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Abstract: Traditional cervical cancer diagnosis mainly relies on human papillomavirus (HPV) concen-
tration testing. Considering that HPV concentrations vary from individual to individual and fluctuate
over time, this method requires multiple tests, leading to high costs. Recently, some scholars have
focused on the method of cervical cytology for diagnosis. However, cervical cancer cells have complex
textural characteristics and small differences between different cell subtypes, which brings great
challenges for high-precision screening of cervical cancer. In this paper, we propose a high-precision
cervical cancer precancerous lesion screening classification method based on ConvNeXt, utilizing
self-supervised data augmentation and ensemble learning strategies to achieve cervical cancer cell
feature extraction and inter-class discrimination, respectively. We used the Deep Cervical Cytological
Levels (DCCL) dataset, which includes 1167 cervical cytology specimens from participants aged 32 to
67, for algorithm training and validation. We tested our method on the DCCL dataset, and the final
classification accuracy was 8.85% higher than that of previous advanced models, which means that
our method has significant advantages compared to other advanced methods.

Keywords: deep learning; cervical cancer screening; liquid-based cytology

1. Introduction

Cervical cancer is the fourth most common cancer and the fourth leading cause of
death in women [1–3]. Approximately 600,000 new cases of cervical cancer are diagnosed
each year, and over half of cervical cancer patients die as a result [3]. Fortunately, cervical
cancer typically develops slowly over time, and early screening can lead to early diagnosis
and control of cervical cancer lesions.

The mainstream method for the detection of cervical cancer and its precancerous
lesions is based on a high-risk human papillomavirus (HR-HPV) concentration, as HR-HPV
concentration changes significantly during the course of having cervical cancer [4,5]. In
order to fully explore the variation in HPV concentration in different individuals, scholars
have carried out in-depth studies. Zhao et al. [6] conducted a large number of experiments
to explore the role of HR- HPV E6/E7 massage RNA (mRNA) in detecting high-grade
cervical intraepithelial neoplasia in cervical cancer screening. Shen et al. [7], on the other
hand, investigated the role of high-risk human papillomavirus (HPV) in cervical cancer
screening in women of different ages. Latsuzbaia et al. [8] established VALHUDES to
evaluate the clinical accuracy of HPV assays, to detect cervical precancer in first- to second-
phase cervical cancer screening.

Unlike the above HR-HPV concentration-based methods, Vink et al. [9] proposed the
use of FAM19A4/miR124-2 methylation analysis for the detection of cervical cancer and
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its precancerous lesions. Liu et al. [10] proposed the use of liquid-based cytology for the
diagnosis of precancerous and cancerous cervical intraepithelial neoplasia (CIN). Bhatla
et al. [11] studied screening through HPV testing, cytology, and visual inspection after
application of acetic acid (VIA), based on varied resourcing and management of screen-
positive lesions, among other methods.Notably, in a follow-up, Liu et al. [12] suggested
that HR-HPV-positive but cytology-negative cervical cancer screening results are not un-
common. They intend to investigate the accuracy and diagnostic value of colposcopy for
cytology-negative and HR-HPV-positive screening results. Many subsequent studies by
scholars have also focused on cytology-based diagnosis of cervical cancer.

In fact, when patients are infected with human papillomavirus (HPV), the cervical
epithelial cells undergo various morphological changes, including decreased maturation
and abnormal proliferation of squamous epithelial cells [13]. This process is referred to as
dysplasia, characterized by loss of squamous cell polarity, nuclear enlargement, increased
nuclear-to-cytoplasmic ratio, hyperchromasia, and nuclear condensation [14,15]. These
phenomena often indicate a higher possibility of cervical cancer progression [16]. Based
on this principle, some researchers have used cytological analysis of cervical scrapings
obtained through cell brushing to identify abnormal cervical cells, thereby achieving
reliable cervical cancer diagnosis [11,14]. Unfortunately, at present, there is a lack of
doctors and diagnostic experience among cervical cytology readers, making it difficult
to meet the screening demand for cervical cancer [17]. Additionally, the accuracy of
cytological examination may vary due to differences in individual pathologists’ experience.
Researchers are actively developing new technologies to achieve more accurate and faster
automated diagnosis of cervical cancer [10].

