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Abstract: Background: Ventricular tachycardia (VT) recurrence after catheter ablation remains a
concern, emphasizing the need for precise risk assessment. We aimed to use machine learning (ML)
to predict 1-month and 1-year VT recurrence following VT ablation. Methods: For 337 patients
undergoing VT ablation, we collected 31 parameters including medical history, echocardiography,
and procedural data. 17 relevant features were included in the ML-based feature selection, which
yielded six and five optimal features for 1-month and 1-year recurrence, respectively. We trained
several supervised machine learning models using 10-fold cross-validation for each endpoint. Results:
We observed 1-month VT recurrence was observed in 60 (18%) cases and accurately predicted using
our model with an area under the receiver operating curve (AUC) of 0.73. Input features used were
hemodynamic instability, incessant VT, ICD shock, left ventricular ejection fraction, TAPSE, and
non-inducibility of the clinical VT at the end of the procedure. A separate model was trained for
1-year VT recurrence (observed in 117 (35%) cases) with a mean AUC of 0.71. Selected features were
hemodynamic instability, the number of inducible VT morphologies, left ventricular systolic diameter,
mitral regurgitation, and ICD shock. For both endpoints, a random forest model displayed the highest
performance. Conclusions: Our ML models effectively predict VT recurrence post-ablation, aiding in
identifying high-risk patients and tailoring follow-up strategies.

Keywords: ventricular tachycardia; catheter ablation; recurrence; machine learning; random forest

1. Introduction

Ventricular tachycardia (VT) is a condition associated with poor, possibly lethal clinical
outcomes in patients with structural heart disease [1]. Implantable cardioverter defibril-
lator (ICD) has become the cornerstone of preventing sudden cardiac death (SCD) [2].
However, ICD shocks are associated with increased mortality [3], impaired quality of
life, and a negative psychological impact [4]. Therefore, there is an increasing demand
for more definitive therapeutic approaches to VTs. Antiarrhythmic drugs (AAD) such
as amiodarone are widely accepted as first-line pharmacological therapy and effectively
reduce the incidence of malignant ventricular arrhythmias [5]. However, due to a high
VT recurrence rate and relatively common side effects, radiofrequency catheter ablation
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has been proven superior to pharmacological therapy [6–8]. During 30 years of practice,
numerous developments and modifications have contributed to the increase in success
rates of catheter ablation in VTs. In addition to intracardiac electrograms processed in
real-time by electroanatomical mapping systems, preoperative electrocardiograms, ICD
recordings, and cardiac magnetic resonance imaging (MRI) also play a role in identifying
the arrhythmia substrate. Thanks to technological advances, VT ablation is considered a
safe and effective therapy for ventricular arrhythmias [9], even in complex scenarios [10].

Despite the improving success rates, arrhythmia recurrence remains an issue, and is
associated with higher mortality [11]. Consequently, patients with a high risk of recurrent
VTs require a closer follow-up than others, which underlines the necessity for a potent risk
stratification system.

Multiple factors have been identified that contribute to the success of the procedure
including lower LVEF, multiple inducible VT morphologies, impaired NYHA functional
status, presentation with an electrical storm, and non-ischemic VT [11–14]. Despite the
extensive literature on the predictors of VT recurrence, there is a paucity of machine-
learning-based analyses. One risk prediction system (the I-VT score) has been proposed by
Vergara et al. which uses the clinical data of 1251 patients to create risk stratification models
for post-procedural VT recurrence and mortality [15]. Here, the authors use a decision-tree-
based classification approach; one which is easy to interpret but carries a higher risk of
overfitting compared to more complex machine learning methods. We hypothesize that
novel machine learning algorithms can possibly provide a more accurate approach to the
question, arming clinicians with a more versatile tool in decision making.

Our complex, single-center study aimed to assess the clinical and procedural factors
predicting VT recurrence at two different timepoints during 1-year follow-up using a
range of machine learning algorithms. We sought to develop the models with the highest
predictive power into a risk stratification system.

2. Materials and Methods
2.1. Patient Population

In our observational, single-center clinical study, 337 patients were enrolled who
underwent their first VT ablation between April 2005 and July 2022. The indication of
ablation was based on the current ESC guidelines [16]. The inclusion criteria were detected
and clinically proven VT episodes by either a 12-lead surface ECG or ICD recording in
patients with structural heart disease, which required radiofrequency (RF) catheter ablation.
Structural heart disease included coronary artery disease (CAD) and nonischemic dilated
cardiomyopathy (DCM). Patients with idiopathic VT were excluded. All patients who
underwent catheter ablation gave written informed consent. This study complied with the
Declaration of Helsinki and was approved by the Semmelweis University Research Ethics
Committee (Approval Code: 64/2017, Approval Date: 6 April 2017).

2.2. Ablation Procedure

Ablation was performed according to the guidelines and recommendations available
at the time of the given procedure [16,17].

Right femoral venous and arterial accesses were used for catheter insertion. A
quadripolar diagnostic catheter (BIOTRONIK SE & Co. KG, Berlin, Germany) was in-
serted into the right ventricular apex and a decapolar electrode (Bard, Boston Scientific
Marlborough, Massachusetts, USA or St. Jude Scientific, Saint Paul, MN, USA) was inserted
into the coronary sinus. The ablation catheter [Therapy Cool Path (St. Jude Scientific), Blazer
Open-Irrigated (Boston Scientific, Marlborough, MA, USA), AlCath Black, AlCath Flux
Blue (Biotronik, Berlin, Germany), NaviStar ThermoCool, SmartTouch (Biosense Webster,
Irvine, CA, USA), TactiCath (Abbott, Chicago, IL, USA)] was introduced via transvenous
(right ventricle), transseptal, or retrograde (transaortic) approach. In 25 patients (9.2%),
epicardial ablation was performed using subxiphoid access. In all cases, 3D electroanatom-
ical mapping system was used CARTO (Biosense Webster, Irvine, CA, USA) or EnSite
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(Abbott, Chicago, IL, USA). Programmed extrastimulation up to three extrastimuli was
used for induction. During hemodynamically stable VTs, simultaneous activation and
substrate mapping were performed to identify exit/isthmus sites; entrainment mapping
was also used when possible. Hemodynamically unstable VTs were terminated with elec-
trical cardioversion, followed by substrate mapping in sinus or paced rhythm. Myocardial
scar was defined as a bipolar potential amplitude lower than 1.5 mV and dense scar areas
were defined as lower than 0.5 mV with no local capture. The main ablation strategy was
extensive substrate modification targeting local abnormal ventricular activities (LAVAs)
and late potentials (LPs). Additionally, exit and isthmus sites were targeted in hemody-
namically tolerated VTs. Acute procedural success was defined as VT non-inducibility after
the procedure with programmed extrastimulation up to three beats. In cases where the
VT was not inducible during the procedure, procedural success was defined as complete
elimination of all LAVAs and LPs.

All patients who did not previously undergo ICD implantation received a secondary
prevention ICD after the ablation during index hospitalization.

2.3. Collected Data

Most of the data was prospectively collected, while missing data was added based on
electronic health records and medical charts in a retrospective fashion; a data availability of
over 70% was assured for every feature.

