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Abstract: The manual segmentation of retinal layers from OCT scan images is time-consuming and
costly. The deep learning approach has potential for the automatic delineation of retinal layers
to significantly reduce the burden of human graders. In this study, we compared deep learning
model (DLM) segmentation with manual correction (DLM-MC) to conventional manual grading
(MG) for the measurements of the photoreceptor ellipsoid zone (EZ) area and outer segment (OS)
volume in retinitis pigmentosa (RP) to assess whether DLM-MC can be a new gold standard for
retinal layer segmentation and for the measurement of retinal layer metrics. Ninety-six high-speed
9 mm 31-line volume scans obtained from 48 patients with RPGR-associated XLRP were selected
based on the following criteria: the presence of an EZ band within the scan limit and a detectable
EZ in at least three B-scans in a volume scan. All the B-scan images in each volume scan were
manually segmented for the EZ and proximal retinal pigment epithelium (pRPE) by two experienced
human graders to serve as the ground truth for comparison. The test volume scans were also
segmented by a DLM and then manually corrected for EZ and pRPE by the same two graders to
obtain DLM-MC segmentation. The EZ area and OS volume were determined by interpolating the
discrete two-dimensional B-scan EZ-pRPE layer over the scan area. Dice similarity, Bland–Altman
analysis, correlation, and linear regression analyses were conducted to assess the agreement between
DLM-MC and MG for the EZ area and OS volume measurements. For the EZ area, the overall mean
dice score (SD) between DLM-MC and MG was 0.8524 (0.0821), which was comparable to 0.8417
(0.1111) between two MGs. For the EZ area > 1 mm2, the average dice score increased to 0.8799
(0.0614). When comparing DLM-MC to MG, the Bland–Altman plots revealed a mean difference
(SE) of 0.0132 (0.0953) mm2 and a coefficient of repeatability (CoR) of 1.8303 mm2 for the EZ area
and a mean difference (SE) of 0.0080 (0.0020) mm3 and a CoR of 0.0381 mm3 for the OS volume. The
correlation coefficients (95% CI) were 0.9928 (0.9892–0.9952) and 0.9938 (0.9906–0.9958) for the EZ area
and OS volume, respectively. The linear regression slopes (95% CI) were 0.9598 (0.9399–0.9797) and
1.0104 (0.9909–1.0298), respectively. The results from this study suggest that the manual correction of
deep learning model segmentation can generate EZ area and OS volume measurements in excellent
agreement with those of conventional manual grading in RP. Because DLM-MC is more efficient for
retinal layer segmentation from OCT scan images, it has the potential to reduce the burden of human
graders in obtaining quantitative measurements of biomarkers for assessing disease progression and
treatment outcomes in RP.

Keywords: deep learning; retinitis pigmentosa; photoreceptor ellipsoid zone area; photoreceptor
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1. Introduction

Retinitis pigmentosa (RP) is one of the leading causes of irreversible vision loss among
various types of inherited retinal degeneration. Retinal scan images obtained using optical
coherence tomography (OCT) have shown that the structural changes in RP mostly occur
in the outer retina [1–3]. One of the hallmarks of structural change in RP is the shrinking of
the photoreceptor ellipsoid zone (EZ), or the junction of the photoreceptor inner and outer
segments, with the progression of the disease. The change in EZ band width with disease
progression is evident in cross-sectional OCT scan images (B-scans) when the EZ transition
zone is within the scan limit [4]. Previous studies have suggested using EZ width [4] and
EZ area [5] as biomarkers to evaluate disease progression and to predict vision loss in RP.
A recent study showed that patients with X-linked RP (XLRP) exhibited a shortening of the
photoreceptor outer segment (OS) in the early stage of the disease [6]. Hence, quantitative
measurements of three-dimensional (3D) OS metrics, including OS length, OS (or EZ) area,
and OS volume, may provide a more comprehensive set of biomarkers for assessing disease
progression. However, one of the challenges involved in obtaining reliable 3D OS metrics
measurements is the accurate delineation of the OS boundaries, including both the EZ
band and the proximal retinal pigment epithelium (pRPE) on all B-scan images in a volume
scan. Current conventional automatic OCT segmentation algorithms often incorrectly
identify the EZ transition zone and thus require manual segmentation by human graders
for accurate identification of the OS, which is time-consuming and costly [7], especially for
a high-density volume scan which may contain more than one hundred B-scans.

Recent advances in machine learning have provided new tools for clinical applica-
tions in ophthalmology, especially in retinal diseases [8–15]. One such application is the
automated layer segmentation in OCT scan images [16–24], in particular automatic mea-
surements of EZ width or area from the retinal layer segmentation of OCT scan images in
patients with inherited retinal degeneration [7,25–28]. For instance, Camino et al. imple-
mented a method based on a convolutional neural network (CNN) for the segmentation of a
preserved EZ area on en face OCT in choroideremia and RP and achieved 90% accuracy [25].
Loo et al. evaluated a deep learning-based algorithm originally developed for macular
telangiectasia [29] for the segmentation of the EZ area in USH2A-related RP [26], and they
showed that the deep learning algorithm performed well in segmenting the EZ area, with a
dice similarity score (SD) of 0.79 (0.27). Wang et al. developed a machine learning method
based on random forests for the automatic detection of continuous areas of a preserved
EZ in choroideremia [28]. We also developed a hybrid deep learning model (DLM) that
combined two CNNs of different structures, a U-Net for fast semantic segmentation and a
sliding-window CNN for refinement, for the segmentation of five retinal layer boundaries,
including both the EZ and pRPE, in OCT B-scan images, and demonstrated that the model
performed well in EZ width measurement when compared to human graders [27,30]. While
new machine learning algorithms have shown promise for the automatic measurement of
EZ width and/or area, OS volume was not determined in these studies.

