ± 1.05 17.6 ± 0.87 39.13 ± 1.46 38.34 ± 1.44

3f 9.27 ± 0.97 23.51 ± 1.25 13.91 ± 1.32 >100 >100

3g 19.40 ± 1.29 86.55 ± 1.95 63.16 ± 1.75 99.96 ± 1.98 8.69 ± 0.69

3h 19.56 ± 1.29 12.5 ± 1.01 3.061 ± 0.32 38.81 ± 1.42 6.27 ± 0.26

3i 63.69 ± 1.80 >100 >100 >100 >100

4a 81.37 ± 1.91 >100 >100 >100 >100

4b 65.36 ± 1.82 45.61 ± 1.43 7.259 ± 0.54 69.02 ± 1.41 >100

4c 46.08 ± 1.66 >100 52.83 ± 1.54 >100 >100

4d >100 >100 >100 >100 >100

4e >100 >100 >100 >100 >100

4f 56.92 ± 1.39 >100 >100 >100 >100

4g 10.90 ± 1.01 >100 >100 >100 >100

4h >100 54.42 ± 1.68 >100 >100 90.59 ± 1.98

Olaparib 3.28 ± 0.68

Therefore, in vitro experiments were performed to evaluate the effect of compound 3f
on the phosphorylation of STAT3 in MCF-7 and T47D cells, utilizing our laboratory pro-
tocol [40]. For this purpose, Western blot analysis was performed after the treatment of
MCF-7 and T47D cells with compound 3f (0, 1, 3, 5 µM) and using p-STAT3 (Tyr705),
p-STAT3 (Ser727), and STAT3 antibodies for blotting. Analysis of the results indicated
that compound 3f reduced the phosphorylation level of STAT3 at Tyr705 and Ser727 in a
dose-dependent manner without affecting the total STAT3 protein expression (Figure 3A).
Furthermore, compound 3f also reduced the phosphorylation of STAT3 at Tyr705 and
Ser727 in a time-dependent manner in both MCF-7 and T47D cells (Figure 3B). These results
clearly suggest that compound 3f decreased the constitutive phosphorylation of STAT3 in
ER+ breast cancer cell lines.

In order to understand the lead structure specificity in the bioactivity of the ITP
compounds, DFT calculations were performed. From the frontier molecular orbital (FMOs)
theory, HOMO and LUMO are the most influential factors in bioactivity. HOMO has the
priority to provide electrons, while LUMO can accept electrons. Moreover, the difference
in energy between these two FMOs can be used to predict the strength and stability of
molecular complexes [41]. Figure 4 shows the molecular orbital of compounds, while
Table 2 lists the calculated global chemical reactivity descriptor parameters of compounds.

HOMO-LUMO levels indicate the interactions between the compound and the protein
target. Usually, the HOMO of the compound interacts with the LUMO of the target for
binding, and vice versa. A higher HOMO and lower LUMO energies of the molecule imply
greater target stability and binding. The lower HOMO-LUMO gap indicates that the lead
has lower kinetic stability or higher chemical reactivity and polarizability. Compounds 4g
and 3f have the most considerable ionization potential among the compounds, 6.905 eV
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and 6.764 eV, respectively. All of the synthesized molecules are stable within the permitted
limits. Molecules with high polarizability are chemically more soft or reactive, related to
chemical hardness. Figure 4 shows contour plots of the HOMO and LUMO for compounds
3f and 4g. The green and red contours surrounding the atoms represent the negative and
positive lobes of wave functions, respectively. The green and red contours encircling the
atoms depict the wave function’s negative and positive lobes. It is clear from the plots that
the HOMO is localized on the dimethylimidazole-pyridin, pyrazoline sites, and O and S
atoms of all the molecules. In contrast, LUMO is localized on the nitrophenyl ring in all the
molecules.

The distribution of electrostatic potential (EP) over atomic sites is represented by the
molecular electrostatic potential (MEP) profile, which can be connected to the partial charge
distribution, the electronegativity of atoms in lead molecules, and their interactions. The
MEP plots of compounds 3f and 4g are shown in Figure 5, where the EP varies from the
negative (red) to the positive value (blue) in the sequence given by the color spectrum: red
(negative) < orange < yellow < green < blue (positive). The negative EPs are located on
the O atomic sites of C=O and N-O2, which indicate that these sites are electron-rich. The
positive EPs are seen on H atoms, particularly for H attached to the N, indicating this is an
electron-deficient site. Depending on the nature of EPs, these sites would prefer to bind to
sites having the opposite potential in the binding pocket or hydrogen bonding interaction
(Table 3). For example, the electron-rich C=O should combine with positively charged
protons of amino acid residues present in the binding pocket.
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Table 3. FMOs energy with global chemical parameters values of synthesized compounds.

Global Parameters 3f 3h 3i 4c 4d 4g

EHOMO (eV) −5.764 −5.799 −5.704 −5.645 −5.733 −5.905
ELUMO (eV) −3.049 −3.086 −3.016 −3.201 −3.267 −3.366
∆ELUMO–HOMO (eV) 2.715 2.713 2.688 2.444 2.466 2.539
Ionization potential (I) (eV) 5.764 5.799 5.704 5.645 5.733 5.905
Electron affinity (A) (eV) 3.049 3.086 3.016 3.201 3.267 3.366
Hardness (η) (eV) 1.357 1.356 1.344 1.222 1.233 1.269
Softness (S) (eV)−1 0.368 0.368 0.372 0.409 0.405 0.393
Chemical potential (µ) (eV) −4.406 −4.442 −4.360 −4.423 −4.500 −4.635
Electronegativity (χ) (eV) 4.406 4.442 4.360 4.423 4.500 4.635
Electrophilicity (ψ) (eV) 7.151 7.274 7.072 8.004 8.211 8.463

The rigid docking method analyzed the synthesized compounds 3f and 4g [42].
AutoDock4.2 was used to determine the orientation of inhibitors bound to STAT3 (PDB
ID: 1BG1) and the conformation with the highest binding energy value for each molecule.
The binding modes of STAT3 inhibitors were analyzed using the PyMOL software to iden-
tify new STAT3 inhibitors. The binding site at the SH2 domain of STAT3 was described
by Becker et al. [43]. It was used to elucidate the interactions that contributed to the
compounds’ binding affinity to STAT3.