Our database included a total of 31 features, encompassing medical history, echocar-
diography findings, and procedure-related data. Mortality status was obtained from the
National Health Insurance Database of Hungary. VT recurrence was defined as either an
ICD recording of a sustained VT episode requiring therapy or an episode of sustained VT
recorded on 12-lead ECG. The endpoints were VT recurrence at 1 month and 12 months
from the index ablation.

Baseline demographic features included age and sex. Comorbidities such as atrial
fibrillation, hypertension, diabetes, chronic pulmonary obstructive disease (COPD), and
heart failure (HF) were inferred from past medical history. Coronary artery disease (CAD)
was defined as either established chronic coronary syndrome [18], obstructive coronary
disease documented by imaging, or the evidence of past coronary revascularization. Pre-
ablation ICD and CRT implantation was recorded from the available medical history. In
cases of heart failure, the NYHA stage was assessed upon admission for the procedure.
Clinical presentation with hemodynamic (HD) instability, ICD shock, incessant VT, and
electrical storm were recorded at admission. HD instability was defined as symptomatic
hypotension or sudden cardiac death as a result of the clinical VT. ICD shock was defined
as at least one appropriate ICD shock preceding the procedure. Incessant VT and VT
storm were defined according to contemporary guidelines of the European Society of
Cardiology [16,19]. The echocardiographic examinations were performed based on current
ASE guidelines within 30 days preceding the procedure [20]. Parameters analyzed in the
present study included left ventricular ejection fraction (LVEF) measured with the Simpson
method, left ventricular end systolic diameter (LVESD), tricuspid annular plane systolic
excursion (TAPSE), diastolic E-wave deceleration time (DT), mitral regurgitation (MR), and
the presence of severe tricuspid regurgitation (TR grade III-IV). Previous treatment with
amiodarone and/or beta blockers was recorded.

Collected procedural parameters were (a) the number of significantly different QRS
morphologies during VT as seen on the surface ECG during induction protocols, (b) clinical
VT cycle length (defined as that of the dominant VT morphology during the procedure;
where no VT was inducible, the cycle length previously registered by intracardiac electro-
grams was considered), (c) elimination of the clinical VT (defined as non-inducibility of the
dominant clinical VT morphology after the procedure), (d) elimination of all VTs, which
was considered when the non-inducibility endpoint was reached during the procedure.
Major complications included pericardial effusion causing hemodynamical compromise,
intraoperative death, vascular complication requiring vascular surgery, and stroke.
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2.4. Statistical Study

The statistical analysis was performed using Python 3.10.0 with the SciPy 1.8.0 [21]
and lifelines 0.27.0 [22] libraries. The entire patient population was analyzed with respect
to the two endpoints, i.e., 1-month and 1-year VT recurrence. First, we divided the study
population into two groups, namely patients with and without 1-month VT recurrence.
We compared all recorded parameters across the two groups and noted the statistically
significant differences. Then we performed the same comparison between patients with and
without 1-year VT recurrence. We presented categorical variables as event numbers and
percentages. The continuous variables were expressed as medians with interquartile ranges.
The variables were reported to deviate from the normal distribution by Kolmogorov-
Smirnov’s test. For group comparison, we used the Mann–Whitney test for continuous
variables and the Chi-squared test or Fisher’s exact test for dichotomous variables. Results
with a p-value < 0.05 were stated as statistically significant.

2.5. Machine Learning Pipeline
2.5.1. Software and Hardware

The entire analysis was performed in Python version 3.9.18 [23].
The K-Nearest Neighbors (KNN) classifier used for imputation, the standard scaler

and min-max scaler used for pre-processing as well as the Random forest (RF), Extreme gra-
dient boosting (XGB), and multilayer perceptron (MLP) classifiers used during the feature
selection and model selection process utilize the Scikitlearn 1.1.3 library [24]. During the
selection of the final models, a Bayesian grid search from the scikit-optimize 0.9.0 library
was used https://zenodo.org/records/1207017 (accessed on 15 June 2023). Oversampling
methods such as Synthetic Minority Oversampling Technique (SMOTE), Adaptive Syn-
thetic (ADASYN), and random oversampling (ROS) utilize the imbalanced-learn 0.11.0
library [25]. For SHAP (SHapley Additive exPlanations) analysis, we used the SHAP
0.43.0 package [26].

The computational platform utilized in this study featured an 11th Gen Intel(R)
Core(TM) i7-1185G7 processor operating at a base frequency of 3.00 GHz. The system
was equipped with 16GB of RAM and ran on a 64-bit operating system with an x64-based
processor architecture.

2.5.2. Establishment of Input Features

Before employing machine-learning-based feature selection, it was necessary to de-
crease the input features due to a disproportion between the recorded features and the
number of cases. From the 31 features, 17 were manually selected based on the previous
literature and clinical relevance. The main aspects during manual selection were (a) a previ-
ously proven statistical relationship between feature and procedural success, (b) significant
difference observed during our statistical study, (c) omission of homologous variables.

2.5.3. Data Pre-Processing

Imputation was performed using the K-nearest neighbors (KNN) method. The KNN
classifier was configured with a parameter setting of n_neighbors = 10 and employed
distance-weighted imputation. We used scaling to avoid any distortion in data process-
ing arising from the different scales of scalar features. The most commonly used scaling
methods [27] were evaluated in the pipeline to find the optimal approach. Standard scaling
standardizes features by removing the mean and scaling to unit variance, while min-max
scaling transforms the features by scaling each feature to a range between 0 and 1. During
the selection of the final classifier, we tested each model type with either standard scaling,
min-max scaling, or no scaling used. To compensate for the imbalance in the dataset, i.e.,
the low proportion of cases reaching an endpoint, we tested multiple oversampling meth-
ods [28]. ROS (random oversampling) solves the imbalance by randomly re-using cases of
the minority class during training, while both SMOTE (Synthetic Minority Oversampling

https://zenodo.org/records/1207017
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Technique) and ADASYN (Adaptive Synthetic) generate additional cases of the minority
group based on existing cases [28].

2.5.4. Feature Selection

Machine-learning-based feature selection was aimed to (a) find the appropriate num-
ber of input features for the prediction models and (b) define the input features leading to
the most accurate predictions. A flowchart of the feature selection process is presented in
Figure 1.

Figure 1. Feature selection (performed separately for the two endpoints). The process uses the
imputed data of 17 features of the entire patient population. Four feature ranking methods are
performed (100 iterations averaged, not shown on the figure), while a fifth ranking order “Average” is
obtained from averaging the results from the four methods. Groups created using the top 4–7 features
of each ranking are assessed using ML models. The groups are then ranked based on the average
AUC of the top 10% models trained on them. Finally, the top-ranking feature group is selected. KNN:
K-nearest neighbors; MLP: multilayer perceptron; RF: random forest; XGB: extreme gradient boosting;
PI: permutation importance; RFE: recursive feature elimination.

Automated feature selection was performed separately for the 1-month and 1-year
recurrence endpoints. Since various model types are considered for the final classifier, we
aimed to implement multiple approaches to feature ranking as well. Out of four different
approaches, three used the permutation importance method [29], while one used the built-
in recursive feature elimination (RFE) function of the XGB model. An additional ranking
was created by averaging ranks across the four methods. Each ranking method was applied
100 times, each time using a different random seed, and results were averaged to produce
the final ranking orders.