One of the features of our DLM is that, from the EZ and pRPE segmentation in each B-
scan of a volume scan, a 3D OS formation can be reconstructed to obtain the measurements
of OS thickness, EZ area, and OS volume. Using this approach, we demonstrated that the
EZ area measurements obtained with our DLM were in good agreement with those by a
reading center [7]. In a more recent study, where the longitudinal changes in OS metrics
were examined in XLRP, a total of 342 OCT volume scans were segmented automatically
by our model, then manually checked and corrected by human graders for the EZ and
RPE to obtain OS metrics measurements, demonstrating for the first time that with the
assistance of deep machine learning, it is possible to measure OS volume in a large dataset
and significantly reduce the time needed for manual segmentation [31]. Hence, DLM
segmentation with manual correction (DLM-MC) could potentially be a new gold standard
for OS metrics measurements to ease the burden of human graders. The question is “how
well does DLM-MC perform when compared to the conventional manual grading (MG)
by human graders?” It was shown in our previous study that increasing the size of the



Bioengineering 2023, 10, 1394 3 of 17

training dataset, especially by adding more cases with the EZ band extended towards and
beyond the edge of the macula, can improve the model’s performance [7]. The question is
“can we improve DLM performance further with additional training data so that eventually
the performance of DLM alone without manual correction can be closer enough to that of
MG?” Furthermore, our studies so far employed a single image patch size of 256 × 32 for
the U-Net model training. It is unknown what the effect is of different image patch sizes on
the performance of trained models. Hence, in this study, we compared the performance of
DLM-MC to that of MG for the measurement of EZ area and OS volume. We also assessed
the impact of increasing the training dataset sizes as well as changing the training image
patch sizes on the performance of the DLM only for the measurement of EZ area and
OS volume.

2. Materials and Methods
2.1. Test Dataset—OCT Volume Scans and Manual Segmentation

Ninety-six high-speed 9 mm 31-line volume scans obtained from 48 patients with
retinitis pigmentosa GTPase regulator (RPGR)-associated XLRP (one volume scan per
eye) were selected based on the following criteria: the presence of an EZ band transition
zone within the scan limit and a detectable EZ in at least 3 B-scans in a volume scan. All
the volume scans were obtained using a Heidelberg Spectralis HRA-OCT (Heidelberg
Engineering, Heidelberg, Germany). Figure 1 shows an example of a volume scan obtained
from a patient with RP. These volume scans were used as a testing dataset for comparing
the performance of DLM-MC, as well as the performance of the DLM only, with that of
MG in the measurements of EZ area and OS volume. A subset of these patients (n = 39)
participated in a previous study that examined the effect of docosahexaenoic acid (DHA)
on the disease progression [32].

Bioengineering 2023, 10, x FOR PEER REVIEW 3 of 16 
 

question is “how well does DLM-MC perform when compared to the conventional man-
ual grading (MG) by human graders?” It was shown in our previous study that increasing 
the size of the training dataset, especially by adding more cases with the EZ band ex-
tended towards and beyond the edge of the macula, can improve the model’s performance 
[7]. The question is “can we improve DLM performance further with additional training 
data so that eventually the performance of DLM alone without manual correction can be 
closer enough to that of MG?” Furthermore, our studies so far employed a single image 
patch size of 256 × 32 for the U-Net model training. It is unknown what the effect is of 
different image patch sizes on the performance of trained models. Hence, in this study, 
we compared the performance of DLM-MC to that of MG for the measurement of EZ area 
and OS volume. We also assessed the impact of increasing the training dataset sizes as 
well as changing the training image patch sizes on the performance of the DLM only for 
the measurement of EZ area and OS volume. 

2. Materials and Methods 
2.1. Test Dataset—OCT Volume Scans and Manual Segmentation 

Ninety-six high-speed 9 mm 31-line volume scans obtained from 48 patients with 
retinitis pigmentosa GTPase regulator (RPGR)-associated XLRP (one volume scan per eye) 
were selected based on the following criteria: the presence of an EZ band transition zone 
within the scan limit and a detectable EZ in at least 3 B-scans in a volume scan. All the 
volume scans were obtained using a Heidelberg Spectralis HRA-OCT (Heidelberg Engi-
neering, Heidelberg, Germany). Figure 1 shows an example of a volume scan obtained 
from a patient with RP. These volume scans were used as a testing dataset for comparing 
the performance of DLM-MC, as well as the performance of the DLM only, with that of 
MG in the measurements of EZ area and OS volume. A subset of these patients (n = 39) 
participated in a previous study that examined the effect of docosahexaenoic acid (DHA) 
on the disease progression [32]. 

 
Figure 1. An example of OCT volume scan obtained with Spectralis SD-OCT device (Heidelberg 
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Figure 1. An example of OCT volume scan obtained with Spectralis SD-OCT device (Heidelberg
Engineering, Heidelberg, Germany). (a) Infrared fundus image with 31 lines of B-scan; (b) mid-line
B-scan from (a), showing five retinal layer boundaries labelled: inner limiting membrane (ILM), distal
inner nuclear layer (dINL), ellipsoid zone (EZ), proximal retinal pigment epithelium (pRPE), and
Bruch’s membrane (BM); (c) EZ area overlapped with infrared fundus image; (d) OS volume map.
Note that the z-axis in volume map is in micrometer, different from the x-axis and y-axis in mm.
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All the B-scan images in each volume scan were manually segmented for the EZ and
proximal (apical) retinal pigment epithelium (pRPE) by two experienced human graders.
The manual segmentation was conducted using Heidelberg Eye Explorer software (version
1.9.10.0). Any prior segmentation of retinal layers in all the volume scans was removed
before performing manual grading for this study. The manual tracing of EZ and pRPE in
a B-scan image followed the conventions described in a previous study [4]. The manual
segmentation served as the ground truth for the comparison with other segmentation
methods, including DLM-MC and the DLM only.

2.2. Deep Learning Model and Training Datasets

The deep learning model (DLM) employed in this study is the hybrid model we devel-
oped [27]; it consists of a U-Net CNN model [33] for the initial, fast semantic segmentation
and a sliding-window (SW) CNN model [34] for refinement through the correction of the
potential segmentation errors made by the U-Net. Our model was designed to identify
five retinal boundaries: the inner limiting membrane (ILM), the distal inner nuclear layer
(dINL), the EZ, the pRPE, and Bruch’s membrane (BM). The details of the model’s struc-
tures, implementation, and training and testing were reported previously [27,30], and a
summary of the model was described in a more recent publication [7]. All the models
were implemented in MATLAB (MathWorks, Natick, MA, USA) and trained on a Mac Pro
desktop computer (Apple, Inc., Cupertino, CA, USA, 2019, 3.2 GHz 16-Core Intel Xeon W
with 192 GB 2933 MHz DDR4 RAM).