The promising binding modes of 3f and 4g at the SH2 domain of the STAT3 protein
were analyzed. Figures 6 and 7 show the ligand and receptor complex poses with the
highest binding energy. The binding energies of 3f and 4g to the SH2 domain of STAT3
were observed to be −9.27 kcal/mol and −6.95 kcal/mol, respectively, indicating that the
molecule has a high affinity for the target. The binding patterns of the lead molecules 3f
and 4g were studied. Both molecules bound to the same site on the receptor molecule
(STAT3) and exhibited similar interactions with the vital amino acids of the SH2 domain of
STAT3. The docking results showed that the ketone group of 3f forms a hydrogen bond
with Leu706 of the SH2 domain, and the nitro group of the same molecule interacts with
ARG688 via a salt bridge. One of the oxygens in the nitro group of 4g forms a hydrogen
bond and the other oxygen participated in the interaction through a salt bridge with the
same ARG688 (Figure 8). To summarize, the presence of nitro groups (Figures 8 and 9)
in the molecules and structural flexibility facilitates its interaction with the SH2 domain
of STAT3.
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Finally, we attempted to understand the effect of compound 3f on the blocking of
pSTAT3 into nuclear functionally since pSTAT3 dimers could enter the nucleus to give tran-
scription. For this purpose, we conducted an immunocytochemistry assay using MCF-7 and
T47D cells. We observed that compound 3f inhibited the nuclear translocation of STAT3 in
MCF-7 and T47D cells. We also analyzed the distribution of phospho-STAT3 in the nucleus
and cytoplasm using fluorescent-labeled antibodies. Compound 3f could block the nuclear
translocation of pSTAT3 in MCF-7 and T47D cells, as shown in Figure 10A,B, respectively.
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Figure 10. The nuclear localization of STAT3 in MCF-7 (A) and T47D (B) cells was inhibited by
compound 3f. MCF-7 and T47D cells were treated with the compound 3f (5 µM), and then analyzed
for intracellular distribution by immunocytochemistry. The results shown are representative of three
independent experiments. The fluorescence intensity of p-STAT3 and STAT3 was performed. The
merged image indicates the overlapping of p-STAT3/STAT3/DAPI images. The results shown are
representative of three independent experiments.

3. Materials and Methods

All chemicals and solvents for chemistry were purchased from Sigma-Aldrich and
TCI chemicals, INDIA. The completion of the reaction was monitored by pre-coated silica
gel TLC plates. 1H and 13C NMR were recorded on an Agilent NMR spectrophotometer
(400 MHz); TMS was used as an internal standard and CDCl3 was used as a solvent,
chemical shifts are expressed as ppm.

3.1. General Procedure for the Synthesis of Imidazole-Pyridine Substituted Pyrazoline Derivatives

1-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)ethenone reacting with 3-nitrobenzaldehyde
in 30% KOH gives chalcone which on treating with hydrazine hydrate gives 2-pyrazolines.
The synthesis of the compound was reported in earlier reports and complies with the
reported molecule [34,35].
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3.2. Synthesis of 2-Pyrazoline Derivatives (3a–i) from 2,6-Dimethyl-3-(5-(3-nitrophenyl)-
4,5-dihydro-1H-pyrazol-3-yl)imidazo[1,2-a]pyridine

One mmol of (1) was dissolved in toluene and kept in an ice bath. After 15 min
triethylamine (1.5 mmol) was added in portions followed chloroacetyl chloride (1.5 mmol)
and the reaction was monitored by TLC. After the completion of the reaction, toluene
was distilled off under reduced pressure and the residue was extracted with chloroform.
The crude solid was used directly in the next reaction without further purification. The
crude solid (1 mmol) and substituted piperazines (1 mmol) were dissolved in acetone and
refluxed overnight with triethylamine (1 mmol). TLC was monitored and acetone was
distilled off, the crude obtained was extracted with chloroform and recrystallized using
DCM-Hexane to afford substituted pyrazoline derivatives(3a–i).

3.3. Synthesis of 2-Pyrazoline Derivatives (4a–h) from 2,6-Dimethyl-3-(5-(3-nitrophenyl)-
4,5-dihydro-1H-pyrazol-3-yl)imidazo[1,2-a]pyridine

Pyrazoline derivative (1) (1 mmol) and substituted isothiocyanates (1.2 mmol) were
dissolved in toluene and refluxed overnight with triethylamine (1 mmol). The reaction
was monitored by TLC and reaction mass was filtered, washed with hexane to remove
unreacted isothiocyanate, and dried in hot air oven to yield pure substituted thiourea
derivatives (4a–h).

3.4. 1-(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-
yl)ethanone (2)

Yellow solid; MP: 166–168 ◦C; yield: 92%;1H NMR (400 MHz, CDCl3): δ 9.28 (s, 1H),
8.14–8.11 (m, 2H), 7.62 (d, J = 7.6 Hz, 1H), 7.56–7.52 (m, 2H), 7.30–7.23 (m, 1H), 5.65 (dd,
J = 11.7, 4.7 Hz, 1H, CH), 4.06 (dd, J = 11.6, 5.6 Hz, 1H, CH2), 3.35 (dd, J = 17.2, 4.8 Hz,
1H, CH2), 2.59 (s, 3H, CH3), 2.50 (s, 3H, CH3), 2.44 (s, 3H, CH3); 13C NMR (100 MHz,
CDCl3): δ 173.40, 153.78, 153.32, 151.49, 150.77, 148.72, 137.10, 135.07, 134.93, 131.57, 128.63,
127.91, 125.82, 121.01, 118.30, 62.92(CH), 49.65(CH2), 27.07(CH3), 23.77(CH3), 21.48(CH3);
MS = 377.1488, m/z = 378.1891 [M + 1]+

3.5. 1-(2-(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-
1-yl)-2-oxoethyl)piperidin-4-one (3a)

Yellow solid; 1H NMR (400 MHz, CDCl3): δ 9.21 (s, 1H), 8.21–8.06 (m, 2H), 7.64 (d,
J = 7.4 Hz, 1H), 7.54–7.53 (m, 2H), 7.27 (d, J = 9.8 Hz, 1H), 5.66 (dd, J = 11.5, 4.6 Hz, 1H, CH),
4.05 (dd, J = 17.1, 11.9 Hz, 1H, CH), 3.96 (d, J = 16.2 Hz, 1H, COCH2), 3.83 (d, J = 16.2 Hz,
1H, COCH2), 3.36 (dd, J = 17.2, 4.6 Hz, 1H, CH), 3.09–2.86 (m, 4H, (CH2)2), 2.59 (s, 3H, CH3),
2.51 (t, J = 5.6 Hz, 4H, (CH2)2), 2.44 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3): δ 213.42,
172.00, 153.82, 150.90, 148.42, 137.20, 135.18, 135.07, 131.44, 128.70, 128.05, 125.73, 121.17,
118.15, 82.39, 82.07, 81.76, 63.71, 63.19, 58.41, 49.26, 46.30((CH2)2), 23.84(CH3), 21.58(CH3);
MS = 474.2016, m/z = 475.2095 [M + 1]+

3.6. Tert-butyl-4-(2-(3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-
1H-pyrazol-1-yl)-2-oxoethyl)piperazine-1-carboxylate (3b)

Yellow solid; 1H NMR (400 MHz, cdcl3): δ 9.21 (s, 1H), 8.13 (d, J = 8.2 Hz, 1H), 8.09 (s,
1H), 7.62 (d, J = 7.8 Hz, 1H), 7.59–7.47 (m, 2H), 7.29–7.25 (m, 1H), 5.64 (dd, J = 11.8, 4.9 Hz,
1H, CH), 4.04 (dd, J = 17.3, 11.9 Hz, 1H, CH2), 3.82 (d, J = 16.0 Hz, 1H, COCH2), 3.69 (d,
J = 16.0 Hz, 1H, COCH2), 3.48 (s, 4H, (CH2)2), 3.35 (dd, J = 17.3, 5.0 Hz, 1H, CH2), 2.65–
2.59 (m, 4H, (CH2)2), 2.59 (s, 3H, CH3), 2.44 (s, 3H, CH3), 1.44 (s, 9H, (CH3)3); 13C NMR
(100 MHz, CDCl3): δ 171.94, 159.69, 153.80, 153.68, 151.91, 150.87, 148.48, 137.18, 135.12,
135.03, 131.48, 128.67, 127.99, 125.79, 121.12, 118.20, 84.70(C(CH3)), 64.68(CH2), 63.15(CH),
58.33(CH2)2, 50.48(CH2)2, 49.23(CH2), 33.45(CH3)3, 23.80(CH3), 21.53(CH3).
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3.7. 1-(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-
yl)-2-(piperazin-1-yl)ethanone (3c)