Deep learning is a feature learning method that uses non-linear models and can
transform raw data into higher-level and more abstract representations [18]. Since its intro-
duction [19], it has demonstrated powerful capabilities in areas such as speech recognition,
image recognition, and natural language processing. In recent years, an increasing number
of scholars have become dedicated to exploring the application of deep learning in solving
medical problems [20–22]. Convolutional neural networks (CNNs) are a type of deep
neural network with convolutional structures, exhibiting excellent performance [23,24].
From skin cancer [25] to retinal diseases [26], from tissue pathology image classification [27]
to tumor metastasis detection [28], CNNs have seen remarkable achievements in the field
of medical image analysis [29].

Some scholars have incorporated CNN technology into the construction of diagnostic
models for cervical cancer lesion cells. They built convolutional neural networks with only
a few layers. Initially, the models were pretrained on the ImageNet dataset, and then fine-
tuned using the HEMLBC dataset [30], which is based on liquid-based cytology techniques,
resulting in good performance. Later, Pramanik [31] proposed an ensemble learning method
based on the Inception V3 [32] and MobileNet V2 [33] models, also achieving satisfactory
results. Building upon this approach, Basak and colleagues proposed a method that
combines more models. Specifically, they used models such as Inception V3, VGG-16 [34],
ResNet-50 [35], and DenseNet101 [36] for feature extraction, ultimately achieving more
robust diagnostic outcomes. Unfortunately, they used the Herlev dataset [37] and the
SIPaKMeD dataset [38] for training and validation. These datasets significantly limit the
performance of the latest disease classification algorithms, as these existing datasets have
limited variation in disease types, cell morphology, and background noise. Therefore, it is
necessary to train high-accuracy classification models on challenging datasets, to promote
the future clinical application of cervical cytology analysis.

In our work, we adopted a CNN-based approach to develop a cervical cancer diag-
nostic method. To enhance the reliability of our findings, we rigorously validated our
classification results using the highly respected NCCL dataset [15]. Overall, we propose
a cervical cancer diagnostic method based on ConvNeXt [39]. In terms of image feature
extraction, the ConvNeXt module is currently the best feature extractor, capable of ob-
taining more abundant feature information. However, in the field of early screening for
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cervical cancer, due to the redundancy of cell image features and small spatial distances
between different cell features, it is difficult to directly use ConvNeXt for cell classification.
To address these issues, we first enhance cervical cancer data through self-supervised
data augmentation. Subsequently, we utilize the ConvNeXt-based convolutional neural
network to extract comprehensive enhanced cervical cancer image features. Finally, we
input the extracted features into a random forest algorithm for ensemble learning, resulting
in the final outcome. Our ConvNeXt method can effectively classify four cell lines: Nega-
tive for intraepithelial lesion or malignancy (NILM); ASC-US&LSIL—atypical squamous
cells of undetermined significance (ASC-US), low squamous intraepithelial lesion (LSIL);
ASC-H&HSIL—atypical squamous cell/cannot exclude HSIL (ASC-H) and high squamous
intraepithelial lesion (HSIL); and SCC&AdC, which mainly includes two types—squamous
cell carcinoma (SCC) and adenocarcinoma (AdC), demonstrating potential for automatic
early detection of cervical cancer.

The contributions of this work are summarized as follows:
1. We introduced ConvNeXt into the screening field for cervical precancerous lesions

and designed a new pipeline to classify cervical cancer cells according to the visual charac-
teristics of cervical cancer cells, which finally achieved a good clinical diagnosis effect;

2. We propose self-supervised data augmentation to augment the data, achieving a
comprehensive understanding of cervical cancer image features without increasing the
workload with additional data annotation;

3. We propose a method based on a random forest for ensemble learning in the model, ef-
fectively improving the model’s ability to identify different subtypes of cervical cancer images;

4. We performed multiple experiments on real large-scale datasets, and the results
showed that our cervical cancer cell classification model had a huge accuracy advantage
over the previous classification models.

2. Related Works

In this section, we first provide an in-depth analysis of the current basic meth-
ods of cervical cancer diagnosis, and then explore deep learning models for cervical
cytology analysis.