The feature selection approaches used are described in more detail below.

Feature Ranking: MLP—Permutation Importance

An optimal MLP model was trained on all cases using all input features using 5-fold
cross-validation and the area under the receiver operating curve (AUC) was determined.
Then, the analyzed feature was shuffled, and the AUC was re-assessed. The importance of
the analyzed feature was inferred from the difference in AUC between the two measure-
ments. This was repeated 100 times and results were averaged.
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Feature Ranking: RF—Permutation Importance

An optimal RF model was trained on all cases using all input features using 5-fold
cross-validation and the area under the receiver operating curve (AUC) was determined.
Then, the analyzed feature was shuffled, and the AUC was re-assessed. The importance of
the analyzed feature was inferred from the difference in AUC between the two measure-
ments. This was repeated 100 times and results were averaged.

Feature Ranking: XGB—Permutation Importance

An optimal XGB model was trained on all cases using all input features using 5-fold
cross-validation and the area under the receiver operating curve (AUC) was determined.
Then, the analyzed feature was shuffled, and the AUC was re-assessed. The importance of
the analyzed feature was inferred from the difference in AUC between the two measure-
ments. This was repeated 100 times and results were averaged.

Feature Ranking: XGB—Recursive Feature Elimination (RFE)

The XGB model was trained on all cases and features, and feature importance was
assessed using the built-in XGB importance metric. Then, through iterations, the feature
with the least importance was excluded, followed by re-training of the model on the
remaining features [30]. By recursively eliminating each feature a time, a rank is given to
each feature. This was repeated 100 times and results were averaged.

Feature Ranking: Average (AVG)

Ranking by averaging the results returned by the above four methods during the
given iteration.

For each of the above methods, hyperparameters of the grid search are provided in
Supplementary Table S1a: Model hyperparameters for feature ranking.

Defining and Ranking Feature Groups

Taking into account the practical considerations related to an online risk calculator, we
defined a minimum of four and a maximum of seven input features to be selected for the
final model. Of note, attempts at using more than seven input features lead to marginal or
no improvement in model metrics. Using the top four to seven features in each ranking,
a total of 16 feature combinations were selected for assessment. These potential feature
combinations were ranked by creating and evaluating machine learning models trained
on them. Similarly to the approach used for ranking features, we aimed to apply multiple
classifier types. RF, XGB, and MLP models were trained using 5-fold cross-validation
(hyperparameters are provided in Supplementary Table S1b: Model hyperparameters for
feature group ranking. For each of the 16 feature groups, an “AUC score” was calculated
by averaging of the top-performing 10 percent of the models trained on the given group
(averaging was crucial to compensate for potential outlier values). Then, feature groups
were ranked on this “AUC score”. The top-ranking feature group was selected both for the
1-month and for the 1-year endpoint.

2.5.5. Model Selection

We sought to develop the optimal ML model for two classification tasks: (a) VT
recurrence vs. no VT recurrence observed during the first month, and (b) VT recurrence
vs. no VT recurrence observed during the first year following ablation. A flowchart of the
model selection process is presented in Figure 2.

RF, XGB, MLP models were trained for both endpoints using the respective selected
features. Each classifier type was tested with all combinations of the above-described scal-
ing (standard scaling, min-max scaling, and no scaling) and oversampling (ROS, SMOTE,
ADASYN) methods. A Bayesian grid search was performed for each classifier type, aiming
to find the optimal hyperparameters through 100 iterations, using 10-fold cross-validation
(i.e., 10 distinct 90–10% train-test splits). Hyperparameter spaces for the grid search are
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shown in Supplementary Table S1c: Final model selection using Bayesian grid search. The
best combination of pre-processing methods and hyperparameters was determined for each
classifier type. Then, the top-performing models from each classifier type were compared
based on the 10-fold cross-validation average AUC, and the best-performing approach
was selected. Finally, we selected the fold of cross-validations (i.e., 10–90% train-test split)
yielding the highest AUC as the final model. For both final models, the optimal threshold
for classification had to be determined. Out of every possible threshold, the one with the
highest Youden’s index was selected in order to maximize both sensitivity and specificity.
In our final risk calculator (and in the SHAP analysis detailed below), we use this threshold
to classify cases into “positive” vs. “negative” prediction with regard to the endpoint.

Figure 2. Model selection using Bayesian grid search, performed for each endpoint. Pre-processed
data of the selected features is used by the Bayesian grid search algorithm for each of the three classifier
types. In each cycle, the model is tested using 10-fold cross-validation and the hyperparameters are
automatically adjusted. After a pre-defined number of iterations, the process returns the final model.
MLP: multilayer perceptron; RF: random forest; XGB: extreme gradient boosting.

2.5.6. Model Evaluation

Model performance was characterized with a range of metrics, in every case averaged
across 10 cross-validations. Additionally to AUC, we specified commonly used metrics [31]
of classification performance. Sensitivity (the proportion of true positives among actual
positives), specificity (the proportion of true negatives among actual negatives), accuracy
(the proportion of correct predictions to all predictions), positive likelihood ratio (the odds
of obtaining a positive result in individuals meeting the endpoint compared to those who
do not), and negative likelihood ratio (the odds of obtaining a negative result in individuals
not meeting the endpoint compared to those who do) were calculated for each model.

Furthermore, we used Kaplan–Meyer analysis to compare VT-recurrence free survival
of patients classified as positive vs. negative for (a) 1-month recurrence or (b) 1-year VT
recurrence by the respective models. To prevent any potential data leakage, we deter-
mined the predicted outcome for each case by utilizing cross-validation, ensuring that
the case in question was part of the testing set. To confirm that these sub-cohorts indeed
show distinct VT-free survival, we used a Log-Rank test where p < 0.05 was considered
statistically significant.

Shapley Additive Explanations (SHAP) analysis was used to calculate the Shapley
values [32] of the features, which describe the relationship between each input feature
and the model output. The relative importance of each feature’s contribution to the final
output was assessed using the permutation importance method [29], and a radar chart was
constructed to present this information.
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2.5.7. Comparison with the I-VT Score

We compared the performance of our 1-year VT recurrence prediction model to the
I-VT score, a complex risk stratification system aimed to predict outcomes following VT
ablation. We assessed each case in our database using the decision tree presented in Figure 4
of the original publication of Vergara et al. [15]. This model is aimed specifically to predict 1-
year VT recurrence following ablation, using pre-procedural and procedural features. Only
those cases where all required parameters were available were included (238/337, 70%).

We defined the features from our dataset corresponding to those used as input features
for the decision tree in the following manner:

• Age, LVEF, CRT/ICD device: as recorded in our database.
• Previous ablation: “No” in all cases, since our cohort consisted of first ablations.
• Clinical VT inducible at the end of the ablation: “Yes”, if clinical VT was inducible

before ablation and it was not successfully eliminated.
• Non-clinical VT inducible at the end of ablation: “Yes”, if non-clinical VT was inducible

before ablation and it was not successfully eliminated.
• No VT inducible at the end of ablation: as recorded in our database.
• Regarding the findings of the final programmed extrastimulation, the input option

“Not tested” in the I-VT score refers to cases where no programmed extrastimulation
(PES) was performed. Since final PES was part of our protocol, this branch of the
decision tree was not used in our cohort.