Yellow; 1H NMR (400 MHz, CDCl3): δ 9.20 (s, 1H), 8.14 (d, J = 7.5 Hz, 1H), 8.10 (s,
1H), 7.70–7.48 (m, 3H), 7.28 (s, 1H), 5.65 (d, J = 7.2 Hz, 1H, CH), 4.04 (dd, J = 12.0, 16.4 Hz,
1H, CH2), 3.78 (dd, J = 16.0, 16.0 Hz, 2H, COCH3), 3.36 (d, J = 16.8 Hz, 1H, CH2), 3.08
(s, 2H, (CH2)2), 2.81 (d, J = 18.0 Hz, 2H, (CH2)2), 2.60 (s, 3H, CH3), 2.47 (s, 3H, CH3),
1.26 (s, 1H, NH).

3.8. 2-(4-Acetylpiperazin-1-yl)-1-(3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-
4,5-dihydro-1H-pyrazol-1-yl)ethanone (3d)

Brown solid; 1H NMR (400 MHz, CDCl3): δ 9.20 (s, 1H), 8.20–8.05 (m, 2H), 7.62–7.53
(m, 3H), 7.28–7.26 (m, 1H), 5.64 (d, J = 7.3 Hz, 1H, CH), 4.09–3.99 (m, 1H, CH2), 3.85 (d,
J = 15.9 Hz, 1H, COCH2), 3.67 (t, J = 26.2 Hz, 4H, (CH2)2), 3.51 (s, 1H, COCH2), 3.39–3.32
(m, 1H, CH2), 2.66 (d, J = 14.7 Hz, 4H, (CH2)2), 2.59 (s, 3H, COCH3), 2.44 (s, 3H, CH3),
2.07 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3): δ 168.90, 166.74, 148.78, 148.66, 146.99,
145.81, 143.35, 132.13, 130.08, 130.03, 126.38, 123.67, 122.96, 120.66, 116.07, 113.10, 59.34(CH),
58.11(CH2), 53.31(CH2)2, 46.18(CH2)2, 41.35(CH2), 21.17(CH3), 18.74(CH3), 16.42(CH3);
MS = 503.2281, m/z = 504.2384 [M + 1]+

3.9. 2-(4-(4-Chlorophenyl)piperazin-1-yl)-1-(3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-
nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (3e)

Brown solid; 1H NMR (400 MHz, CDCl3): δ 9.25 (s, 1H), 8.14 (d, J = 8.0 Hz, 1H), 8.11
(s, 1H), 7.64 (d, J = 7.2 Hz, 1H), 7.63–7.46 (m, 2H), 7.26 (s, 1H), 7.17 (d, J = 8.0 Hz, 2H), 6.82
(d, J = 8.4 Hz, 2H), 5.66 (d, J = 7.2 Hz, 1H, CH), 4.05 (dd, J = 12.4, 16.0 Hz, 1H, CH2), 3.90 (d,
J = 15.6 Hz, 1H, COCH2), 3.74 (d, J = 16.0 Hz, 1H, COCH2), 3.37 (dd, J = 2.8, 16.8 Hz, 1H,
CH), 3.23 (s, 4H, (CH2)2), 2.86 (d, J = 16..0 Hz, 4H, (CH2)2), 2.60 (s, 3H, CH3), 2.46 (s, 3H,
CH3); 13C NMR (100 MHz, CDCl3): δ 166.80, 154.41, 148.67, 148.40, 146.71, 145.68, 143.38,
132.11, 129.99, 126.42, 124.35, 123.63, 122.86, 122.44, 122.36, 120.72, 118.90, 116.06, 115.95,
115.86, 113.11, 59.60(CH), 58.06(CH2), 53.65(CH2)2, 50.23(CH2)2, 44.12(CH2), 18.69(CH3),
16.34(CH3); MS = 571.21, m/z = 572.26 [M + 1]+

3.10. 2-(4-(2,3-Dichlorophenyl)piperazin-1-yl)-1-(3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-
(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (3f)

Yellow solid; 1H NMR (400 MHz, cdcl3): δ 9.26 (s, 1H), 8.15–8.13 (m, 2H), 7.65 (d,
J = 7.4 Hz, 1H), 7.55–7.51 (m, 2H), 7.26–7.9 (m, 1H), 7.13 (d, J = 6.2 Hz, 2H), 6.95 (d, J = 6.3
Hz, 1H), 5.67 (dd, J = 11.6, 4.6 Hz, 1H, CH), 4.12–4.01 (m, 1H, CH2), 3.90 (d, J = 15.9 Hz,
1H, COCH2), 3.75 (d, J = 15.8 Hz, 1H, COCH2), 3.37 (dd, J = 17.2, 4.6 Hz, 1H, CH2), 3.12 (s,
4H, (CH2)2, 2.88 (d, J = 18.6 Hz, 4H, (CH2)2), 2.60 (s, 3H, CH3), 2.47 (s, 3H, CH3); 13C NMR
(100 MHz, CDCl3): δ 167.01, 151.21, 148.77, 148.58, 146.78, 145.82, 143.50, 133.96, 132.17,
130.05, 129.96, 127.51, 127.43, 126.48, 124.60, 123.63, 122.92, 120.76, 118.68, 116.06, 113.19,
59.67(CH2), 58.12(CH2), 53.74(CH2)2, 51.18(CH2)2, 44.19(CH2), 18.78(CH3), 16.48(CH3);
MS = 605.17, m/z = 606.23 [M + 1]+

3.11. 2-(4-(4-Chloro-2-fluorophenyl)piperazin-1-yl)-1-(3-(2,6-dimethylimidazo[1,2-a]pyridin-3-
yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (3g)

White solid; 1H NMR (400 MHz, CDCl3): δ 9.25 (s, 1H), 8.18–8.08 (m, 2H), 7.64 (d,
J = 7.6 Hz, 1H), 7.59–7.47 (m, 2H), 7.29–7.26 (m, 1H), 7.03–7.00 (m, 2H), 6.84 (t, J = 8.7 Hz,
1H), 5.66 (dd, J = 11.7, 4.8 Hz, 1H, CH2), 4.05 (dd, J = 17.2, 11.9 Hz, 1H, CH2), 3.88 (d,
J = 15.9 Hz, 1H, COCH3), 3.73 (d, J = 15.9 Hz, 1H, COCH3), 3.36 (dd, J = 17.3, 4.9 Hz,
1H, CH2), 3.13 (s, 4H, (CH2)2), 2.86 (td, J = 10.7, 5.9 Hz, 4H, (CH2)2), 2.60 (s, 3H, CH3),
2.45 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3): δ 166.92, 148.74, 148.61, 146.81, 145.82,
143.46, 138.96, 138.88, 132.19, 130.06, 129.95, 126.47, 124.45, 123.60, 122.93, 120.75, 119.59,
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116.87, 116.63, 116.07, 113.17,59.68(CH), 58.12(CH2), 53.60(CH2)2, 50.32(CH2)2, 44.19(CH2),
18.76(CH3), 16.50(CH3); MS = 589.2004, m/z = 590.2119 [M + 1]+