2.1. Cervical Cancer Diagnosis

Mainstream screening for cervical cancer relies on several typical diagnostic methods:
HPV concentration testing [6–8], colposcopy and biopsy [40–42], and cytology or PAP
smear testing [43–45]. Among these, HPV detection refers to the use of changes in HPV
concentration in patients to diagnose cervical cancer. This method is one of the most
well-used diagnostic methods, but because the HPV concentration in different patients may
not maintain a high degree of consistency [46,47], this method requires screening several
times to determine the final result. Some scholars have also tried to use other characteristics
of patients to make a diagnosis [40]. In recent years, colposcopy has been widely used in
developing countries, due to underfunding of health care and the scarcity of cervical cancer
screening facilities in low and middle-income countries. During colposcopy, the appearance
of the pathological area determines whether the patient has overcome the lesion. These
abnormal areas include an acetyl-white area, abnormal vascularization area, mosaic area,
and puncture [41]. Based on this basic idea, Adweb et al. [42] proposed a classification
method based on a VGG network. Meanwhile, Xu et al. [43] proposed a method based on a
multi-branch CNN.

Given that colposcopy is not as reliable as PAP tests and that HPV tests are too
expensive, some studies have focused on PAP tests. Soni et al. [44] proposed an auxiliary
diagnosis and treatment method based on CNN-CRF, which achieved good results. Fang
et al. [45] continued this line of thinking. They used the feature representations learned
from multiple nuclei of different sizes to construct a deep convolutional neural network for
diagnosis. Considering the limitations of a single model, Mohammed et al. [46] detected
abnormal cervical cells using an ANN classifier and features extracted by VGG-16 and
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Googlenet, and achieved good results. Kavitha et al. [47] and Attallah et al. [48] also
followed this basic line of thought.

2.2. Deep Learning Models for Cervical Cytology Analysis

In recent years, deep learning has been widely used in assistive systems for identifying
types of cervical cancer cells. Starting from the basic idea of model construction, we
divided the current deep learning models for cervical cytology analysis into two categories
according to their target use: (i) constructing diagnostic models based on the idea of
cytoplasm and nucleus segmentation; (ii) constructing a diagnostic model based on the
idea of pathological cell classification.

Segmentation of pathological cells.
A common cytological auxiliary screening method for cervical cancer is to promote

the detection and grading of cervical cancer using graph-based methods based on the
segmentation results of complex non-convex regions [49]. Bnouni et al. [50] proposed
a collection preconditioning method to realize the segmentation of cervical cancer cells
based on a CNN. Subsequent scholars have continued this idea, and Sellamuthu et al. [51]
proposed an improved deep learning algorithm based on a double-tree complex wavelet
transform (DTCWT). De et al. [52] introduced a mask-region-based CNN method, which
also achieved good segmentation performance. Wita et al. [53] proceeded from the perspec-
tive of features. They integrated MobilenetV2 networks to convert ordinary convolution to
deep split convolution, improving the network’s transmission and feature utilization.

Classification of pathological cells.
Cervical cancer diagnosis based on the basic idea of classification is the most main-

stream AI-assisted diagnosis and treatment method at present and has been studied by
many scholars in recent years. Taha et al. [54] used a pretrained CNN architecture as a
feature extractor and used the output features as inputs to train a support vector machine
classifier. Ghoneim et al. [55] proposed a detection and classification system for cervical
cancer cells based on a convolutional neural network (CNN). The cell images were fed
into a CNN model to extract deep learning features. Then, an extreme learning machine
(ELM)-based classifier classified the input images. Lin et al. [56] proposed a cell classifica-
tion method based on appearance and morphology, based on a CNN. Differently from the
above methods, they studied the classification effect when inputting images from different
channels, and finally selected images from five channels as the input for the model. Con-
sidering the limitations of a single model, subsequent scholars [57–59] introduced the basic
idea of model integration and carried out model fusion based on features extracted from
multiple CNNS.

In general, most of the existing cell diagnostic models for cervical cancer lesions have
been trained and verified based on the Herlev dataset [37]. The Herlev dataset is a cervical
cancer image dataset based on Pap smears collected using microscopes and digital cameras.
In the Herlev dataset, according to Bethesda’s criteria, cell images are divided into four
types: NILM (negative for intraepithelial lesions or malignancies), LSIL, HSIL, and SCC. In
addition, some scholars have also conducted model training and verification of low-cost
cervical cancer screening based on the CerviSCAN dataset [60] and HEMLBC dataset [30]
based on liquid cytology technology. We observed that these datasets greatly limit the
performance of the latest disease classification algorithms, because the existing datasets
have limited variation in terms of disease type, cell morphology, and background clutter.
Therefore, high-precision classification models need to be trained on challenging datasets,
to facilitate future clinical applications of cervical cytology analysis.