In this study, four datasets were used for the model training and validation: (1) the
original RP240 dataset [30]; (2) the RP340 dataset, as reported previously [7], which included
the RP240 dataset with an additional 200 mid-line B-scans containing an increased number
of cases with an extended EZ band obtained from 100 patients with RP; (3) the RP480
dataset, which was generated by adding 280 mid-line B-scans from 140 patients with RP
to RP340 to double the size of the original dataset; (4) the RP140 dataset, which consisted
of the above-mentioned 280 mid-line B-scans to give a size range for the training datasets.
Only two B-scans, one per eye, were obtained from a patient in each dataset. All the
mid-line B-scans, which were composed of a mix of high-speed (768 A-scans) and high-
resolution (1536 A-scans) B-scans with an automatic real-time tracking (ART) setting of 100,
were obtained using the Heidelberg Spectralis SD-OCT. There was no overlap of patients
between the training datasets and the testing dataset described in Section 2.1.

For the U-Net, three patch sizes were used for the training images: 256 × 32, 256 × 64,
and 256 × 128 pixels. The methods used for the extraction of the image patches and for
data augmentation were reported previously [27].

For the SW model, the training data were tiny image patches of 33 × 33 pixels extracted
from the B-scan images. The class of each patch was defined by the class of its center pixel.
The patches generated for training were centered at the pixels on 5 boundary lines or
centered on the background pixels [30]. The patches centered on the ILM, dINL, EZ, pRPE,
or BM boundary lines were labelled as 1, 2, 3, 4, or 5, respectively. Any patches not centered
on these five boundary lines were labeled as 0.

Table 1 lists the four training datasets with the details, including patient composition,
the number of B-scans in each scan type, the patch image size for the U-Net, and the number
of image patches for training and validation.

Table 1. Training datasets with the details, including patient composition, B-scan composition, and
number of image patches for training and validation. “#” in the table means “number of”.

Training
Dataset

# Patients # Mid-Line B-Scans Patch Horizontal Shift & # Patches for U-Net Training
# Patches

for SW
Model

Training
Total adRP arRP XLRP Isolated Normal Total

High-
Speed (768
A-Scans)

High-Res
(1536

A-Scans)

Patch Size:
256 × 32

Patch Size:
256 × 64

Patch Size:
256 × 128

Overlap
(pixels)

#
Patches

Overlap
(pixels)

#
Patches

Overlap
(pixels)

#
Patches

RP140 140 50 15 15 30 30 280 183 97 28 300,369 56 148,705 112 72,179 1,646,562
RP240 240 50 30 20 120 20 480 305 175 28 527,504 56 261,658 112 127,691 2,878,002
RP340 340 80 40 30 170 20 680 446 234 28 737,084 56 365,520 112 178,242 3,984,084
RP480 480 130 55 45 200 50 960 629 331 28 1,037,453 56 514,225 112 250,421 5,630,646
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2.3. Deep Learning Model Training and Validation

The details of the model training and validation were reported previously [7,27,30].
All the labeled image patches were randomly divided into a training set (80%) and a
validation set (20%). To accelerate the CNN training and reduce the sensitivity to network
initialization [35], a batch normalization layer was inserted between the convolutional
layers and the rectified linear unit (ReLU) layers for the SW model training and between
the convolutional layers and the ReLU layers in the encoding subnetwork for the U-Net
training. The U-Net and the SW model as a pair were trained on all four datasets. The
U-Net training also included three different patch sizes for each dataset. The trained models
were named after the names of the corresponding training datasets.

To account for the potential impact of the randomization of the initial filter weights
and stochastic learning algorithms of the model training on the OS metrics measurements,
all the models were trained three times on the same datasets [7].

2.4. Segmentation of Test Volume Scans by DLM-MC and DLM Only

For DLM-MC, all the B-scan images in each volume scan in the test dataset were first
segmented automatically for five retinal boundary lines (ILM, dINL, EZ, pRPE, and BM)
by the RP340 model; then, these B-scans were checked and manually corrected by the
same two graders for potential errors made by the RP340 model for the boundary lines of
the EZ and pRPE. The manual correction to the automatic segmentation of the DLM was
performed using the software of the Manual Segmentation Utility created by the Hood
Visual Science Laboratory (HVSL) [36].

For the DLM only, all the B-scan images in each volume scan in the test dataset were
segmented automatically for the same five retinal boundary lines by the RP140, RP240,
RP340, and RP480 models, respectively. As three image patch sizes were used for the
U-Net training and each model was trained three times to account for the randomization
of the initial weights of the model, each B-scan image was segmented a total of 36 times
(4 × 3 × 3) by the various models.

2.5. Photoreceptor Outer Segment (OS) Metrics Measurements

The methods used to obtain the 3D OS metrics measurements (OS thickness, EZ area,
and OS volume) were the same as previously reported [31]. An example of a 3D OS map
as well as the EZ area can be found in Figure 1. The OS metrics measurements were then
obtained from the reconstructed 3D OS maps. Specifically, the mean OS thickness was
the average of all the non-zero single pixel OS thicknesses; the EZ area was estimated by
multiplying the area of a single grid pixel by the number of pixels with a measurable OS;
and the OS volume was the sum of the products of the OS thickness at each pixel and the
pixel area. In this study, only the EZ area and OS volume measurements were evaluated
since our recent study [31] suggested that average OS length alone may not be a good
candidate as a biomarker due to the current limit of the axial resolution of OCT, which
could result in a larger OS length measurement variability when compared to the EZ area
and OS volume measurements. For the dice similarity analysis, the EZ band in each B-scan
was marked from the OS layer segmentation to obtain a 2D EZ band annotation map [7] for
the pixel-wise comparison between the different segmentation methods (DLM-MC, DLM
only, and MG).