3.12. 2-(4-(3,4-Difluorophenyl)piperazin-1-yl)-1-(3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-
(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (3h)

Brown solid; 1H NMR (400 MHz, CDCl3): δ 9.24 (s, 1H), 8.11 (s, 2H), 7.63–7.53 (m, 3H),
7.25 (s, 1H), 7.30–7.27 (m, 1H), 6.72–6.64 (m, 1H), 6.56 (d, J = 8.2 Hz, 1H), 5.66 (dd, J = 11.8,
4.9 Hz, 1H, CH), 4.05 (dd, J = 17.3, 11.9 Hz, 1H, CH2), 3.90 (d, J = 15.9 Hz, 1H, COCH3), 3.75
(d, J = 15.9 Hz, 1H, COCH3), 3.39–3.33 (m, 1H, CH2), 3.19 (s, 4H, (CH2)2), 2.86 (d, J = 15.5
Hz, 4H, (CH2)2), 2.60 (s, 3H, CH3), 2.46 (s, 3H, CH3);13C NMR (100 MHz, CDCl3): δ 166.60,
148.71, 148.51, 146.83, 145.71, 143.30, 132.10, 130.01, 129.98, 126.38, 123.60, 122.90, 122.89,
120.63, 117.15, 116.98, 116.00, 113.07, 111.44, 105.40, 105.20, 77.21, 76.90, 76.58, 59.34, 58.05,
53.20, 49.28, 44.13, 18.70, 16.37.

3.13. 1-(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-
1-yl)-2-(4-(2-fluorophenyl)piperazin-1-yl)ethanone (3i)

Brown solid; 1H NMR (400 MHz, CDCl3): δ 9.25 (s, 1H), 8.14–8.12 (m, 2H), 7.65–7.49
(m, 3H), 7.28–7.24 (m, 1H), 7.04–6.90 (m, 4H), 5.66 (dd, J = 11.5, 4.7 Hz, 1H, CH), 4.04 (dd,
J = 17.1, 11.9 Hz, 1H, CH2), 3.89 (d, J = 15.9 Hz, 1H, COCH3), 3.75 (d, J = 15.9 Hz, 1H,
COCH2), 3.36 (dd, J = 17.1, 4.4 Hz, 1H, CH2), 3.17 (s, 4H, (CH2)2), 2.88 (d, J = 17.8 Hz, 4H,
(CH2)2), 2.60 (s, 3H, CH3), 2.45 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3): δ 166.80, 154.41,
148.67, 148.40, 146.71, 145.68, 143.38, 132.11, 129.99, 126.42, 124.35, 123.63, 122.86, 122.44,
122.36, 120.72, 118.90, 116.06, 115.95, 115.86, 113.11, 59.60(CH), 58.06(CH2), 53.65(CH2)2,
50.23(CH2)2, 44.12(CH2), 18.69(CH3), 16.34(CH3).

3.14. 3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-N-phenyl-4,5-dihydro-1H-
pyrazoline-1-carbothioamide (4a)

White solid; 1H NMR (400 MHz, cdcl3): δ 9.13 (s, 1H), 9.04 (s, 1H), 8.18–8.09 (m, 2H),
7.66 (d, J = 7.7 Hz, 3H), 7.56 (dd, J = 17.5, 8.5 Hz, 2H), 7.37 (t, J = 7.8 Hz, 2H), 7.29 (d,
J = 8.8 Hz, 1H), 7.19 (s, 1H), 6.25 (dd, J = 11.6, 3.6 Hz, 1H, CH), 4.15 (dd, J = 17.2, 11.7 Hz,
1H, CH2), 3.39 (dd, J = 17.2, 3.7 Hz, 1H, CH2), 2.60 (s, 3H, CH3), 2.46 (s, 3H, CH3); 13C
NMR (100 MHz, CDCl3): δ 173.18, 149.96, 148.64, 147.58, 146.05, 143.87, 138.53, 132.10,
130.31, 129.86, 128.73, 125.92, 125.55, 124.00, 123.73, 122.69, 120.75, 116.29, 112.82, 61.22(CH),
44.57(CH2), 18.81(CH3), 16.72(CH3); MS = 470.1525, m/z = 471.1626 [M + 1]+

3.15. 3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-N-(4-nitrophenyl)-4,5-
dihydro-1H-pyrazole-1-carbothioamide (4b)

Orange solid; 1H NMR (400 MHz, CDCl3): δ 10.13 (s, 1H), 9.37 (s, 1H), 9.13 (s, 1H),
8.14 (s, 1H), 8.01-7.94 (m, 3H), 7.54–7.60 (t, J = 10.0 Hz, 2H), 7.34 (d, 2H), 6.23 (dd, J = 2.0,
2.0 Hz, 1H, CH), 4.19 (dd, J = 1.0, 1.0 Hz, 1H, CH2), 3.84–3.76 (m, 1H, CH2), 2.63 (s, 3H,
CH3), 2.51 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3): δ 173.18, 149.96, 148.64, 147.58,
146.05, 143.87, 138.53, 132.10, 130.31, 129.86, 128.73, 125.92, 125.55, 124.00, 123.73, 122.69,
120.75, 116.29, 112.82, 61.22(CH), 44.57(CH2), 18.81(CH3), 16.72(CH3); MS = 515.1376,
m/z = 516.2025 [M + 1]+

3.16. N-Cyclohexyl-3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-
1H-pyrazoline-1-carbothioamide (4c)

Yellow solid; 1H NMR (400 MHz, CDCl3): δ 9.10 (s, 1H), 8.08 (s, 2H), 7.64–7.48 (m,
3H), 7.27–7.29 (m, 1H), 7.21 (d, J = 8.1 Hz, 1H), 6.15 (dd, J = 11.7, 3.8 Hz, 1H, CH), 4.07
(dd, J = 17.1, 11.7 Hz, 1H, CH2), 3.34 (dd, J = 17.1, 3.9 Hz, 1H, CH2), 2.58 (s, 3H, CH3), 2.46
(s, 3H, CH3), 2.09 (s, 1H, CH), 1.73 (s, 4H, (CH2)2), 1.54–1.45 (m, 2H, CH2), 1.45–1.29 (m,
4H, (CH2)2); 13C NMR (100 MHz, CDCl3): δ 168.90, 166.74, 148.78, 148.66, 146.99, 145.81,
143.35, 132.13, 130.09, 126.38, 123.67, 122.96, 120.66, 116.07, 113.10, 59.34(CH), 58.11(CH),
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53.31(CH2)2, 46.18(CH2)2, 44.18(CH2), 41.35(CH2), 18.74(CH3), 16.42(CH3); MS = 476.20,
m/z = 477.25 [M + 1]+

3.17. N-(4-Chlorophenyl)-3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-
dihydro-1H-pyrazoline-1-carbothioamide (4d)