3. Analysis of the DCCL Dataset

Here, we used a large-scale cervical cytology dataset named Deep Cervical Cytological
Levels (DCCL) [15] to model a more robust cervical cancer diagnosis system. To our
knowledge, this is the largest set of cervical cytology data, and the total data volume is
ten times that of the previous benchmark dataset. In order to achieve a better cytological
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classification, we first performed an in-depth analysis of the dataset. It is worth noting
that, in order to ensure the fairness of model comparison, we did not use other datasets for
additional training. At the same time, considering the limitations of other datasets, we only
carried out the research based on the DCCL dataset.

3.1. Dataset Overview

There are 1167 cervical cytological specimens from participants aged 32 to 67 years
in the DCCL dataset. These specimens were prepared using the ThinPrep method and
stained through Pasteur staining. They were collected by four provincial medical centers
from 2016 to 2018. The collected cervical cancer images generated by DCCL included
933 positive patients and 234 normal cases. The image labels of cervical cancer came from
the pathological report. All slides were uniformly scanned using one of three digital slide
scanners (Nanozoomer2.0HT, KFBIO KF-RPO-400, or AperioAT2), all of which have 200×
zoom and 24-bit color.

3.2. Dataset Processing

Each cervical cancer image was trimmed into a grid with a rectangular area of ap-
proximately 1200 × 2000 pixels (physical size 1011.6 microns × 606.96 microns). Usually,
a picture of cervical cancer is converted into 700–800 color blocks. Specifically, the slide
distribution and patch distribution are shown in Table 1. It is worth noting that (i) all data
used in our research were strictly anonymous; (ii) the type of slide and patch came from
the diagnosis of the pathologist; and there are 34,382 images of cervical cells in the DCCL
dataset. The specific data distribution is illustrated in Figure 1.

Table 1. Statistics of pictures and patches by type.

Cell Type Train Val Test Total

NILM 2588 1540 2292 6420
ASC-US 2471 838 1378 4687
ASC-H 1147 543 591 2281

LSIL 1739 346 595 2680
HSIL 5890 1807 3482 11,179
SCC 3006 1225 2731 6962
AdC 122 20 31 173

Total 16,963 6319 11,100 34,382

Figure 1. Pie chart of cell distribution.

Considering some of the inherent challenges in cervical cytology identification, such
as intraclass differences (for example, some LSIL cells have clear perinuclear cavities, but
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the rest do not) and similarities between class differences (for example, HSIL and SCC both
have high nuclear-to-cytoplasmic ratios), which can be seen in Figure 2, the dataset divides
the images into seven different cell image types, which are divided into three categories:
squamous intraepithelial precancerous lesion cells, cancer cells, and cells with negative
intraepithelial lesion or malignant tumor (NILM). Among these, squamous intraepithelial
precancerous lesion cells are divided into four types with increasing severity: atypical squa-
mous cells with undetermined significance (ASC-US), low-grade squamous intraepithelial
lesion (LSIL), atypical squamous cells with high-grade squamous intraepithelial lesion
(ASC-H), and high-grade squamous intraepithelial lesion (HSIL). Cancer cells are mainly
divided into two types: squamous cell carcinoma (SCC) and adenocarcinoma (AdC). A
classification diagram is shown in Figure 2.

Figure 2. Examples of cells, where (a) are negative for intraepithelial lesion or malignancy (NILM)
cells; (b) are atypical squamous cells of undetermined significance (ASC-US) and low squamous
intraepithelial lesion (LSIL) cells; (c) are atypical squamous cell/cannot exclude HSIL (ASC-H) and
high squamous intraepithelial lesion (HSIL) cells; and (d) are squamous cell carcinoma (SCC) and
adenocarcinoma (AdC) cells.

In order to ensure the reliability of the experiment, 8619 distinctive cervical cytological
images were extracted from the original dataset. All pictures were finally divided into four
categories according to the severity of the lesions, and the severity from low to high was
NILM, ASC-US&LSIL, ASC-H&HSIL, and SCC&AdC. The classification of pictures of the
different types of cells is shown in Figure 3 (the severity increases in turn) and Table 2.
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Figure 3. Classification of cervical cancer cells.