Then, we determined the results of the decision tree for each case in our cohort.
The tree classified each case into a group; for each group, the average probability of 1-
year VT recurrence was provided. Afterwards, an ROC curve was constructed using
these predictions.

Finally, we used the DeLong unpaired test (R statistical software, R Foundation
for Statistical Computing, Vienna, Austria—pROC package [33]), to assess for statistical
difference between the ROC curve derived from the I-VT decision tree and the average
AUC of our 1-year model.

3. Results
3.1. Patient Population

Out of the 337 patients included in our study, VT recurrence was observed in 117 (35%)
cases in a median of 29 (4–111) days following the index procedure. Within one year of
the index ablation, 68 (20%) patients died. The median age was 69 (60.2–74.8) years old,
and most patients were male (295 (88%)). The most prevalent comorbidities were coronary
artery disease (CAD) and chronic heart failure, present in 283 (84%) and 272 (82%) patients,
respectively. Hypertension was present in 252 (75%) patients, while 113 (34%) patients had
diabetes. Severely impaired functional status (New York Heart Association [NYHA] Class
III or IV) was found in 101 (37%) patients. In addition, 61 patients (18%) had a history of
SCD. Furthermore, 249 (74%) patients had a previously implanted ICD device for either
primary or secondary prevention.

The majority of heart failure patients received optimal medical therapy according to
the current guidelines. Beta-blockers (BB) were used in 233 (70%) cases, while amiodarone
was given to 302 (91%) patients.

Baseline parameters are shown in Table 1. Notably, patients with 1-year VT recurrence
had larger left ventricular diameters (LVEDD p < 0.001, LVESD p < 0.001), worse left
and right ventricular function (LVEF, p = 0.008; TAPSE, p = 0.028), more severe mitral
regurgitation (p = 0.007), worse NYHA functional status (p = 0.027), and more often had
a previously implanted CRT (p < 0.001) or ICD (p = 0.042) device. They more frequently
presented with ICD shocks (p = 0.001), or electrical storm (p = 0.02), and on average they
showed multiple inducible VT morphologies (p < 0.001) during the procedure. Patients with
recurrence within the first month had similar characteristics; interestingly, unsuccessful
elimination of the clinical VT during the procedure was more common in these patients.
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Table 1. Baseline characteristics: For categorical variables, count (percent) are presented, for scalar variables median [interquartile range] is presented. p < 0.05 was
considered statistically significant.

Data
Available

N (%)

All Patients
N = 337 (100%)

1-Month VT Recurrence 1-Year VT Recurrence

1-Month
VT Recurrence

N = 60 (18%)

No 1-Month
VT Recurrence
N = 277 (82%)

p
1-Year

VT Recurrence
N = 117 (35%)

No 1-Year
VT Recurrence
N = 220 (65%)

p

Age 337 (100%) 68.7 (60.2–74.8) 68.2 (61.6–76.1) 68.7 (60.1–74.8) 0.619 67.5 (61.1–74.7) 68.9 (59.3–75.0) 0.934

Male 337 (100%) 295 (88%) 51 (85%) 244 (88%) 0.659 102 (87%) 192 (88%) 1.000

Atrial fibrillation 337 (100%) 109 (32%) 25 (42%) 84 (30%) 0.126 45 (38%) 64 (29%) 0.109

Hypertension 337 (100%) 252 (75%) 43 (72%) 209 (76%) 0.622 83 (71%) 169 (77%) 0.261

Diabetes 337 (100%) 113 (34%) 18 (30%) 95 (34%) 0.613 43 (37%) 70 (32%) 0.445

COPD 337 (100%) 42 (12%) 8 (13%) 34 (12%) 1.000 13 (11%) 29 (13%) 0.697

CAD 337 (100%) 283 (84%) 48 (80%) 235 (85%) 0.426 95 (81%) 188 (86%) 0.339

ICD 337 (100%) 249 (74%) 47 (78%) 202 (73%) 0.508 95 (81%) 154 (70%) 0.042 *

CRT 337 (100%) 80 (24%) 20 (33%) 60 (22%) 0.081 42 (36%) 38 (17%) <0.001 *

HF 331 (98%) 272 (82%) 53 (88%) 219 (81%) 0.234 100 (85%) 172 (80%) 0.314

NYHA 306 (91%) 2 (1–3) 2 (1–3) 2 (1–3) 0.120 2 (1–3) 2 (1–3) 0.027*

SCD 337 (100%) 61 (18%) 12 (20%) 49 (18%) 0.823 19 (16%) 42 (19%) 0.605

EF 305 (91%) 34 (27–42) 30 (25–35) 35 (27.2–43) 0.012 * 33 (25–38) 35 (28–44.2) 0.008 *

LVESD 283 (84%) 50 (42–57) 54 (47–60) 48.5 (41–56) 0.011 * 53 (47–59) 47 (41–54) <0.001 *

TAPSE 264 (78%) 19 (15–23) 17 (14–20) 19 (16–23) 0.019 * 18 (14–20.2) 19 (16–23) 0.028 *

E wave DT 262 (78%) 162 (133–213) 150 (123–193) 165 (137–220) 0.083 150 (127–200) 170 (140–220) 0.008 *

MR 299 (89%) 2 (1–2) 2 (1–3) 2 (1–2) 0.036 * 2 (1–3) 2 (1–2) 0.007 *

TR III-IV 278 (82%) 34 (12%) 8 (15%) 26 (12%) 0.592 13 (13%) 21 (12%) 0.881

Amiodarone 331 (98%) 233 (70%) 47 (80%) 186 (68%) 0.118 88 (76%) 145 (67%) 0.140

Beta blocker 331 (98%) 302 (91%) 53 (90%) 249 (92%) 0.867 106 (91%) 196 (91%) 1.000
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Table 1. Cont.

Data
Available

N (%)

All Patients
N = 337 (100%)

1-Month VT Recurrence 1-Year VT Recurrence

1-Month
VT Recurrence

N = 60 (18%)

No 1-Month
VT Recurrence
N = 277 (82%)

p
1-Year

VT Recurrence
N = 117 (35%)

No 1-Year
VT Recurrence
N = 220 (65%)

p

ICD shock 333 (99%) 140 (42%) 33 (57%) 107 (39%) 0.018 * 60 (52%) 80 (37%) 0.009 *

HD instability 337 (100%) 132 (39%) 36 (60%) 96 (35%) 0.001 * 58 (50%) 74 (34%) 0.007 *

Incessant VT 337 (100%) 114 (34%) 30 (50%) 84 (30%) 0.006 * 52 (44%) 62 (28%) 0.004 *

Electrical storm 336 (100%) 135 (40%) 35 (58%) 100 (36%) 0.003 * 57 (49%) 78 (36%) 0.027 *

Inducible VT morphologies 334 (99%) 1 (1–2) 1 (1–2) 1 (1–2) 0.166 1 (1–2) 1 (1–2) 0.001 *

Clinical VT inducible 333 (99%) 261 (78%) 49 (83%) 212 (77%) 0.431 104 (90%) 157 (72%) <0.001 *

Non-clinical VT(s) inducible 332 (99%) 106 (32%) 21 (36%) 85 (31%) 0.609 38 (33%) 68 (31%) 0.909