Yellow solid; 1H NMR (400 MHz, CDCl3): δ 9.11 (s, 1H), 8.97 (s, 1H), 8.15 (d, J = 6.1 Hz,
2H), 7.67 (d, J = 7.6 Hz, 1H), 7.63–7.52 (m, 4H), 7.34 (d, J = 8.7 Hz, 2H), 7.25 (s, 1H), 6.23
(dd, J = 11.5, 3.5 Hz, 1H, CH), 4.16 (dd, J = 17.2, 11.7 Hz, 1H, CH2), 3.41 (dd, J = 17.2, 3.6
Hz, 1H, CH2), 2.61 (s, 3H, CH3), 2.47 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3): δ 173.18,
149.96, 148.64, 147.58, 146.05, 143.87, 138.53, 132.10, 130.31, 129.86, 128.73, 125.92, 125.55,
124.00, 123.73, 122.69, 120.75, 116.29, 112.82, 61.22(CH), 44.57(CH2), 18.81(CH3), 16.72(CH3);
MS = 476.1681, m/z = 485.2469 [M + 1]+

3.18. N-(3-Chlorophenyl)-3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-
dihydro-1H-pyrazoline-1-carbothioamide (4e)

Yellow solid; 1H NMR (400 MHz, CDCl3): δ 9.11 (s, 1H), 9.03 (s, 1H), 8.17–8.11 (m,
2H), 7.77 (t, J = 2.0 Hz, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.60 (d, J = 9.0 Hz, 1H), 7.55 (dd,
J = 7.0, 1.7 Hz, 2H), 7.31 (dd, J = 13.8, 4.8 Hz, 2H), 7.18–7.12 (m, 1H), 6.22 (dd, J = 11.6,
3.8 Hz, 1H, CH), 4.16 (dd, J = 17.3, 11.7 Hz, 1H, CH2), 3.40 (dd, J = 17.3, 3.9 Hz, 1H, CH2),
2.61 (s, 3H, CH3), 2.48 (s, 3H, CH3).; 13C NMR (100 MHz, CDCl3): δ 167.01, 151.21, 148.77,
148.58, 146.78, 145.82, 143.50, 133.96, 132.17, 130.05, 129.96, 127.51, 127.43, 126.48, 124.60,
123.63, 122.92, 120.76, 118.68, 116.06, 113.19, 53.74(CH), 51.18(CH2), 18.78(CH3), 16.48(CH3).

3.19. 3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-N-(p-tolyl)-4,5-dihydro-1H-
pyrazoline-1-carbothioamide (4f)

White solid; 1H NMR (400 MHz, CDCl3): δ 9.13 (s, 1H), 8.93 (s, 1H), 8.17–8.12 (m, 2H),
7.67 (d, J = 7.7 Hz, 1H), 7.59 (d, J = 9.0 Hz, 1H), 7.55 (d, J = 7.9 Hz, 1H), 7.49 (d, J = 8.3 Hz,
2H), 7.30 (dd, J = 9.1, 1.5 Hz, 1H), 7.19 (d, J = 8.2 Hz, 2H), 6.26 (dd, J = 11.6, 3.8 Hz, 1H, CH),
4.15 (dd, J = 17.2, 11.7 Hz, 1H, CH2), 3.39 (dd, J = 17.2, 3.8 Hz, 1H, CH2), 2.61 (s, 3H, CH3),
2.46 (s, 3H, CH3), 2.34 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3): δ 173.72, 149.77, 148.71,
147.53, 145.98, 144.00, 135.94, 135.71, 132.21, 130.44, 129.93, 129.41, 125.99, 124.40, 124.11,
122.77, 120.80, 116.30, 112.92, 77.32, 77.00, 76.69, 61.32, 44.62, 21.01, 18.88, 16.74.

3.20. N-(3,5-Bis(trifluoromethyl)phenyl)-3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-
nitrophenyl)-4,5-dihydro-1H-pyrazoline-1-carbothioamide (4g)

Yellow solid; 1H NMR (400 MHz, CDCl3): δ 9.31 (s, 1H), 9.13 (s, 1H), 8.26 (s, 2H), 8.15
(s, 1H), 7.66 (s, 1H), 7.64-7.53 (m, 2H), 7.34 (d, J = 9.0 Hz, 1H), 7.26 (t, J = 3.7 Hz, 1H), 7.18
(s, 1H), 6.21 (dd, J = 11.5, 3.8 Hz, 1H, CH), 4.20 (dd, J = 17.3, 11.6 Hz, 1H, CH2), 3.45 (dd,
J = 17.3, 3.8 Hz, 1H, CH2), 2.63 (s, 3H, CH3), 2.49 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3):
δ 172.21, 150.70, 148.74, 148.46, 146.34, 143.25, 140.10, 132.24, 131.85, 130.74, 130.06, 129.00,
128.18, 125.98, 125.25, 124.33, 123.03, 122.65, 121.68, 120.79, 118.36, 116.52, 112.64, 61.33(CH),
44.73(CH2), 18.73(CH3), 16.83(CH3); MS = 606.13, m/z = 607.19 [M + 1]+

3.21. N-Butyl-3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-
pyrazoline-1-carbothioamide (4h)

White solid; 1H NMR (400 MHz, CDCl3): δ 9.09 (s, 1H), 8.16–8.06 (m, 2H), 7.56 (ddd,
J = 25.3, 17.7, 7.8 Hz, 3H), 7.28 (dd, J = 9.1, 1.5 Hz, 1H), 7.20 (t, J = 5.1 Hz, 1H), 6.15 (dd,
J = 11.7, 3.9 Hz, 1H CH), 4.08 (dd, J = 17.2, 11.8 Hz, 1H, CH2), 3.69 (qd, J = 13.2, 6.3 Hz,
2H, CH2), 3.34 (dd, J = 17.2, 4.0 Hz, 1H, CH2), 2.58 (s, 3H, CH3), 2.46 (s, 3H, CH3), 1.70
(dd, J = 8.5, 7.1 Hz, 2H, CH2), 1.50 (dd, J = 15.1, 7.4 Hz, 2H, CH2), 1.00 (t, J = 7.3 Hz,
3H, CH3); 13C NMR (100 MHz, CDCl3): δ 175.43, 149.31, 148.69, 146.88, 145.85, 144.44,
132.15, 130.15, 129.88, 125.94, 123.79, 122.66, 120.69, 116.25, 113.04, 61.30(CH), 44.53(CH2),
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44.50(CH2), 31.22(CH2), 20.27(CH2), 18.70(CH3), 16.63(CH3), 13.8(CH3); MS = 450.1838,
m/z = 451.2311 [M + 1]+

3.22. Cell Viability Assay

MCF-7 cells were procured from Procell Life Science and Technology Co. LTD, Wuhan,
China. Human breast cancer T47D, BT474, and SK-BR-3 cells were obtained from American
Type Culture Collection (Washington, DC, NW, USA). Cells (2000) were cultured in MEM or
Leibovitz’s L-15 medium enriched with 2% FBS and maintained in a humidified atmosphere
of 5% CO2 at 37 ◦C. A stock solution of DMSO-dissolved compounds was prepared, and this
solution was diluted with culture medium as required. MCF-7 Cells (4 × 103) were cultured
in 96-well plates for 12 h and then treated for 72 h with compounds at concentrations of 0,
0.01, 0.1, 10, 100, and 1000 mM. Using Alamar Blue, the compounds were evaluated for
their inhibitory effects [44,45]

3.23. Preparation of Whole Cell Lysates

As previously reported, whole-cell lysates from cells treated with compound 3f were
prepared to detect protein expression and phosphorylation [46] using a lysis buffer [Tris
(20 mM, pH 7.4), NaCl (250 mM), EDTA (2 mM, pH 8.0), Triton X-100 (0.1%), aprotinin
(0.01 mg/mL), leupeptin (0.005 mg/mL), phenylmethane sulfonyl fluoride (0.4 mM), and
NaVO4 (4 mM)]. To remove insoluble material, lysates were centrifuged at 13,000 rpm for
15 min.