Table 2. Attributes of the processed cervical cancer cell dataset.

Cell Type Train Val Test Total

NILM 1046 494 778 2318
ASC-US&LSIL 2108 731 1138 3977
ASC-H&HSIL 992 401 496 1889

SCC&AdC 243 61 131 435

Total 4389 1687 2543 8619

3.3. Data Characteristic Analysis

By comparing with other widely used datasets, including CerviSCAN [60], Herlev [37],
and HEMLBC [30], we analyzed the attributes of DCCL. Table 3 shows their differences in
terms of target task types, data size and diversity, lesion types, and accessibility. Taking
task types as an example, CerviSCAN and Herlev are only used for cell type classification,
where samples are cropped from the original slides without contextual information. On the
other hand, HEMLBC is used for target detection of pathological cells, but it is challenging
to build a high-precision pathological cell detection model due to the limited scale of the
data. In contrast, DCCL can be used for high-precision cell type classification, enabling
reliable diagnosis and analysis of cervical cancer.

We also conducted a cross-comparison of the different attributes of the various datasets,
and the comparison results are shown in Table 3. Table 3 reveals that compared to CerviS-
CAN, DCCL exhibits a greater variety of lesions. Due to the diversity in digital slide scanner
types, patient ages, pathological cell types, and background noise, DCCL poses a larger
range of challenges. All these different factors are crucial for establishing a robust and
reliable clinical application system. Based on such prior understanding of the dataset, we
needed to consider how to extract meaningful information from the dataset during the con-
struction of the model, instead of allowing the model to learn from data noise. Additionally,
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it was necessary to consider building more robust classification models. To address these is-
sues based on our data analysis findings, we proposed a self-supervised data augmentation
method and a model ensemble approach specifically tailored to this dataset.

Table 3. Attribute comparison among the different cervical cancer cell datasets.

Dataset Patients Labelled
Patches

Labelled
Cells

Lesion Cell
Types

Classification
Annotations

Detection
Annotations Open Source

CerviSCAN [60] 82 900 12,043 3 ✓ × ✓
Herlev [37] - - 917 3 ✓ × ✓

HEMLBC [30] 200 - 2370 4 ✓ ✓ ×
DCCL [15] 1167 14,432 34,392 6 ✓ ✓ ✓

4. Methodology
4.1. Pipeline

The traditional image classification scheme is shown in Figure 4. The first step is
to perform data preprocessing, such as data augmentation and outlier detection on the
input image. Among these, data augmentation can generate more equivalent data to
artificially expand the training dataset in the case of limited data, which is an effective
means of overcoming a shortage of training data. At present, this is widely used in medical
diagnosis scenarios with insufficient data. The earliest data augmentations included
geometric transformations, color transformations, rotations, and affine transformations,
among others. Later scholars also proposed ways to mix images with different labels.
For humans, the data generated by mixing images seems meaningless due to the lack
of interpretability of this method. However, for a model, such as a simple and effective
data augmentation algorithm, there are a series of works of related research [61,62]. In
Figure 5, (a) shows a method of lengthwise concatenation of images with different labels,
while (b) shows a method of random concatenation of images with different labels. The
current mainstream data augmentation methods also include AutoAugment [63], based on
automatic search for improved data augmentation, and RandAugment [64], which reduces
the search space for data augmentation to address the massive computational costs of
automatic data augmentation.

Figure 4. Traditional classification pipeline. The red boxes represent the integration of different models.

After the data preprocessing is completed, the processed data and labels are divided
into training sets and validation sets. After the training set is input into different models for
model training, researchers select a model based on the performance of different models on
the verification set, and then build a detection method based on the model. In general, such
a pipeline typically involves simple data processing and model selection, training, and
prediction based on a single model. However, the datasets for cervical cancer diagnosis
have weak feature data, and the traditional scheme based on a single model and simple
data augmentation cannot achieve good results.

Here, as shown in Figure 6, we proposed a two-stage cervical cancer cell classification
model based on ConvNeXt, which can effectively grasp cell local context and geometric
information and is very suitable for cervical cancer cell classification tasks. The feature
extraction unit of the original multiscale feature fusion network in ConvNeXt underwent
optimization compared with other famous CNN backbones. This involved replacing
it with a combination of depth separable convolution, an inverse bottleneck layer, and
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Gaussian error linearity. Additionally, a larger convolution kernel was employed to capture
more abundant feature information. These enhancements resulted in improved regional
proposals when input into the regional proposal network. These improvements enable
ConvNeXt to achieve advanced performance on many publicly available datasets, enabling
other researchers to migrate our model to different medical classification tasks.