The EZ area and OS volume measurements obtained from DLM-MC by two human
graders were then averaged and used to compare with that obtained from MG by two
graders to assess the agreement between DLM-MC and MG. To compare the performance
of the DLM only to that of MG, since each model was trained three times separately on
the same datasets, three measurements of EZ area and OS volume were obtained by each
DLM for an OCT volume scan, and the average of these three measurements was used to
compare with that of MG.
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The software package used for DLM training and validation, as well as for obtaining
automatic segmentation and OS metrics measurements, is available at https://github.com/
yzwang23/RFSW_RP_DLM/ (accessed on 26 October 2023) [31].

2.6. Data Analysis

The performance of DLM-MC as well as the DLM only in measuring the EZ area and
OS volume from the test dataset was evaluated by comparing their measurement results
to those of MG. Sørensen–Dice similarity analysis was employed to assess the agreement
of the 2D EZ band annotation maps. Bland–Altman analysis, Pearson correlation, and
linear regression were carried out to assess the agreement of the EZ area and OS volume
measurements between the different methods.

3. Results
3.1. Dice Scores between EZ Band Segmentations by DLM-MC and by MG

The agreement between DLM-MC and MG in measuring the EZ areas was first eval-
uated with the dice similarity coefficient or dice score. The dice score was computed
between the EZ band annotation maps (31 × 768, two examples are shown as inset images
in Figure 2) determined by the individual DLM-MC and that determined by the individual
MG for the 31 B-scan lines in each volume scan. Figure 2 plots the dice score as a function of
the average EZ areas determined by the MG of two human graders. The closed red circles
were the mean dice score between the EZ band annotation maps determined by DLM-MC
and that determined by MG, and the error bars indicate ± 1 SD of the mean (average of
four dice scores between two DLM-MCs and two MGs). Also plotted in Figure 2 are the
dice scores between the EZ band annotation maps determined by two DLM-MCs, i.e., the
DLM-MC of grader 1 and that of grader 2 (open blue squares), as well as the dice scores
between the EZ band annotation maps determined by two MGs (open black diamonds).
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Figure 2. Dice similarity score for EZ band segmentation as a function of average EZ areas determined
by conventional manual grading (MG) of two human graders. Closed red circles were the mean dice
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score between the EZ band area determined by DLM segmentation with manual correction (DLM-
MC) and that by MG, and error bars indicate ±1 SD of the mean (average of 4 dice scores between
two DLM-MCs and two MGs). Open blue squares were the dice scores between the EZ band areas
determined by DLM-MC of grader 1 and that of grader 2, while open black diamonds were the dice
scores between the EZ band areas determined by MG of grader 1 and that of grader 2. The inset
images showed two examples of EZ band annotation maps (31 × 768 pixels). The top was from
DLM-MC of the second grader (MC2) while the bottom was from MG of the first grader (MG1). The
dice score was 0.9613 for this example.

As illustrated in Figure 2, when the EZ area was very small, the dice score varied
significantly. The smaller the EZ, the smaller the dice coefficient. With the increase in the
EZ area, the dice coefficient increased and gradually reached a plateau. The overall mean
dice score (SD) for all the cases between DLM-MC and MG was 0.8524 (0.0821), which was
comparable to the mean dice score (SD) of 0.8417 (0.1111) between the manual grading of
two human graders (MG1 vs. MG2). When comparing DLM-MC1 and DLM-MC2, the
mean dice score (D) was 0.8732 (0.0969). We also divided the EZ areas into two sub-groups
using 1 mm2 as the criterion for easy comparison with the previously published results [7].
For the EZ area ≤ 1 mm2, the mean dice score (SD) between DLM-MC and MG was 0.7478
(0.0651). For the EZ area > 1 mm2, the mean dice score (SD) between DLM-MC and MG
was 0.8799 (0.0614). Additional dice scores between MG1 and MG2, as well as between
DLM-MC1 and DLM-MC2, can be found in Table 2, where the median dice score and the
25% and 75% quartiles are also reported.

Table 2. Dice similarity score of EZ band segmentation between DLM-MC and MG, between two
MGs, and between two MCs, as well as between DLM only and MG. DLM-MC: deep learning model
segmentation with manual correction; MG: conventional manual grading.

Dice Score
(EZ Band Segmentation)

All Cases Cases with EZ Area ≤ 1 mm2 Cases with EZ Area > 1 mm2

Mean (SD) Median
(Q1, Q3) Mean (SD) Median

(Q1, Q3) Mean (SD) Median
(Q1, Q3)

MC vs. MG 0.8524
(0.0821)

0.8674
(0.8052,
0.9212)

0.7478
(0.0651)

0.7446
(0.6963,
0.7970)

0.8799
(0.0614)

0.8875 (0.8319,
0.9344)

MG1 vs. MG2 0.8417
(0.1111)

0.8642
(0.8014,
0.9201)

0.7210
(0.1284)

0.7905
(0.6199,
0.8054)

0.8735
(0.0810)

0.8928 (0.8332,
0.9306)

MC1 vs. MC2 0.8732
(0.0969)

0.8902
(0.8341,
0.9486)

0.7791
(0.1083)

0.8208
(0.7354,
0.8559)

0.8979
(0.0771)

0.9239 (0.8670,
0.9561)

RP140 vs.
MG

256 × 32 0.7859
(0.1276)

0.8124
(0.7198,
0.8896)

0.6212
(0.0833)

0.6249
(0.5672,
0.6803)

0.8293
(0.0987)

0.8513 (0.7756,
0.9092)

256 × 64 0.7854
(0.1383)

0.8174
(0.7185,
0.9006)

0.6044
(0.1148)

0.6074
(0.4722,
0.7006)

0.8330
(0.0992)

0.8609 (0.7721,
0.9158)

256 × 128 0.7847
(0.1504)

0.8390
(0.7261,
0.9003)

0.5614
(0.1254)

0.5578
(0.4897,
0.6338)

0.8435
(0.0887)

0.8598 (0.8112,
0.9073)

RP240 vs.
MG

256 × 32 0.8002
(0.1047)

0.8148
(0.7382,
0.8935)

0.6725
(0.0883)

0.6695
(0.6055,
0.7440)

0.8338
(0.0801)

0.8392 (0.7917,
0.9089)

256 × 64 0.7915
(0.1122)

0.8051
(0.7310,
0.8847)

0.6544
(0.0935)

0.6711
(0.6042,
0.7210)

0.8276
(0.0859)

0.8328 (0.7893,
0.9064)

256 × 128 0.8014
(0.1105)

0.8339
(0.7183,
0.8976)

0.6460
(0.0816)

0.6767
(0.5955,
0.6999)

0.8423
(0.0752)

0.8510 (0.8042,
0.8999)
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Table 2. Cont.