3.24. Western Blot Analysis

Equal protein concentrations of cell lysate were resolved on sodium dodecyl sulfate-
polyacrylamide gel electrophoresis, followed by transfer to nitrocellulose membranes as
reported previously [47]. Incubation was carried out overnight at 4 ◦C with antibodies after
treatment with 5% skim milk. Afterward, the membranes were washed, probed with HRP-
conjugated secondary antibodies for 2 h, and then visualized using chemiluminescence.

3.25. In Silico DFT Calculations

The theoretical calculations were performed using Gaussian 09 [48] and Gaussview
5 program. The polarized and diffused basis set 6-311+G(d, p) provides accurate values for
all theoretical calculations. The computational studies utilized the most useful and precise
hybrid method of B3LYP [49]. The structures of the compounds were fully optimized with
no constraint. The global chemical reactivity descriptors (GCRD) were evaluated to under-
stand the chemical properties of a molecule, such as ionization potential, electron affinity,
chemical hardness (η), softness (S), potential (µ), electronegativity (χ), and electrophilic
index (ψ). The global hardness [η = (ELUMO − EHOMO)/2], softness (S = 1/2η), chemical
potential [µ = (EHOMO + ELUMO)/2], electronegativity [χ = (I+A)/2], and electrophilic index
(ψ = µ2/2η) were calculated by taking the energies of HOMO as ionization potential (I) and
LUMO as electron affinity (A). Chemical hardness, softness, and potential were used to
understand the chemical reactivity of the molecular system [50].

3.26. Docking Simulation

AUTODOCK4.0 [51] software was employed for molecular docking studies. The
docking receptor STAT3 (PDB ID: 1BG1) was retrieved from the RCSB Protein Data Bank.
The graphical user interface AUTODOCK TOOLS was utilized to build up the protein
molecule. The water molecules were removed from the protein crystal and only polar
hydrogens were applied. The predicted gasteigers charge was found to be −25.9962. For
both dockings, the grid box size was 127 × 127 × 85 with a grid spacing of 0.55Å. The
receptor and the complex were saved in the pdbqt file format. Using Lamarckian genetic
algorithm searches, twenty runs were performed. The default parameters were employed,
with a maximum of 2.5 × 106 energy assessments and an initial population of 50 randomly
placed individuals [52]. The autogrid4.exe and autodock4.exe functions were executed at
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the end of the docking process to generate glg and dlg files. Maestro (v2020.4) [53] and
PyMOL (v2.5.2) [54] were used to generate the interaction pictures and visualization plots.

3.27. Immunocytochemistry Assay

As described earlier, STAT3 phosphorylation in cells was quantified [55]. After com-
pound 3f treatment (10 µM for 4 h), cells were fixed for 20 min with paraformaldehyde
(4%). Thereafter, cells were treated with 0.2% Triton X-100 in phosphate-buffered saline for
permeabilization, followed by blocking with 5% bovine serum albumin for 1 h. Then, the
preparation was incubated overnight at 4 ◦C with a rabbit polyclonal anti-human STAT3
antibody (dilution, 1:100). The next day, slides were subjected to washing and incubation
with Alexa Fluor 594 (dilution, 1:1000) anti-Rabbit IgG1 for 1 h at room temperature in the
dark. In the next step, DAPI (5 µg/mL) was used for counterstaining the nuclei. The slides
were mounted and analyzed under an Olympus FluoView FV1000 confocal microscope
(Tokyo, Japan).

4. Conclusions

A series of imidazopyridine-tethered-purazoles were synthesized and screened for loss
of viability of breast cancer cells. The lead compound 3f inhibited STAT3 phosphorylation
in MCF-7 and T47D cells. The DFT calculations and molecular docking experiments
showed a theoretical bioactivity correlation for compound 3f towards STAT3. In conclusion,
compound 3f effectively inhibited the phosphorylation of STAT3 in MCF-7 and T47D cells,
indicating that ITPs may be an alternative method to target STAT3 in BC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/bioengineering10020159/s1. Supplementary data for newly synthesized molecules and their
IC50 values determined against human breast cancer cells.
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Therapy and Prevention—Review. Curr. Drug Targets. 2019, 20, 302–315. [CrossRef] [PubMed]

28. Nehra, B.; Rulhania, S.; Jaswal, S.; Kumar, B.; Singh, G.; Monga, V. Recent advancements in the development of bioactive
pyrazoline derivatives. Eur. J. Med. Chem. 2020, 205, 112666. [CrossRef] [PubMed]

http://doi.org/10.1023/A:1006188512927
http://www.ncbi.nlm.nih.gov/pubmed/10068083
http://doi.org/10.1038/s41419-020-2654-2
http://www.ncbi.nlm.nih.gov/pubmed/32528057
http://doi.org/10.2217/pgs.13.54
http://www.ncbi.nlm.nih.gov/pubmed/23651027
http://doi.org/10.1056/NEJM199811263392207
http://www.ncbi.nlm.nih.gov/pubmed/9828250
http://doi.org/10.1080/14656566.2016.1217991
http://www.ncbi.nlm.nih.gov/pubmed/27484180
http://doi.org/10.1056/NEJMoa2105215
http://www.ncbi.nlm.nih.gov/pubmed/34081848
http://doi.org/10.1054/drup.2001.0218
http://www.ncbi.nlm.nih.gov/pubmed/11991683
http://doi.org/10.1016/S0140-6736(19)32955-1
http://www.ncbi.nlm.nih.gov/pubmed/31839281
http://doi.org/10.1016/S1470-2045(10)70257-6
http://www.ncbi.nlm.nih.gov/pubmed/21087898
http://doi.org/10.1056/NEJMoa1609709
http://www.ncbi.nlm.nih.gov/pubmed/27717303
http://doi.org/10.1097/CAD.0000000000000328
http://www.ncbi.nlm.nih.gov/pubmed/26682525
http://doi.org/10.1016/j.canlet.2015.02.024
http://www.ncbi.nlm.nih.gov/pubmed/25697480
http://doi.org/10.1021/acschembio.5b00945
http://www.ncbi.nlm.nih.gov/pubmed/26730496
http://doi.org/10.1002/med.21761
http://www.ncbi.nlm.nih.gov/pubmed/33289118
http://doi.org/10.18632/oncotarget.10775
http://www.ncbi.nlm.nih.gov/pubmed/27458171
http://doi.org/10.1016/j.phymed.2016.02.011
http://www.ncbi.nlm.nih.gov/pubmed/27064016
http://doi.org/10.1186/s12964-020-0527-z
http://www.ncbi.nlm.nih.gov/pubmed/32111215
http://doi.org/10.1007/978-1-60761-839-3_12
http://www.ncbi.nlm.nih.gov/pubmed/20838974
http://doi.org/10.1080/07391102.2021.1997818
http://www.ncbi.nlm.nih.gov/pubmed/34779710
http://doi.org/10.1021/acs.jmedchem.0c01516
http://www.ncbi.nlm.nih.gov/pubmed/33617254
http://doi.org/10.2147/OTT.S266752
http://www.ncbi.nlm.nih.gov/pubmed/33116593
http://doi.org/10.1080/14756366.2018.1497019
http://www.ncbi.nlm.nih.gov/pubmed/30261753
http://doi.org/10.2174/18715206113136660341
http://www.ncbi.nlm.nih.gov/pubmed/24102269
http://www.ncbi.nlm.nih.gov/pubmed/657166
http://doi.org/10.2174/1389450119666180803121737
http://www.ncbi.nlm.nih.gov/pubmed/30073924
http://doi.org/10.1016/j.ejmech.2020.112666
http://www.ncbi.nlm.nih.gov/pubmed/32795767