Figure 5. Traditional data augmentation methods. (a) shows a method of lengthwise concatenation
of images with different labels, while (b) shows a method of random concatenation of images with
different labels.

Figure 6. Overall scheme.The red boxes represent the integration of different models.

The overall process is shown in Figure 6, which was divided into stage 1 and stage 2.
In stage 1, we introduced a self-supervised learning method to enhance the data. We
use the attention map to determine the possible diseased cells and then segment the
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image based on the determination results to expand the dataset to 16 times the original,
laying the foundation for the construction of the subsequent high-precision classification
model. In stage 2, considering the complexity of cell classification tasks and the small
differences between different types of cells, the model was very mixed. Here, we introduced
an ensemble learning strategy and used a random forest strategy to optimize the final
classification results.

4.2. Self-Supervised Data Augmentation

A larger dataset means a more accurate classification model. To expand the dataset,
we proposed a novel data enhancement method based on a self-monitoring method using
an attention map. This method could visualize the attention of ConvNeXt, and data
augmentation based on this method made the trained ConvNeXt model pay better attention
to the lesion areas in the whole image. We first trained a preliminary classification model
based on the original dataset, and then we extracted an attention map of the classification
model and decomposed it into m × m (m > 4) grids. The specific process is shown in
Figure 7.

Regarding the specific extraction method of the attention maps, here we used class-
activation heatmaps from the original classification model. Specifically, we refer to the
method mentioned in Grad-CAM [65]:

1. Predefine the specific class NLIM;
2. Perform forward calculation to obtain the network output value, YNLIM, corre-

sponding to the specified class NLIM, and perform backward propagation;
2. Extract the feature maps of each channel from the last layer of the ConvNeXt back-

bone network and calculate the gradients of each channel feature map as new gradient maps;
3. Apply global average pooling (GAP) to the different channel gradient maps to

obtain the gradient weight values, WNLIM, for each channel;
4. Calculate the weighted average of the feature maps of each channel using WNLIM;
5. Apply ReLU activation and upsampling to obtain the target attention map;
Then, we counted the intensity values of attention in m × m grids and selected the

16 grids with the highest intensity using a depth-first search (DFS). The specific DFS strategy
was as follows:

(1) Randomly select a visited pixel grid in the first-line pixel grid;
(2) Mark the selected pixel grid as visited;
(3) Sequentially search from the 1, 2, 3, . . . , n adjacent pixel grids beneath the pixel grid,

which have not been visited;
(4) If there are still unvisited adjacent pixel grids, select the pixel grid with the lowest

row as the starting vertex, and go back to step (2);
(5) If all pixel grids have been visited, then finish;
After calculating the 16 maximum attention values and their corresponding posi-

tions in the global image, we extracted 16 grids around that position with a size of
(H/16) × (W/16). These grids were then resized to the scale of H * W and subsequently
input into the network model for training. Here, H and W are the sizes of the image input
to the model. Considering that we used the ConvNeXt tiny model to build the classification
model, we extracted the cervical cancer cell image with a pixel scale of 768 × 768 based
on the center points of 16 grids and finally completed the 16-fold expansion of the dataset
(Figure 2).

4.3. Ensemble Learning Strategy

To improve the accuracy of the classification model, we introduced a multi-model
fusion strategy. First, we trained the classification network using ten-fold cross-validation
to obtain 10 different models. Then, we used the random forest method to fuse the different
classification models. Specifically, we took the output of the SoftMax layer of the model as
a feature vector, and then input the random forest. Here, we used the sklearn library [66] to
build a random forest, in which the number of decision trees in a random forest was set to
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120, the Gini coefficient was adopted as the algorithm for the decision tree, the maximum
depth of the decision tree was set to 5, and the other parameters were kept as default.