Dice Score
(EZ Band Segmentation)

All Cases Cases with EZ Area ≤ 1 mm2 Cases with EZ Area > 1 mm2

Mean (SD) Median
(Q1, Q3) Mean (SD) Median

(Q1, Q3) Mean (SD) Median
(Q1, Q3)

RP340 vs.
MG

256 × 32 0.8055
(0.1133)

0.8293
(0.7550,
0.8949)

0.6561
(0.0877)

0.6600
(0.5929,
0.7064)

0.8448
(0.0823)

0.8518 (0.8095,
0.9150)

256 × 64 0.8012
(0.1168)

0.8280
(0.7339,
0.8997)

0.6461
(0.0932)

0.6629
(0.6221,
0.6954)

0.8420
(0.0835)

0.8506 (0.8106,
0.9072)

256 × 128 0.8096
(0.1114)

0.8375
(0.7391,
0.9043)

0.6608
(0.0897)

0.6831
(0.6130,
0.7215)

0.8487
(0.0789)

0.8628 (0.8126,
0.9096)

RP480 vs.
MG

256 × 32 0.8115
(0.1065)

0.8294
(0.7557,
0.8970)

0.6827
(0.0910)

0.6974
(0.6245,
0.7500)

0.8454
(0.0818)

0.8611 (0.7945,
0.9100)

256 × 64 0.8027
(0.1208)

0.8336
(0.7455,
0.9005)

0.6411
(0.1094)

0.6568
(0.5704,
0.7371)

0.8452
(0.0815)

0.8559 (0.8058,
0.9101)

256 × 128 0.8189
(0.1004)

0.8369
(0.7646,
0.9069)

0.6783
(0.0791)

0.6815
(0.6305,
0.7320)

0.8559
(0.0672)

0.8558 (0.8225,
0.9132)

3.2. Bland–Altman Plots—Limit of Agreement between DLM-MC and MG

The agreement between DLM-MC and MG in determining the EZ area and OS volume
was also assessed using Bland–Altman plots. Figure 3 shows the Bland–Altman plots
comparing the EZ area (2a) or the OS volume (2b) measured by DLM-MC to that measured
by MG. In each plot, the horizontal axis is the mean EZ areas (2a) or the mean OS volumes
(2b) measured by DLM-MC and MG, while the vertical axis is the difference in the EZ areas
(2a) or OS volumes (2b) between DLM-MC and MG. The text in each plot lists the values
of the mean difference (Mean diff), standard error of the mean difference (SE), standard
deviation of the mean difference (SD), and coefficient of repeatability (CoR, defined as
1.96 times the standard deviation of the difference). The dotted horizontal lines indicate the
mean difference, and the dashed horizontal lines represent the ±95% limit of agreement
(mean ± CoR). For easy visualization of the data points of the smaller EZ areas, the
horizontal axes of the plots in Figure 3 are in log scale.

DLM-MC showed an excellent agreement with MG for the EZ area measurement. The
small mean difference between DLM-MC and MG (0.0132 mm2) was trivial because the
mean difference ± 1.96 × SE included zero. For the OS volume measurement, DLM-MC
showed a slight bias when compared to MG. When the CoR was normalized to the range of
measurement (i.e., the range of vertical axes in Figure 3 is equal to the measurement range
for the EZ area or OS volume), the relative CoR for the OS volume was smaller than that
for the EZ area, as shown in Figure 3 with a narrower ±95% limit of agreement (dashed
lines) for the OS volume, suggesting a tighter agreement between DLM-MC and MG for
the OS volume measurement than for the EZ area measurement.

Tables 3 and 4 list the summary results of the Bland–Altman analysis, including both
the CoR and the mean difference (SD), as well as the mean absolute error (SD) for the EZ
area and OS volume measurements, respectively. The mean absolute differences between
DLM-MC and MG for the EZ area and OS volume measurements were in close agreement
with that between the two MGs, as shown in Tables 3 and 4.
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Figure 3. Bland–Altman plots of difference in measurements between DLM segmentation with
manual correction (DLM-MC) and conventional manual grading (MG) versus their mean. (a) EZ area;
(b) OS volume. The text insert in the plot lists the values of mean difference (Mean diff), standard
error of the mean difference (SE), standard deviation of the mean difference (SD), and coefficient of
repeatability (CoR, defined as 1.96 times the standard deviation of the difference). Dotted horizontal
lines indicate the mean difference, and dashed horizontal lines represent ±95% limit of agreement
(mean ± CoR).

Table 3. Summary results of the agreement analyses for EZ area measurement, including coefficients
of repeatability (CoR), mean difference (SD), mean absolute error (SD), correlation coefficients (95%
CI), coefficients of determination (R2), and linear regression slopes (95% CI). CI: confidence interval.
SD: standard deviation.