Bioengineering 2023, 10, 159 19 of 20

29. Santoro, A.; Pisanti, S.; Grimaldi, C.; Izzo, A.A.; Borrelli, F.; Proto, M.C.; Malfitano, A.M.; Gazzerro, P.; Laezza, C.; Bifulco, M.
Rimonabant inhibits human colon cancer cell growth and reduces the formation of precancerous lesions in the mouse colon. Int.
J. Cancer 2009, 125, 996–1003. [CrossRef] [PubMed]

30. Mamytbeková, A.; Hájícek, J.; Grimová, J.; Rezábek, K. Reductive effect of lonazolac on lung metastasis formation in mice.
Neoplasma 1990, 37, 349–355. [PubMed]

31. Srinivasa, V.; Li, F.; Siveen, K.S.; Dai, X.; Swamy, S.N.; Sethi, G.; Mantelingu, K.; Bender, A.; Rangappa, K.S. Synthesis and
biological evaluation of tetrahydropyridinepyrazoles (‘PFPs’) as inhibitors of STAT3 phosphorylation. Med. Chem. Commun.
2014, 5, 32–40.

32. Zhang, L.; Peterson, T.E.; Lu, V.M.; Parney, I.F.; Daniels, D.J. Antitumor activity of novel pyrazole-based small molecular inhibitors
of the STAT3 pathway in patient derived high grade glioma cells. PLoS ONE 2019, 14, e0220569. [CrossRef] [PubMed]

33. Wang, F.; Feng, K.R.; Zhao, J.Y.; Zhang, J.W.; Shi, X.W.; Zhou, J.; Gao, D.; Lin, G.Q.; Tian, P. Identification of novel STAT3 inhibitors
bearing 2-acetyl-7-phenylamino benzofuran scaffold for antitumour study. Bioorg. Med. Chem. 2020, 28, 115822. [CrossRef]
[PubMed]

34. Anilkumar, N.C.; Sundaram, M.S.; Mohan, C.D.; Rangappa, S.; Bulusu, K.C.; Fuchs, J.E.; Girish, K.S.; Bender, A.; Basappa
Rangappa, K.S. A One Pot Synthesis of Novel Bioactive Tri-Substitute-Condensed-Imidazopyridines that Targets Snake Venom
Phospholipase A2. PLoS ONE 2015, 10, e0131896. [CrossRef] [PubMed]

35. Kuthyala, S.; Hanumanthappa, M.; Kumar, S.M.; Sheik, S.; Karikannar, N.G.; Prabhu, A. Crystal, Hirshfeld, ADMET, drug-like
and anticancer study of some newly synthesized imidazopyridine containing pyrazoline derivatives. J. Mol. Struct. 2019,
1197, 65–72. [CrossRef]

36. Basappa, B.; Chumadathil Pookunoth, B.; Shinduvalli Kempasiddegowda, M.; Knchugarakoppal Subbegowda, R.; Lobie, P.E.;
Pandey, V. Novel Biphenyl Amines Inhibit Oestrogen Receptor (ER)-α in ER-Positive Mammary Carcinoma Cells. Molecules
2021, 26, 783. [CrossRef] [PubMed]

37. Bharathkumar, H.; Mohan, C.D.; Ananda, H.; Fuchs, J.E.; Li, F.; Rangappa, S.; Surender, M.; Bulusu, K.C.; Girish, K.S.; Sethi, G.;
et al. Microwave-assisted synthesis, characterization and cytotoxic studies of novel estrogen receptor α ligands towards human
breast cancer cells. Bioorg. Med. Chem. Lett. 2015, 25, 1804–1807. [CrossRef] [PubMed]

38. Kalakoti, Y.; Yadav, S.; Sundar, D. Deep Neural Network-Assisted Drug Recommendation Systems for Identifying Potential
Drug-Target Interactions. ACS Omega 2022, 7, 12138–12146. [CrossRef] [PubMed]

39. Sebastian, A.; Pandey, V.; Mohan, C.D.; Chia, Y.T.; Rangappa, S.; Mathai, J.; Baburajeev, C.P.; Paricharak, S.; Mervin, L.H.; Bulusu,
K.C.; et al. Novel Adamantanyl-Based Thiadiazolyl Pyrazoles Targeting EGFR in Triple-Negative Breast Cancer. ACS Omega 2016,
1, 1412–1424. [CrossRef] [PubMed]

40. Lee, J.H.; Mohan, C.D.; Deivasigamani, A.; Jung, Y.Y.; Rangappa, S.; Basappa, S.; Chinnathambi, A.; Alahmadi, T.A.; Alharbi, S.A.;
Garg, M.; et al. Brusatol suppresses STAT3-driven metastasis by downregulating epithelial-mesenchymal transition in hepatocel-
lular carcinoma. J. Adv. Res. 2020, 26, 83–94. [CrossRef] [PubMed]

41. Fleming, I. Molecular Orbitals and Organic Chemical Reactions; Wiley: Hoboken, NJ, USA, 2010; ISBN 9780470746585.
42. Ansari, M.F.; Siddiqui, S.M.; Ahmad, K.; Avecilla, F.; Dharavath, S.; Gourinath, S.; Azam, A. Synthesis, antiamoebic and molecular

docking studies of furan-thiazolidinone hybrids. Eur. J. Med. Chem. 2016, 124, 393–406. [CrossRef] [PubMed]
43. Becker, S.; Groner, B.; Müller, C.W. Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature 1998, 394,

145–151. [CrossRef] [PubMed]
44. Pandey, V.; Wang, B.; Mohan, C.D.; Raquib, A.R.; Rangappa, S.; Srinivasa, V.; Fuchs, J.E.; Girish, K.S.; Zhu, T.; Bender, A.; et al.