We took the output label of the model as features and built a feature vector F with
a dimension of 10. The sample size of the dataset was |F| and there were K classes Ck,
k = 1, 2, . . . K. |Ck| was the number of samples belonging to Ck and ∑K

k=1|Ck| = |F| .
When each node of the decision tree needs to be split, m attributes are randomly selected
from these 10 attributes, meeting the condition m << M. Later, we obtained n subsets
F1, F2, . . . , Fn of the feature vector F, |Fi| representing the number of feature vectors con-
tained in it.The set of Fi belonging to the Ck class in the subset was Fik = Fi ∩ Ck. We
calculated the information gain of the dataset using the following steps:

1. Calculate empirical entropy H(F) = −∑K
k=1

|Ck |
|F| log2

|Ck |
|F| F;

2. Calculate the empirical conditional entropy of feature A pair datasets

H(F | A) =
n

∑
i=1

|Fi|
|F| H(Di) = −

K

∑
i=1

|Fik|
|Fi|

log2
|Fik|
|Fi|

;

3. Calculate the information gain g(F, A) = H(F)− H(F | A)
Then, we selected one attribute from the m attributes as the split attribute of the node

based on the calculated information gain. In the process of building the decision tree, each
node should be split in this way until it can no longer be split. Finally, we constructed a
large number of decision trees and completed the construction of the random forest model
based on these decision trees.

Figure 7. Data augmentation based on the self-supervision method.

5. Experiments
5.1. Experiment Setup

Hardware: Here, we used a GPU for training acceleration, the training algorithm was
run on Ubuntu 18.04, and the training machine was a 64-bit server with 10 vCPU Intel
Xeon Gold 6248R and 512 G memory. The GPU type of the server was a 1*A100-PCIE-40GB
(40 GB). In total, our network model training algorithm took about 4 h to run on this
hardware configuration.
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Metrics: Considering that the classification-based cervical cancer diagnosis method is
more robust than the detection-based cervical cancer diagnosis method in actual diagnosis,
we used the basic idea of classification to analyze the diagnosis of cervical cancer cells.
We verified the progressiveness of the diagnostic model for cervical cancer diagnosis and
analysis tasks based on the ConvNeXt model proposed in this paper by comparing with
the performance of different published models in this task. We followed the evaluation
indicators used in [37] and used the accuracy, precision, recall, and F1-score as the evalua-
tion indicators. Accuracy is the ratio between correctly classified samples and the dataset
size. Precision is the ratio of true positive samples (correctly identified as positive) to the
total number of samples identified as positive. Recall is the ratio of true positive samples
to the total number of actual positive samples. F1-score is a weighted harmonic mean of
precision and recall, and is commonly used to evaluate the performance of classification
models. Using multiple metrics to evaluate algorithm models allows for a comprehensive
understanding of the model’s preferences. Additionally, in the DCCL dataset, the distribu-
tion of samples among different classes is imbalanced. A single accuracy metric may not
reflect the model performance accurately. By introducing multiple metrics, we could better
evaluate the model’s ability to identify different categories of cervical cells. We calculated
these using the following equation:

Accuracy =
TP + TN

TP + TN + FP + FN
.

Precision =
TP

TP + FP
.

Recall =
TP

TP + FN
.

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
.

True positive (TP): an outcome where the model correctly predicts the positive class.
True negative (TN): an outcome where the model correctly predicts the negative class.
False positive (FP): an outcome where the model incorrectly predicts the positive class.
False negative (FN): an outcome where the model incorrectly predicts the negative class.
It is worth noting that when one category is considered positive, the rest of the

categories are considered negative.In this way, the accuracy rate and recall rate of each
category could be obtained in the multi-classification scenario of this paper. In calculating
the accuracy and recall rates for the entire confusion matrix, we averaged the index values
for each category.