Agreement of EZ Area
Measurements

CoR (mm2)
Mean

Difference
(SD) (mm2)

Mean
Absolute
Error (SD)

(mm2)

Correlation
Coeffiicent r

(95% CI)
R2

Linear
Regression

Slope (95% CI)

MC vs. MG 1.8303 0.0132
(0.9338)

0.6561
(0.6612)

0.9928
(0.9892–0.9952) 0.9856 0.9598

(0.9399–0.9797)

MG1 vs. MG2 2.1629 −0.5320
(1.1035)

0.7958
(0.9294)

0.9913
(0.9869–0.9942) 0.9826 0.9344

(0.9131–0.9556)

MC1 vs. MC2 2.8368 0.0969
(1.4474)

1.1315
(0.9003)

0.9809
(0.9714–0.9872) 0.9621 0.9736

(0.9405–1.0067)

RP140 vs.
MG

256 × 32 4.4089 −1.2443
(2.2494)

1.4211
(2.1409)

0.9662
(0.9497–0.9774) 0.9335 0.7939

(0.7576–0.8302

256 × 64 3.9315 −0.9377
(2.0059)

1.3096
(1.7830)

0.9784
(0.9678–0.9856) 0.9573 0.7972

(0.7684–0.8251)

256 × 128 4.2348 −1.3690
(2.1606)

1.5214
(2.0550)

0.9801
(0.9703–0.9867) 0.9606 0.7617

(0.7353–0.7881)

RP240 vs.
MG

256 × 32 3.4719 −1.6201
(1.7714)

1.6400
(1.7529)

0.9820
(0.9730–0.9880) 0.9643 0.8310

(0.8035–0.8584)

256 × 64 3.5993 −1.7114
(1.8364)

1.7513
(1.7979)

0.9799
(0.9700–0.9866) 0.9602 0.8272

(0.7983–0.8560)

256 × 128 3.5077 −1.5654
(1.7896)

1.6040
(1.7548)

0.9817
(0.9700–0.9866) 0.9637 0.8283

(0.8008–0.8558)
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Table 3. Cont.

Agreement of EZ Area
Measurements

CoR (mm2)
Mean

Difference
(SD) (mm2)

Mean
Absolute
Error (SD)

(mm2)

Correlation
Coeffiicent r

(95% CI)
R2

Linear
Regression

Slope (95% CI)

RP340 vs.
MG

256 × 32 3.3957 −1.5381
(1.7325)

1.5720
(1.7015)

0.9821
(0.9732–0.9880) 0.9645 0.8391

(0.8115–0.8667)

256 × 64 3.5157 −1.6574
(1.7937)

1.6811
(1.7713)

0.9845
(0.9768–0.9897) 0.9692 0.8142

(0.7894–0.8391)

256 × 128 3.0787 −1.5493
(1.5708)

1.5714
(1.5484)

0.9880
(0.9820–0.9920) 0.9761 0.8409

(0.8184–0.8634)

RP480 vs.
MG

256 × 32 3.1337 −1.5201
(1.5988)

1.5625
(1.5570)

0.9843
(0.9765–0.9895) 0.9688 0.8569

(0.8306–0.8833)

256 × 64 3.2281 −1.5422
(1.6470)

1.6031
(1.5872)

0.9826
(0.9740–0.9884) 0.9655 0.8563

(0.8286–0.8840)

256 × 128 3.3433 −1.5492
(1.7058)

1.5916
(1.6659)

0.9844
(0.9767–0.9896) 0.9690 0.8324

(0.8069–0.8079)

Table 4. Summary results of the agreement analyses for OS volume measurement, including coeffi-
cients of repeatability (CoR), mean difference (SD), mean absolute error (SD), correlation coefficients
(95% CI), coefficients of determination (R2), and linear regression slopes (95% CI). CI: confidence
interval. SD: standard deviation.

Agreement of OS Volume
Measurements

CoR (mm3)
Mean

Difference
(SD) (mm3)

Mean
Absolute
Error (SD)

(mm3)

Correlation
Coeffiicent r

(95% CI)
R2

Linear
Regression

Slope (95% CI)

MC vs. MG 0.0381 0.0080
(0.0194)

0.0137
(0.0160)

0.9938
(0.9906–0.9958) 0.9876 1.0104

(0.9909–1.0298)

MG1 vs. MG2 0.0389 0.0002
(0.0198)

0.0128
(0.0151)

0.9933
(0.9899–0.9955) 0.9866 0.9930

(0.9732–1.0129)

MC1 vs. MC2 0.0265 −0.0043
(0.0135)

0.0097
(0.0103)

0.9970
(0.9955–0.9980) 0.9940 0.9874

(0.9743–1.0005)

RP140 vs.
MG

256 × 32 0.3300 −0.1013
(0.1683)

0.1058
(0.1656)

0.5822
(0.4321–0.7009) 0.3389 0.0140

(0.0106–0.0173)

256 × 64 0.3288 −0.1027
(0.1677)

0.1056
(0.1659)

0.6200
(0.4791–0.7298) 0.3845 0.0177

(0.0138–0.0215)

256 × 128 0.3290 −0.1014
(0.1679)

0.1049
(0.1656)

0.6168
(0.4751–0.7274) 0.3805 0.0169

(0.0132–0.0206)

RP240 vs.
MG

256 × 32 0.0653 −0.0119
(0.0333)

0.0170
(0.0310)

0.9829
(0.9745–0.9886) 0.9661 0.9019

(0.8729–0.9308)

256 × 64 0.0700 −0.0141
(0.0357)

0.0196
(0.0330)

0.9800
(0.9701–0.9866) 0.9603 0.8976

(0.8664–0.9289)

256 × 128 0.0623 −0.0113
(0.0318)

0.0175
(0.0288)

0.9844
(0.8815–0.9372) 0.9690 0.9093

(0.8815–0.9372)

RP340 vs.
MG

256 × 32 0.0608 −0.0070
(0.0310)

0.0162
(0.0273)

0.9836
(0.9755–0.9890) 0.9675 0.9447

(0.9151–0.9744)

256 × 64 0.0581 −0.0097
(0.0296)

0.0157
(0.0269)

0.9863
(0.8933–0.9460) 0.9728 0.9197

(0.8933–0.9460)

256 × 128 0.0541 −0.0090
(0.0276)

0.0152
(0.0247)

0.9880
(0.9038–0.9535) 0.9762 0.9286

(0.9038–0.9535)

RP480 vs.
MG

256 × 32 0.0487 −0.0049
(0.0248)

0.0149
(0.0205)

0.9894
(0.9841–0.9929) 0.9788 0.9757

(0.9511–1.0003)

256 × 64 0.0513 −0.0060
(0.0262)

0.0155
(0.0219)

0.9882
(0.9403–0.9915) 0.9766 0.9659

(0.9403–0.9915)

256 × 128 0.0565 −0.0084
(0.0289)

0.0154
(0.0258)

0.9866
(0.9031–0.9558) 0.9734 0.9294

(0.9031–0.9558)
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3.3. Correlation and Linear Regression between DLM-MC and MG

The agreement between DLM-MC and MG in the measurement of the EZ area and
OS volume was further evaluated with Pearson correlation analysis and linear regression.
Tables 3 and 4 also summarize the results of the correlation coefficients and linear regres-
sion slopes as well as their 95% confidence intervals (95% CI) for the EZ area and OS
volume measurements, respectively. The coefficients of determination (R2) are also listed in
Tables 3 and 4.