Discovery of a small-molecule inhibitor of specific serine residue BAD phosphorylation. Proc. Natl. Acad. Sci. USA 2018, 115,
E10505–E10514. [CrossRef] [PubMed]

45. Barash, U.; Rangappa, S.; Mohan, C.D.; Vishwanath, D.; Boyango, I.; Basappa, B.; Vlodavsky, I.; Rangappa, K.S. New Heparanase-
Inhibiting Triazolo-Thiadiazoles Attenuate Primary Tumor Growth and Metastasis. Cancers 2021, 13, 2959. [CrossRef] [PubMed]

46. Zhang, J.; Sikka, S.; Siveen, K.S.; Lee, J.H.; Um, J.Y.; Kumar, A.P.; Chinnathambi, A.; Alharbi, S.A.; Basappa Rangappa, K.S.;
Sethi, G.; et al. Cardamonin represses proliferation, invasion, and causes apoptosis through the modulation of signal transducer
and activator of transcription 3 pathway in prostate cancer. Apoptosis 2017, 22, 158–168. [CrossRef] [PubMed]

47. Mohan, C.D.; Bharathkumar, H.; Bulusu, K.C.; Pandey, V.; Rangappa, S.; Fuchs, J.E.; Shanmugam, M.K.; Dai, X.; Li, F.;
Deivasigamani, A.; et al. Development of a novel azaspirane that targets the Janus kinase-signal transducer and activator of
transcription (STAT) pathway in hepatocellular carcinoma in vitro and in vivo. J. Biol. Chem. 2014, 289, 34296–34307. [CrossRef]
[PubMed]

48. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R. Gaussian 09; Gaussian Inc.: Wallingford, CT,
USA, 2009.

49. Lee, W.C.; Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.
Phys. Rev. B 1988, 37, 785. [CrossRef]

50. Ananda, S.; Khamees, H.A.; Mahendra, M.; Kumara, C.; Jagadeesh Prasad, D.; Hegde, T.A.; Vinitha, G. Structural, thermal,
dielectric, nonlinear optical properties and DFT investigations of a novel material 2-(6-chloropyridin-3-yl)-N'-(2, 3-dihydro-1, 4-
benzodioxin-6-ylmethylidene) acetohydrazide for optoelectronic applications. J. Mater. Sci. Mater. Electron. 2021, 32, 14677–14702.
[CrossRef]

51. Schrödinger, L.; DeLano, W. PyMOL. 2020. Available online: http://www.pymol.org/pymol (accessed on 1 October 2022).

http://doi.org/10.1002/ijc.24483
http://www.ncbi.nlm.nih.gov/pubmed/19479993
http://www.ncbi.nlm.nih.gov/pubmed/2370919
http://doi.org/10.1371/journal.pone.0220569
http://www.ncbi.nlm.nih.gov/pubmed/31361777
http://doi.org/10.1016/j.bmc.2020.115822
http://www.ncbi.nlm.nih.gov/pubmed/33126089
http://doi.org/10.1371/journal.pone.0131896
http://www.ncbi.nlm.nih.gov/pubmed/26196520
http://doi.org/10.1016/j.molstruc.2019.07.031
http://doi.org/10.3390/molecules26040783
http://www.ncbi.nlm.nih.gov/pubmed/33546391
http://doi.org/10.1016/j.bmcl.2015.01.030
http://www.ncbi.nlm.nih.gov/pubmed/25797502
http://doi.org/10.1021/acsomega.2c00424
http://www.ncbi.nlm.nih.gov/pubmed/35449922
http://doi.org/10.1021/acsomega.6b00251
http://www.ncbi.nlm.nih.gov/pubmed/30023509
http://doi.org/10.1016/j.jare.2020.07.004
http://www.ncbi.nlm.nih.gov/pubmed/33133685
http://doi.org/10.1016/j.ejmech.2016.08.053
http://www.ncbi.nlm.nih.gov/pubmed/27597415
http://doi.org/10.1038/28101
http://www.ncbi.nlm.nih.gov/pubmed/9671298
http://doi.org/10.1073/pnas.1804897115
http://www.ncbi.nlm.nih.gov/pubmed/30309962
http://doi.org/10.3390/cancers13122959
http://www.ncbi.nlm.nih.gov/pubmed/34199150
http://doi.org/10.1007/s10495-016-1313-7
http://www.ncbi.nlm.nih.gov/pubmed/27900636
http://doi.org/10.1074/jbc.M114.601104
http://www.ncbi.nlm.nih.gov/pubmed/25320076
http://doi.org/10.1103/PhysRevB.37.785
http://doi.org/10.1007/s10854-021-06025-y
http://www.pymol.org/pymol


Bioengineering 2023, 10, 159 20 of 20

52. Sanner, M.F. Python: A programming language for software integration and development. J Mol Graph Model 1999, 17, 57–61.
53. Abbasi-Radmoghaddam, Z.; Riahi, S.; Gharaghani, S.; Mohammadi-Khanaposhtanai, M. Design of potential anti-tumor PARP-1

inhibitors by QSAR and molecular modeling studies. Mol. Divers. 2021, 25, 263–277. [CrossRef]
54. Schrödinger, LLC. Schrödinger Release 2020-1: Maestro; Schrödinger, LLC: New York, NY, USA, 2020.
55. Kim, J.W.; Gautam, J.; Kim, J.E.; Kim, J.A.; Kang, K.W. Inhibition of tumor growth and angiogenesis of tamoxifen-resistant breast

cancer cells by ruxolitinib, a selective JAK2 inhibitor. Oncol. Lett. 2019, 17, 3981–3989. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s11030-020-10063-9
http://doi.org/10.3892/ol.2019.10059

	Introduction 
	Results and Discussion 
	Materials and Methods 
	General Procedure for the Synthesis of Imidazole-Pyridine Substituted Pyrazoline Derivatives 
	Synthesis of 2-Pyrazoline Derivatives (3a–i) from 2,6-Dimethyl-3-(5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-3-yl)imidazo[1,2-a]pyridine 
	Synthesis of 2-Pyrazoline Derivatives (4a–h) from 2,6-Dimethyl-3-(5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-3-yl)imidazo[1,2-a]pyridine 
	1-(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (2) 
	1-(2-(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-oxoethyl)piperidin-4-one (3a) 
	Tert-butyl-4-(2-(3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-oxoethyl)piperazine-1-carboxylate (3b) 
	1-(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-(piperazin-1-yl)ethanone (3c) 
	2-(4-Acetylpiperazin-1-yl)-1-(3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (3d) 
	2-(4-(4-Chlorophenyl)piperazin-1-yl)-1-(3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (3e) 
	2-(4-(2,3-Dichlorophenyl)piperazin-1-yl)-1-(3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (3f) 
	2-(4-(4-Chloro-2-fluorophenyl)piperazin-1-yl)-1-(3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (3g) 
	2-(4-(3,4-Difluorophenyl)piperazin-1-yl)-1-(3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (3h) 
	1-(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-(4-(2-fluorophenyl)piperazin-1-yl)ethanone (3i) 
	3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-N-phenyl-4,5-dihydro-1H-pyrazoline-1-carbothioamide (4a) 
	3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-N-(4-nitrophenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (4b) 
	N-Cyclohexyl-3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazoline-1-carbothioamide (4c) 
	N-(4-Chlorophenyl)-3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazoline-1-carbothioamide (4d) 
	N-(3-Chlorophenyl)-3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazoline-1-carbothioamide (4e) 
	3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-N-(p-tolyl)-4,5-dihydro-1H-pyrazoline-1-carbothioamide (4f) 
	N-(3,5-Bis(trifluoromethyl)phenyl)-3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazoline-1-carbothioamide (4g) 
	N-Butyl-3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazoline-1-carbothioamide (4h) 
	Cell Viability Assay 
	Preparation of Whole Cell Lysates 
	Western Blot Analysis 
	In Silico DFT Calculations 
	Docking Simulation 
	Immunocytochemistry Assay 

	Conclusions 
	References