5.2. Fine-Tuning Policy Verification

To validate the effectiveness of self-supervised data augmentation (SDA) and ensemble
learning strategy (ELS), this study first conducted comparative experiments between
the original ConvNeXt method and the ConvNeXt method using SDA and ELS. The
experimental results are shown in Table 4 and Figure 8. The ConvNeXt method with SDA
and the ConvNeXt method with ELS achieved accuracy improvements of 1.69% and 1.53%,
respectively, demonstrating significant progress in the diagnosis and analysis of cervical
cancer. Finally, with the combination of SDA and ELS, the accuracy of the ConvNeXt
method reached 63.08%, a 3.31% improvement over the original ConvNeXt method. This
meets the basic medical requirements for cervical cancer auxiliary reading and can be
applied in the field of cervical cancer diagnosis. These results indicate that the proposed
enhancement methods provide useful clues for improving cell type classification. Moreover,
in terms of precision and recall, the SDA and ELS method proposed in this study also
achieved a relatively stable performance improvement. Ultimately, our method achieved an
F1-score of 62.82%. We also performed validation tests on other common data augmentation
methods. When applying CutMix [62] or Randaug [64] on this dataset, the accuracy and
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precision could even decrease. Autoaug [63] showed a slight improvement in performance,
but the magnitude of improvement was minimal. This was because the DCCL dataset used
in this study has complex data features and small inter-class differences, causing these
traditional data augmentation methods to become ineffective. These verification results
further demonstrate the advancement of the proposed method.

Figure 8. Comparisonof the test set classification accuracy under different optimization strategies:
(a) Raw ConvNeXt; (b) +CutMix; (c) +Autoaug; (d) +Randaug; (e) +SDA; (f) +ELS; (g) Our Method.

Table 4. Comparison of test set classification accuracy under different optimization strategies.

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Raw ConvNeXt 59.77 56.12 58.49 57.09
+CutMix [62] 59.26 55.98 61.14 57.83

+Autoaug [63] 59.85 56.62 61.91 58.53
+Randaug [64] 58.95 56.11 61.23 58.02

+SDA 61.46 58.61 64.43 60.80
+ELS 61.30 58.01 63.69 60.15

Our Method 63.08 60.78 66.10 62.82

5.3. Comparison with Advanced Methods

To validate the advancement of the proposed approach in this study, we compared
it with several classical algorithms and existing state-of-the-art algorithms. The final
experimental results are shown in Table 5 and Figure 9. The method proposed in this study
achieved a good performance. Compared to traditional convolutional neural network
models such as Inception-v3 [32], ResNet-101 [35], DenseNet-121 [36], which were early
models used for classification tasks, the approach proposed in this study showed significant
improvements in terms of accuracy, precision, and recall. Additionally, compared to
the current mainstream network models, this approach also demonstrated a substantial
improvement in accuracy. In comparison with the classification method based on a Swin
transformer [67], our approach achieved a 10.43% improvement. Furthermore, compared to
the classification method based on Beit [68], our approach achieved an 8.85% improvement.
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Figure 9. Comparison of the classification accuracy of the test sets using different advanced methods:
(a) ResNet [35]; (b) Inception [32]; (c) DenseNet [36]; (d) Swin [67]; (e) Beit [68]; (f) Our Method.

Table 5. Comparison of the classification accuracy of the test sets under different advanced methods.

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)

ResNet [35] 48.68 43.13 45.72 44.08
Inception [32] 50.33 45.08 47.70 46.04
DenseNet [36] 51.39 46.14 48.74 47.09

Swin [67] 52.65 47.11 50.72 48.32
Beit [68] 54.23 50.20 54.63 51.71

Our Method 63.08 60.78 66.10 62.82

6. Conclusions

This paper aimed to build a high-precision cervical cell classification model based
on the large DCCL cervical cancer cell benchmark dataset. This model is intended to con-
tribute to future research and clinical studies in cervical cancer screening. The dataset poses
inherent challenges in cervical cell identification, such as intra-class variations (e.g., some
LSIL cells having clear perinuclear halos, while others do not) and inter-class similarities
(e.g., HSIL and SCC both having high nucleus-to-cytoplasm ratios), which are commonly
encountered in clinical settings. To achieve high-precision cervical cancer diagnostic analy-
sis on the DCCL dataset, we introduced a high-performance network named ConvNeXt
as the backbone of a neural network model. We proposed a novel self-supervised data
augmentation technique for data enhancement, as well as an ensemble learning strategy
based on random forests for model enhancement. We conducted extensive experiments on
the DCCL dataset to demonstrate the effectiveness of our approach. An ablation study in-
volving different augmentation methods showcased the effectiveness of our proposed data
augmentation and model enhancement schemes. The comparative experimental results
with different state-of-the-art models indicated that our model outperformed the others
in various performance evaluation metrics. This suggests that our approach can greatly
assist in real cervical cancer diagnosis processes. In future research, we will also further
optimize our data augmentation methods, perform more in-depth studies on cell integrity,
and conduct more tests on the interpretability of the model.
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