In general, the results in Tables 3 and 4 show that the EZ area and OS volume deter-
mined by DLM-MC was highly correlated with that determined by MG (r > 0.99). The
linear regression slope was 0.96 for the EZ area measurements and close to 1 for the OS
volume (95% CI included 1). The coefficients of determination R2 were larger than 0.98,
suggesting that the agreement between DLM-MC and MG was 98% or higher for both the
EZ area and the OS volume measurements.

3.4. DLM Only vs. MG

The same methods used in Sections 3.1–3.3 were employed to assess the agreement
between the DLM only and MG in the determination of the EZ area and OS volume. In
addition to the dice similarity scores for comparing DLM-MC and MG, Table 2 also lists
the detailed dice scores of the EZ band annotation maps between the various DLMs tested
in this study and MG. Figure 4 plots the dice scores for four RP models vs. MG for the
EZ area > 1 mm2. The horizontal axis in Figure 4 is the size of the image patches used in
training the U-Net in each of the four models, i.e., 256 × 32, 256 × 64, and 256 × 128 from
left to right. For comparison, the solid gray line in Figure 4 indicates the dice score of the
EZ band measurements between DLM-MC and MG.
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Figure 4. Dice similarity score for various DLMs vs. manual grading (MG) of two human graders for
EZ area > 1 mm2. Horizontal axis lists three patch sizes, 256 × 32, 256 × 64, and 256 × 128, used in
U-Net training in each of four RP models: RP140 (closed red circles), RP240 (closed blue diamonds),
RP340 (closed green triangles), and RP480 (closed black squares). As a reference, solid gray line
indicates the dice score between the EZ band measurements by DLM segmentation with manual
correction (DLM-MC) and by MG.

It is evident from Table 2 and Figure 4, with the increase in the training dataset size,
that the performance of the DLMs improved when compared to MG. In addition, the DLMs
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trained with 256 × 128 image patches showed an improvement of the dice scores. However,
the DLM only in this study still did not reach the performance level of DLM-MC when
compared to MG.

Figure 5 plots the coefficient of repeatability (CoR) from the Bland–Altman analysis,
which compared the performances of the various DLMs to MG in measuring the EZ area
(4a) and OS volume (4b). As a reference, the solid gray lines in Figure 5 indicate the CoR
between DLM-MC and MG. As with the findings for the dice scores, the performance of the
DLM improved with the increase in the size of the training datasets. Figure 5 shows that the
CoR decreased with the increase in the training dataset size, indicating closer agreement.
For the EZ area, the improvement was relatively steady, while for the OS volume there was
an initial big improvement step when the training dataset changed from RP140 to RP240;
then, the improvement slowed down. On the other hand, the changing image patch size
had a minimal impact on the CoR for the various DLMs. The average CoRs for the EZ
area measurements across the three different patch sizes were 4.192, 3.526, 3.330, and 3.235
for RP140, RP240, RP340, and RP480, respectively. The average CoRs for the OS volume
measurements across the three different patch sizes were 0.329, 0.066, 0.058, and 0.052 for
RP140, RP240, RP340, and RP480, respectively.
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Figure 5. Coefficient of repeatability (CoR) of EZ area (a) and OS volume (b) measurements by
various DLMs vs. manual grading (MG). Horizontal axis lists three patch sizes, 256 × 32, 256 × 64,
and 256 × 128, used in U-Net training in each of four RP models: RP140 (closed red circles), RP240
(closed blue diamonds), RP340 (closed green triangles), and RP480 (closed black squares). As a
reference, solid gray lines indicate CoR between the EZ area (a) or OS volume (b) measurements by
DLM segmentation with manual correction (DLM-MC) and by MG.

In addition to the CoR, Tables 3 and 4 include the summary results of the mean
difference (SD), mean absolute error (SD), correlation coefficients, and linear regression
slopes for the EZ area and OS volume measurements, respectively. The results in these tables
also reveal that with the increase in the training image dataset size, the correlation coefficient
increased and the linear regression slope became steeper and closer to 1. However, despite
the performance improvement with the increase in the training dataset size, the DLM still
fell behind DLM-MC when compared to MG.

4. Discussion

The results of this study demonstrated that both the EZ area and the OS volume
measurements generated from the manual correction of the deep learning model’s auto-
matic segmentation were in excellent agreement with those of the conventional manual
segmentation by the human graders. The mean dice similarity score between DLM-MC and
MG for all the EZ area measurements was 0.8524, which was comparable to that between
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the two human graders (0.8417). The coefficient of repeatability (CoR) between DLM-MC
and MG was slightly smaller than that between the two manual graders for the EZ area
measurement (1.8303 vs. 2.1629) and was almost identical for the OS volume measurement
(0.0381 vs. 0.0389). The additional analyses of the agreement also revealed that the correla-
tion coefficient and linear regression slope between DLM-MC and MG were comparable to
those between the two human graders. As we reported previously, the average time (SD)
of the manual correction of the DLM segmentation of the EZ band and pRPE boundary
line was 4.10 (2.04) minutes for a low-density (31-line) volume scan and 9.33 (1.76) minutes
for a high-density (121-line) volume scan [31]. Based on the time needed for our DLM to
segment a B-scan image on an iMac Pro computer [27], it would take an average of 0.79
and 4.70 min for the U-Net and the hybrid model to segment a high-density (121-line)
volume scan, respectively. Combining DLM segmentation with manual correction will
still take much less time than the conventional manual grading; it typically takes hours
for a human grader to segment a high-density volume scan obtained from patients with
RP, based on our experience. The time for DLM segmentation can be significantly reduced
with a more powerful computing system and with GPU acceleration [37,38]. Hence, the
manual correction of automatic segmentation by a deep learning model can potentially be
a new segmentation method to obtain reliable EZ area and OS volume measurements in RP
to reduce the burden of human graders.