Clinical VT cycle length 268 (80%) 400 (340–460) 400 (342–450) 400 (340–460) 0.828 400 (354–458) 386 (333–458) 0.114

Clinical VT eliminated 321 (95%) 284 (88%) 44 (79%) 240 (91%) 0.020 * 100 (88%) 184 (88%) 1.000

All VTs eliminated 322 (96%) 255 (79%) 40 (70%) 215 (81%) 0.095 91 (80%) 164 (79%) 0.950

Major complications 334 (99%) 32 (10%) 10 (17%) 22 (8%) 0.061 15 (13%) 17 (8%) 0.186

COPD: chronic obstructive pulmonary disease; SCD: sudden cardiac death; CAD: coronary artery disease; ICD: implantable cardioverter defibrillator; CRT: cardiac resynchronization
therapy; HF: heart failure; NYHA: New York Heart Association functional status; LVEF: left ventricular ejection fraction; LVESD: left ventricular end systolic diameter; TAPSE: tricuspid
annular plane excursion; MR: mitral regurgitation; HD: hemodynamic. The asterix (*) denotes statistical significance.
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3.2. Machine Learning Analysis

The steps of the entire feature selection process, along with the features excluded
during each step, are detailed in Supplementary Table S2a: Feature selection overview. The
results of the 100 iterations using each feature ranking method are shown in Supplementary
Table S2b: Feature ranking results. Feature rankings obtained through the four different
methods are presented in Table 2. Feature group ranking can be found in Supplementary
Table S2c: Feature group ranking results.

Table 2. Feature ranking for the 1-month (left sub-table) and 1-year (right sub-table) endpoints. For
each ranking method (column name), the average rank across 100 iterations is shown. An additional
ranking based on the average of ranks across the four methods is shown in the AVG column. Both
sub-tables are sorted by the AVG column.

1-Month VT Recurrence

AVG XGB, RFE MLP, PI RF, PI XGB, PI

HD instability 1 0 0 0 6

LVEF 2 1 4 2 1

TAPSE 3 7 1 3 4

Age 4 3 13 4 0

Clinical VT eliminated 5 2 3 5 12

LVESD 6 4 12 1 5

ICD shock 7 9 2 7 9

Clinical VT cycle length 8 6 14 6 2

E wave DT 9 5 10 11 3

Electrical storm 10 8 6 9 8

MR 11 10 8 8 10

Incessant VT 12 11 5 13 11

Inducible VT morphologies 13 16 7 10 13

NYHA 14 13 15 15 7

All VTs eliminated 15 12 11 14 15

Atrial fibrillation 16 15 9 16 14

TR III-IV 17 14 16 12 16

1-year VT recurrence

AVG XGB, RFE MLP, PI RF, PI XGB, PI

LVESD 1 1 4 0 0

Inducible VT morphologies 2 0 0 1 7

MR 3 4 1 2 6

ICD shock 4 6 2 3 9

Age 5 2 13 5 1

E wave DT 6 5 6 7 3

LVEF 7 3 12 8 2

HD instability 8 8 3 4 10

TAPSE 9 7 7 9 4

Incessant VT 10 9 5 11 11

Clinical VT cycle length 11 10 16 6 5

NYHA 12 11 8 10 8
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Table 2. Cont.

All VTs eliminated 13 13 10 12 13

TR III-IV 14 12 14 13 12

Electrical storm 15 14 9 16 14

Atrial fibrillation 16 15 11 14 15

Clinical VT eliminated 17 16 15 15 16
HD: hemodynamic; LVEF: left ventricular ejection fraction; VT: ventricular tachycardia; LVESD: left ventricular
end systolic diameter; DT: deceleration time; TAPSE: tricuspid annular plane systolic excursion; ICD: implantable
cardioverter defibrillator; MR: mitral regurgitation; TR: tricuspid regurgitation; XGB, RFE; Extreme gradient boost-
ing sing recursive feature elimination; MLP, PI: Multilayer perceptron combined with permutation importances;
RF, PI: random forest combined with permutation importances; XGB, PI: Extreme gradient boosting combined
with permutation importances; AVG: average.

The optimal input feature combination was defined for the 1-month and the 1-year
recurrence endpoint. Common input features between the 1-year and 1-month models were
hemodynamic instability and ICD shock. Features specific to 1-month recurrence were the
presentation with incessant VT, LVEF, TAPSE, and the inducibility of the clinical VT at the
end of the procedure. Features specific to 1-year recurrence were the number of inducible
VT morphologies, LVESD, and mitral regurgitation. The highest-performing 30 models
from each combination of pre-processing, oversampling, and model type are presented in
Supplementary Table S2d: Final model selection results. The highest achievable AUC for
each classifier type, along with the pre-processing approach used, is presented in Table 3.

Table 3. Best combinations of scaling, pre-processing, and hyperparameters, shown from each
classifier type. The upper table shows the 1-month VT recurrence endpoint, while the lower table
shows the 1-year VT recurrence endpoint. RF: random forest; MLP: multilayer perceptron; XGB:
extreme gradient boosting; SS: standard scaling; SMOTE: Synthetic Minority Oversampling Technique;
VT: ventricular tachycardia; AUC: area under the curve.

1-
m

on
th

V
T

re
cu

rr
en

ce

Model Pre-Processing Oversampling Hyperparameters Mean AUC (Test)

RF Not used Not used

RF__class_weight: None; RF__criterion: log_loss;
RF__max_depth: 1; RF__max_features: 1;

RF__min_samples_leaf: 2; RF__n_estimators: 300;
RF__random_state: 0

0.730

MLP SS SMOTE
NN__activation: logistic; NN__alpha: 0.00225;

NN__hidden_layer_sizes: 3; NN__max_iter: 161;
NN__random_state: 0; NN__solver: adam

0.729

XGB Not used Not used

XGB__alpha: 7.99; XGB__colsample_bytree: 1.0;
XGB__gamma: 0.1; XGB__max_depth: 3;

XGB__min_child_weight: 0.0;
XGB__random_state: 0; XGB__scale_pos_weight:

2.0; XGB__subsample: 0.5

0.708

1-
ye

ar
V

T
re

cu
rr

en
ce

Model Pre-processing Oversampling Hyperparameters mean AUC (test)

RF SS SMOTE

RF__class_weight: balanced_subsample;
RF__criterion: gini; RF__max_depth: 2;

RF__max_features: 7; RF__min_samples_leaf: 2;
RF__n_estimators: 320; RF__random_state: 100

0.713

XGB Not used Not used

XGB__colsample_bytree: 1.0; XGB__gamma: 9.79;
XGB__max_depth: 3; XGB__min_child_weight:

0.0; XGB__random_state: 0;
XGB__scale_pos_weight: 3.14; XGB__subsample:

0.897

0.711

MLP SS SMOTE
NN__activation: logistic; NN__alpha: 0.000192;

NN__hidden_layer_sizes: 50; NN__max_iter: 50;
NN__random_state: 0; NN__solver: adam

0.709
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For both endpoints, the best performance was demonstrated by a random forest model.
For the 1-year endpoint, no pre-processing or oversampling was used; for the 1-month
endpoint, standard scaling was used in conjunction with SMOTE. The average AUC of the
10 cross-validations is presented for each model. Evaluating the classification performance
on the test populations, an AUC of 0.73 was determined for 1-month recurrence, while
the 1-year recurrence model had an AUC of 0.71 (Figure 3). In contrast, the average
performance on the test population was 0.76 and 0.75, respectively. Additional model
metrics are provided in Table 4).