The hybrid model employed in this study consists of two CNN models: a traditional
U-Net [33] for initial, fast semantic segmentation and a sliding-window (SW) CNN [34] for
refinement. Comparing the performance of the U-Net to that of the hybrid model revealed
that these two models are comparable to each other in terms of the measuring of OS metrics.
For instance, the mean difference (SD) between the RP480 U-Net and the RP480 hybrid
model was 0.0073 (0.0096) mm2 for the EZ area measurement and 0.0002 (0.0003) mm3 for
the OS volume measurement, with a correlation coefficient of 1.0 between the two models.
The CoR between the two models was 0.0188 mm2 for the EZ area and 0.0005 mm3 for the
OS volume. This finding is consistent with our previous discovery that the segmentation
of inner retinal layer boundaries benefits much less from the SW model refinement when
compared to the segmentation of the inner limiting membrane (ILM) [27], suggesting that
manual correction of the EZ and pRPE could be performed on the U-Net segmentation
rather than on the hybrid model segmentation to further save time.

The pattern of dice score changes with the increase in the EZ area, as shown in Figure 2,
is similar to what we reported previously, where the EZ area determined by the RP340
model was compared to that by a reading center [7], except that very small dice scores
(<0.4) are not present in Figure 2 due to manual correction. We proposed that such a change
in dice score resembles the behavior predicted by a simple lateral shift model for a dice
score with a fixed shift of 0.315 mm between two same-sized circles [7]. Our previous
work also showed that the mean difference in EZ width measured by the DLM and by MG
was around 0.2 to 0.3 mm [27,30]. As long as there is a positional difference in EZ band
segmentation between two graders, a smaller dice score is expected for a smaller EZ size.
With the increase in EZ size, the negative impact of the constant positional difference in
EZ band segmentation between the two graders on EZ band similarity becomes smaller,
resulting in a higher dice score. On the other hand, a fixed shift model also predicts the
increase in the absolute difference in EZ area measurements with the increase in EZ area,
as shown in the Bland–Altman plot of Figure 3a.

The results of this study also demonstrated that the increase in the training dataset
size can lead to the performance improvement of the DLM for the EZ area and OS volume
measurements when compared to manual grading. However, the improved performance
of the DLM shown in this study with the increased training dataset was still not as good
as either DLM-MC or MG. Furthermore, the performance improvement seemed to slow
down with the further increase in the size of the training dataset. Hence, manual checking
and correction of DLM segmentation may be still needed in order to obtain reliable mea-
surements before the DLM alone can reach the performance level close to DLM-MC or MG.
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One of the limitations of the current study was that all the training images were generated
from mid-line B-scans only, which may miss some features in OCT scans that are mainly
presented in off-center B-scans. By adding off-center B-scans from volume scans to the
training dataset, the further performance improvement of the DLM is possible. In addition,
the test dataset in this study consisted of 9 mm 31-line low-density volume scans only. The
coarse separation of neighboring B-scans may introduce larger measurement variability and
impact agreement analyses, especially for the segmentation by the DLM only. Additional
datasets with high-density volume scans may be needed to further evaluate the agreement
between the DLM and MG.

There are other limitations to this study. The main component of the hybrid model
employed in this study is based on the original U-Net [33]. Since the introduction of the
baseline U-Net in 2015, many variants have been proposed for medical image segmenta-
tion [39], including recurrent U-Net (RU-Net) and recurrent residual U-Net (R2U-Net) [40],
inception U-Net [41,42], attention U-Net [43], etc. A recent study comparing eight different
U-Net variants for the retinal layer segmentation of OCT images obtained from healthy
participants and patients with macular degeneration suggests that the baseline U-Net is
an optimal choice for OCT retinal layer segmentation in practice, and the state-of-the-art
models do not appear to provide a clear benefit for such an application [44]. Nevertheless,
it is still worth making a comparison with a different U-Net variant as a component of the
hybrid model for the segmentation of OCT scan images obtained from patients with RP.
An improved U-Net could potentially improve the hybrid model’s performance, which
in turn could reduce the time needed for manual correction. Furthermore, because the
main purpose of this study was to assess the performance of the manual correction of DLM
segmentation as well as the effect of training dataset size, less effort was put into evaluating
the performance of the DLM model itself with other metrics, such as ablation studies [45]
to understand the contribution of the component to the overall system and the robustness
of our model. Further work is needed in this area.

5. Conclusions

In summary, the manual correction of the automatic segmentation of the deep learning
model can generate EZ area and OS volume measurements comparable to those of con-
ventional manual grading in RP. Because DLM-MC can significantly save time for retinal
layer segmentation from OCT scan images, it has the potential to reduce the burden of
human graders when obtaining quantitative measurements of biomarkers for assessing
disease progression and treatment outcomes. DLM-MC can also facilitate the study of
the structure and function relationship. With a further increase in the size of the training
datasets by including off-center B-scan images, we anticipate an additional improvement
of the model’s automatic segmentation capability, and the DLM may eventually generate
acceptable EZ area and OS volume measurements without manual correction.
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Abbreviations

2D two-dimensional
3D three-dimensional
ART automatic real-time tracking
BM Bruch’s membrane
CI confidence interval
CNN convolutional neural network
CoR coefficient of repeatability
dINL distal inner nuclear layer
DLM deep learning model
DLM-MC deep learning model segmentation with manual correction
EZ photoreceptor ellipsoid zone
HVSL Hood Visual Science Laboratory
ILM inner limiting membrane
MC manual correction
MG conventional manual grading
OCT optical coherence tomography
OS photoreceptor outer segment
pRPE proximal (apical) retinal pigment epithelium
R2 coefficients of determination
ReLU rectified linear unit
RP retinitis pigmentosa
RPE retinal pigment epithelium
RPGR Retinitis Pigmentosa GTPase Regulator
SD standard deviation
SE standard error
SW sliding-window
XLRP x-linked retinitis pigmentosa
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