Figure 3. Receiver Operating Curves (ROC) for the two random forest models; (a) 1-month recurrence
model; (b) 1-year recurrence model. ROC curves are plotted for each fold in the 10-fold cross-
validation (faded colored lines); the blue line represents their average. The grey shaded area shows
the standard deviation of the ten ROC curves. The legend shows the area under the average ROC
(“Mean AUC”) with the 95% confidence interval (“CI”).

Table 4. Metrics for both the 1-year and 1-month model. Values shown are the average of the 10 cross-
validations. SS: standard scaling; SMOTE: Synthetic Minority Oversampling Technique; AUC: area
under the receiver operating curve; LR+: positive likelihood ratio; LR−: negative likelihood ratio.

Model
Type Scaling Pre-

Processing
AUC
(Test)

AUC
(Train) Accuracy Sensitivity Specificity LR+ LR−

1-month Random
forest Not used Not used 0.730 0.758 0.68 0.63 0.7 3.2 0.53

1-year Random
forest SS SMOTE 0.713 0.751 0.71 0.61 0.77 2.8 0.5

We conducted Kaplan–Meyer analysis to examine recurrence-free survival. In Figure 4a,
we compared patients with VT recurrence within 1 month to those without; in Figure 4b, we
did the same for patients with 1-year VT recurrence. In both cases, the two groups show
significantly different VT-free survival (Log-rank p < 0.001 in both cases).
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Figure 4. Kaplan–Meyer analysis showing 1-year VT recurrence based on the model prediction.
Censored cases are symbolized using vertical lines on the survival curves. (a) We divided the
population based on the prediction of the 1-month VT recurrence model and the VT-free survival
of the two groups is plotted with 1-month follow-up; (b) The entire population was divided based
on the prediction of the 1-year VT recurrence model and the VT-free survival of the two groups is
plotted with 1-year follow-up. Shaded areas show 95% confidence intervals. VT-free survival of the
two groups is compared with the Log-Rank test; the inset shows the p value.

We also compared our algorithm to an established prediction system for 1-year recur-
rence, the I-VT score [15], on our test population. According to the AUC metric, our model
provided better predictions for 1-year recurrence post ablation (AUC 0.52 vs. 0.71, (DeLong
Test p = 0.0002) (Figure 5).

Figure 5. Receiver Operating Curve (ROC) of the previously published I-VT score on our patient
population compared to our 1-year predictive model. Blue curve shows the 1-year random forest
AUC, while the orange curve shows the I-VT score AUC (0.52). The red dashed line is the reference
line. DeLong test shows significantly better performance in the case of our predictive model (p value
indicated in the inset).
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We used the permutation importance approach to assess the relative importance of
each of the input features (Figure 6). Apparently, the most important feature predicting
recurrence in the first month is hemodynamic instability, while the number of VT mor-
phologies contributes the most to 1-year outcome. ICD shock appears to have the smallest
contribution to the model prediction out of the features assessed.

Figure 6. Radar charts showing the relative importance of input features, as determined using the
permutation approach; (a) 1-year recurrence model; (b) 1-month recurrence model. Values denote
the reduction in mean AUC after shuffling the values of the given feature. EF: left ventricular
ejection fraction; VT: ventricular tachycardia; TAPSE: tricuspid annular plane systolic excursion; ICD:
implanted cardioverter defibrillator; LVESD: left ventricular end systolic diameter; HD: hemodynamic;
MR: mitral regurgitation.

Finally, we used SHAP analysis to explain how the individual features affect the final
model output (Figure 7). From the figure, it can be inferred that feature values and their
effect on model output show a clear correlation. Additionally, the effect of a given feature is
consistent across cases, i.e., a higher value (or the presence) of a feature always shifts model
prediction in the same direction. Looking at the first figure, we can conclude that poor
left and right ventricular function shifts model prediction towards 1-month VT recurrence.
Similarly, presentation with incessant or hemodynamically unstable VT, or an adequate
ICD shock increases the probability of early recurrence being predicted. Meanwhile, the
elimination of the clinical VT reduces the predicted probability of this endpoint. Analysis
of the 1-year VT recurrence classifier showed that a more dilated left ventricle, more severe
mitral regurgitation, and more inducible VT morphologies increase the predicted risk of
the endpoint. Similarly, presentation with hemodynamic instability and ICD shocks appear
to predict 1-year VT recurrence.
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Figure 7. SHAP analysis showing the contribution of individual input features to the model pre-
diction output; (a) 1-year recurrence model; (b) 1-month recurrence model. Each point represents
a patient case, where the color denotes the value of a given feature and the SHAP value shows
the contribution of that given feature to the model output. EF: left ventricular ejection fraction;
VT: ventricular tachycardia; TAPSE: tricuspid annular plane systolic excursion; ICD: implanted
cardioverter defibrillator; LVESD: left ventricular end systolic diameter; HD: hemodynamic; MR:
mitral regurgitation.

4. Discussion

Our single-center registry study aimed to implement a machine-learning pipeline for
the accurate prediction of VT recurrence after catheter ablation in patients with structural
heart disease, with 1-year follow-up.

Through feature selection using a range of machine learning approaches, we defined
the optimal set of features to predict 1-month and 1-year VT recurrence. Given the moderate
sample size, we were able to implement a range of resource-intensive machine learning
approaches for feature selection. Interestingly, the optimal input features for the 1-month
random forest model were derived from a ranking based on permutation importances calcu-
lated from an MLP model during the feature ranking process, emphasizing the importance
of using diverse algorithms for feature selection.

Using the selected features, we trained various machine learning models, out of
which the random forest approach proved the most efficient. The resulting models were
assessed using 10-fold cross-validation. Using Kaplan–Meyer survival analysis on the
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test population, we concluded that the VT-free survival differs significantly between the
two groups defined using our model. Furthermore, we identified the most important
features in predicting VT-recurrence. The permutation importance metrics (Figure 6, radar
charts) and the SHAP analysis (Figure 7) represent two distinct approaches to interpreting
model prediction. Permutation importance accurately reflects the contribution of a feature
to overall model performance (i.e., the correct predictions). Conversely, Shapley values
represent the contribution of a feature to model predictions in general, and additionally
reflect the relationship (positive/negative) between the feature value and the resulting
prediction. In our data, we see good congruence of the two approaches (e.g., for the 1-year
model both figures show that the number of VT morphologies is the most important, while
ICD shock is the least important). From the statistical study, it stands clear that every one
of the selected input features shows a statistically significant difference respective to the
endpoint assessed.

The prediction of VT recurrence after catheter ablation has emerged to be a field of
interest in recent years [34], and recurrent VT has become a well-established predictor of
mortality [11]. In a recent meta-analysis of seminal randomized controlled trials in the
field, 1-year VT-free survival following ablation was 66.3%, which dropped to 55.5% when
assessed at 5 years [35]. Several factors have been associated with VT recurrence, including
lower LVEF [36], multiple inducible VT morphologies [37], impaired NYHA functional
status [37], presentation with an electrical storm [37,38], and non-ischemic VT [38]. The
largest cohort study to date was conducted by Tung et al., where non-ischemic cardiomy-
opathy, advanced NYHA status, previous ICD implantation or cardiac resynchronization
therapy (CRT), lower left ventricular ejection fraction (LVEF), electrical storm, and ICD
shocks were the most important predictors of VT recurrence [11]. A more recent prospective
study assessed 281 consecutive patients with non-ischemic cardiomyopathy undergoing VT
ablation. The authors identified ICD shocks, basal anteroseptal VT origin, and procedural
failure as predictors of VT recurrence [12]. In contrast to the previous study, a recent,
smaller analysis of 50 cases included a majority of ischemic heart disease patients [13].
This study revealed that along with atrial fibrillation and advance heart failure, female
sex appears to pose a higher risk of post-ablation VT recurrence. This, however, was not
confirmed in one of our studies specifically aimed at sex-related differences in outcomes
after VT ablation [14]. Additionally, the timing of the procedure appears to be of great
importance. Although early ablation appears to have certain benefits in terms of reducing
VT burden [39], randomized trials designed to assess prophylactic ablation are mostly
inconclusive [40,41].

The parameters selected during our feature selection process greatly overlap with
known predictors of VT recurrence. Specifically, LVEF, clinical VT inducibility after ablation,
ICD shocks, and the number of inducible VT morphologies have all been previously
associated with lower success rates [11,12,37,42–44].

Most previous studies with the exception of one [37] mainly focused on 1-year re-
currence. In our cohort, we found that a significant number (50%) of recurrence events
occurred within the first month after ablation, emphasizing the importance of our two sep-
arate endpoints. Few studies exist that specifically assess early VT recurrence. Notably, in a
work with 370 patients, early recurrence, defined as recurrent arrhythmia within a week,
was predicted using advanced heart failure status, DCM, VT storm, and a greater number
of induced VTs [37]. Importantly, mortality was significantly higher in the early recurrence
group, underscoring the clinical relevance of VT recurrence early after the procedure.

The aforementioned studies included large numbers of patients; however, they are
limited by the constraints of conventional survival analysis. It is known that non-linear
relationships, multi-collinearity, and complex feature interactions can only be analyzed by
more advanced statistical approaches. Indeed, it has been proven in a range of studies that
machine learning provides a way to uncover more intricate correlations between factors and
can ultimately lead to more accurate predictions [45,46]. Vergara et al. previously created
a prediction system for post-ablation VT recurrence. LVEF, device therapy, non-ischemic
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DCM, and previous ablation were the key factors associated with recurrence, along with
VT inducibility during the procedure. Of note, in their sample population, non-ischemic
DCM and previous ablation were significantly more common, compared to our cohort.
Their decision-tree-based approach is easily interpretable and provides reasonably good
predictions. However, decision trees are prone to overfitting, meaning that they perform
well on the sample data, but can be less accurate on new data. This, along with the different
baseline parameters, might explain why our prediction algorithm outperforms the I-VT
score on our data.

We expect our prediction system to be a valuable tool in clinical practice. All variables
required to make a prediction are easily acquired through history-taking and routine exam-
inations.

5. Limitations

Conclusions and applicability of the present study is to some degree limited by the
sample size. The analyzed registry includes all eligible cases of VT ablation performed in
a large-volume tertiary center. Nonetheless, the analysis of a larger cohort would under-
standably lead to higher predictive power and more favorable model metrics. Furthermore,
the external validation of the presented machine learning models could further strengthen
our conclusions.

Due to the small sample size, initial train–test splitting was not feasible. Attempts
aimed at initial train–test splitting yielded unacceptably high variance of model metrics,
depending on the random seed used to create the split. Given this limitation, we applied
measures to prevent overfitting and data leakage; K-fold cross-validation was applied
during feature selection and also during the selection of the final classifiers.

An additional limitation of our analysis is related to the high mortality in the assessed
population. Classification methods, like the ones presented here, cannot handle censoring,
i.e., patients who deceased during the follow-up period. Consequently, in 36 of the included
cases, no VT recurrence was observed, yet the patient was deceased for another reason
within one year of the procedure. This may have impacted the accuracy of the models
trained on our data.

6. Conclusions

In our study, we used state-of-the-art machine learning methods to develop a reliable
risk stratification system, accurately predicting post-ablation VT recurrence in patients
with structural heart disease. By entering easily obtainable pre-procedural and procedural
features, the user receives a prediction of estimated 1-month and 1-year mortality.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering10121386/s1, Table S1a: Model hyperparameters for
feature ranking; Table S1b: Model hyperparameters for feature group ranking; Table S1c: Final
model selection using Bayesian grid search; Table S2a: Feature selection overview; Table S2b: Feature
ranking results; Table S2c: Feature group ranking results; Table S2d: Final model selection results;
An online risk stratification system using our two machine learning algorithms is available online
at: https://vtrecurrence.streamlit.app/ (accessed on 30 November 2023). The entire code of the
machine learning pipeline is available at https://github.com/Juleesss/VT-recurrence/ (accessed on
30 November 2023).
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29. Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation Importance: A Corrected Feature Importance Measure. Bioinformatics
2010, 26, 1340–1347. [CrossRef]

30. Kernbach, J.M.; Staartjes, V.E. Foundations of Machine Learning-Based Clinical Prediction Modeling: Part II-Generalization and
Overfitting. Acta Neurochir. Suppl. 2022, 134, 15–21.

31. Shreffler, J.; Huecker, M.R. Diagnostic Testing Accuracy: Sensitivity, Specificity, Predictive Values and Likelihood Ratios; StatPearls
Publishing: Tampa, FL, USA, 2023.

32. Winter, E. Chapter 53 The Shapley Value. In Handbook of Game Theory with Economic Applications; Elsevier: Amsterdam, The
Netherlands, 2002; Volume 3, pp. 2025–2054.

33. Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. PROC: An Open-Source Package for R and S+
to Analyze and Compare ROC Curves. BMC Bioinform. 2011, 12, 77. [CrossRef]

34. Yokokawa, M.; Desjardins, B.; Crawford, T.; Good, E.; Morady, F.; Bogun, F. Reasons for Recurrent Ventricular Tachycardia after
Catheter Ablation of Post-Infarction Ventricular Tachycardia. J. Am. Coll. Cardiol. 2013, 61, 66–73. [CrossRef] [PubMed]

35. Fong, K.Y.; Chan, Y.H.; Wang, Y.; Yeo, C.; Lim, E.T.S.; Tan, V.H. Catheter Ablation of Ventricular Arrhythmia in Patients with an
Implantable Cardioverter-Defibrillator: A Systematic Review and Meta-Analysis. Can. J. Cardiol. 2022, 39, 250–262. [CrossRef]
[PubMed]

36. Arenal, Á.; Hernández, J.; Calvo, D.; Ceballos, C.; Atéa, L.; Datino, T.; Atienza, F.; González-Torrecilla, E.; Eídelman, G.; Miracle,
Á.; et al. Safety, Long-Term Results, and Predictors of Recurrence after Complete Endocardial Ventricular Tachycardia Substrate
Ablation in Patients with Previous Myocardial Infarction. Am. J. Cardiol. 2013, 111, 499–505. [CrossRef] [PubMed]

37. Nagashima, K.; Choi, E.-K.; Tedrow, U.B.; Koplan, B.A.; Michaud, G.F.; John, R.M.; Epstein, L.M.; Tokuda, M.; Inada, K.; Kumar,
S.; et al. Correlates and Prognosis of Early Recurrence after Catheter Ablation for Ventricular Tachycardia Due to Structural Heart
Disease. Circ. Arrhythm. Electrophysiol. 2014, 7, 883–888. [CrossRef] [PubMed]

https://doi.org/10.1161/CIRCEP.118.006730
https://www.ncbi.nlm.nih.gov/pubmed/30562104
https://www.ncbi.nlm.nih.gov/pubmed/26318695
https://doi.org/10.1093/europace/euz132
https://doi.org/10.1093/eurheartj/ehz425
https://doi.org/10.1093/eurheartj/ehac262
https://doi.org/10.1016/j.echo.2016.01.011
https://doi.org/10.1038/s41592-019-0686-2
https://www.ncbi.nlm.nih.gov/pubmed/32015543
https://doi.org/10.21105/joss.01317
https://doi.org/10.1016/j.cmpb.2020.105635
https://www.ncbi.nlm.nih.gov/pubmed/32652383
https://doi.org/10.1007/s10115-022-01772-8
https://www.ncbi.nlm.nih.gov/pubmed/36405957
https://doi.org/10.1093/bioinformatics/btq134
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1016/j.jacc.2012.07.059
https://www.ncbi.nlm.nih.gov/pubmed/23122796
https://doi.org/10.1016/j.cjca.2022.12.004
https://www.ncbi.nlm.nih.gov/pubmed/36521729
https://doi.org/10.1016/j.amjcard.2012.10.031
https://www.ncbi.nlm.nih.gov/pubmed/23228925
https://doi.org/10.1161/CIRCEP.114.001461
https://www.ncbi.nlm.nih.gov/pubmed/25136076


Bioengineering 2023, 10, 1386 21 of 21

38. Tzou, W.S.; Tung, R.; Frankel, D.S.; Di Biase, L.; Santangeli, P.; Vaseghi, M.; Bunch, T.J.; Weiss, J.P.; Tholakanahalli, V.N.;
Lakkireddy, D.; et al. Outcomes after Repeat Ablation of Ventricular Tachycardia in Structural Heart Disease: An Analysis from
the International VT Ablation Center Collaborative Group. Heart Rhythm 2017, 14, 991–997. [CrossRef] [PubMed]

39. Prasitlumkum, N.; Navaravong, L.; Desai, A.; Desai, D.; Cheungpasitporn, W.; Rattanawong, P.; Bunch, T.J.; Jongnarangsin,
K.; Chokesuwattanaskul, R. Impact of Early Ventricular Tachycardia Ablation in Patients with an Implantable Cardioverter-
Defibrillator: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials. Heart Rhythm 2022, 19,
2054–2061. [CrossRef] [PubMed]

40. Willems, S.; Tilz, R.R.; Steven, D.; Kääb, S.; Wegscheider, K.; Gellér, L.; Meyer, C.; Heeger, C.-H.; Metzner, A.; Sinner, M.F.;
et al. Preventive or Deferred Ablation of Ventricular Tachycardia in Patients With Ischemic Cardiomyopathy and Implantable
Defibrillator (BERLIN VT): A Multicenter Randomized Trial. Circulation 2020, 141, 1057–1067. [CrossRef]

41. Kuck, K.-H.; Tilz, R.R.; Deneke, T.; Hoffmann, B.A.; Ventura, R.; Hansen, P.S.; Zarse, M.; Hohnloser, S.H.; Kautzner, J.; Willems, S.;
et al. Impact of Substrate Modification by Catheter Ablation on Implantable Cardioverter-Defibrillator Interventions in Patients
with Unstable Ventricular Arrhythmias and Coronary Artery Disease: Results from the Multicenter Randomized Controlled SMS
(Substrate Modification Study): Results from the Multicenter Randomized Controlled SMS (Substrate Modification Study). Circ.
Arrhythm. Electrophysiol. 2017, 10, e004422. [CrossRef]

42. Tung, R.; Josephson, M.E.; Reddy, V.; Reynolds, M.R. SMASH-VT Investigators Influence of Clinical and Procedural Predictors on
Ventricular Tachycardia Ablation Outcomes: An Analysis from the Substrate Mapping and Ablation in Sinus Rhythm to Halt
Ventricular Tachycardia Trial (SMASH-VT). J. Cardiovasc. Electrophysiol. 2010, 21, 799–803. [CrossRef]

43. Frankel, D.S.; Mountantonakis, S.E.; Zado, E.S.; Anter, E.; Bala, R.; Cooper, J.M.; Deo, R.; Dixit, S.; Epstein, A.E.; Garcia, F.C.;
et al. Noninvasive Programmed Ventricular Stimulation Early after Ventricular Tachycardia Ablation to Predict Risk of Late
Recurrence. J. Am. Coll. Cardiol. 2012, 59, 1529–1535. [CrossRef]

44. Haanschoten, D.M.; Smit, J.J.J.; Adiyaman, A.; Ramdat Misier, A.R.; Hm Delnoy, P.P.; Elvan, A. Long-Term Outcome of Catheter
Ablation in Post-Infarction Recurrent Ventricular Tachycardia. Scand. Cardiovasc. J. 2019, 53, 62–70. [CrossRef]

45. Kakadiaris, I.A.; Vrigkas, M.; Yen, A.A.; Kuznetsova, T.; Budoff, M.; Naghavi, M. Machine Learning Outperforms ACC/AHA
CVD Risk Calculator in MESA. J. Am. Heart Assoc. 2018, 7, e009476. [CrossRef]

46. Bazoukis, G.; Stavrakis, S.; Zhou, J.; Bollepalli, S.C.; Tse, G.; Zhang, Q.; Singh, J.P.; Armoundas, A.A. Machine Learning versus
Conventional Clinical Methods in Guiding Management of Heart Failure Patients-a Systematic Review. Heart Fail. Rev. 2021, 26,
23–34. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.hrthm.2017.03.008
https://www.ncbi.nlm.nih.gov/pubmed/28506710
https://doi.org/10.1016/j.hrthm.2022.07.005
https://www.ncbi.nlm.nih.gov/pubmed/35820619
https://doi.org/10.1161/CIRCULATIONAHA.119.043400
https://doi.org/10.1161/CIRCEP.116.004422
https://doi.org/10.1111/j.1540-8167.2009.01705.x
https://doi.org/10.1016/j.jacc.2012.01.026
https://doi.org/10.1080/14017431.2019.1601253
https://doi.org/10.1161/JAHA.118.009476
https://doi.org/10.1007/s10741-020-10007-3

	Introduction 
	Materials and Methods 
	Patient Population 
	Ablation Procedure 
	Collected Data 
	Statistical Study 
	Machine Learning Pipeline 
	Software and Hardware 
	Establishment of Input Features 
	Data Pre-Processing 
	Feature Selection 
	Model Selection 
	Model Evaluation 
	Comparison with the I-VT Score 


	Results 
	Patient Population 
	Machine Learning Analysis 

	Discussion 
	Limitations 
	Conclusions 
	References

