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Abstract: Sound generation in human phonation and the underlying fluid–structure–acoustic
interaction that describes the sound production mechanism are not fully understood. A previous
experimental study, with a silicone made vocal fold model connected to a straight vocal tract pipe of
fixed length, showed that vibroacoustic coupling can cause a deviation in the vocal fold vibration
frequency. This occurred when the fundamental frequency of the vocal fold motion was close to the
lowest acoustic resonance frequency of the pipe. What is not fully understood is how the vibroacoustic
coupling is influenced by a varying vocal tract length. Presuming that this effect is a pure coupling of
the acoustical effects, a numerical simulation model is established based on the computation of the
mechanical-acoustic eigenvalue. With varying pipe lengths, the lowest acoustic resonance frequency
was adjusted in the experiments and so in the simulation setup. In doing so, the evolution of the
vocal folds’ coupled eigenvalues and eigenmodes is investigated, which confirms the experimental
findings. Finally, it was shown that for normal phonation conditions, the mechanical mode is the
most efficient vibration pattern whenever the acoustic resonance of the pipe (lowest formant) is
far away from the vocal folds’ vibration frequency. Whenever the lowest formant is slightly lower
than the mechanical vocal fold eigenfrequency, the coupled vocal fold motion pattern at the formant
frequency dominates.

Keywords: voice production; fluid-structure-acoustic interaction; mechanical-acoustical eigenvalue
simulation; vocal fold motion; finite element model

1. Introduction

The human voice is physically created in a complex process characterized by fluid-
structure-acoustic interaction [1]. In this process, the vocal folds are excited to vibrate
by the airflow of the lungs V̇. During vocal fold vibration, the superficial tissue of the
vocal fold moves in a wave-like manner, exhibiting a vertical phase difference. This
motion generates what is known as a “mucosal wave”, with a frequency that plays a
role in determining the pitch of the voice. This vibration leads to a modulation of the
airflow, forming a pulsating free jet in the vocal tract. The sound that constitutes the
voice thereby arises aero-acoustically from the turbulent free jet region [2–4], as well as
vibro-acoustically by sound radiation from the vibrating vocal fold surface [5]. This sound
is filtered by the vocal tract and radiated through the mouth and nares, resulting in the
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voice pattern. A linear behavior between the sound source and filter was assumed for a
long time, i.e., changes in the source due to the filter were neglected [6]. However, this
simplified representation is not always valid, especially when a resonance frequency of the
vocal tract or the trachea region fR is close to the vibration frequency of the vocal folds fo [7].
This behavior was also observed in a patient study recently [8]. It has been studied using
a lumped-mass description of tissue mechanics, quasi-steady flow, and one-dimensional
acoustics in [9]. In doing so, frequency deviations and maxima jump of the threshold
pressure occur when the mechanical oscillation frequency is slightly above a vocal tract
resonance. Both the trachea and the vocal tract may produce those same effects [10,11].
In [12], the assumption that vocal tract formants interact with the voice source was analyzed
in vivo by investigating the data collected by a study consisting of twelve classical singers.
The analysis used transnasal high-speed videoendoscopy, electroglottography, and audio
recordings. However, the presented data partially corroborates that vowel transitions may
result in level-two interactions (using the nomenclature of Titze [7]). The authors of [13]
reported that under certain conditions, e.g., singing voice, the fundamental frequency of
the vocal folds can go up and interfere with the formant frequencies. So, acoustic feedback
from the vocal tract filter to the vocal fold motion becomes strong and non-negligible.
Again, a multi-mass model was used to confirm the findings [9]. Due to the complexity
of the problem, often only simple metrics such as the variation of f0 or the change in the
threshold of transglottal pressure for oscillation have been studied. Therefore, in [14,15],
first experimental measurements are conducted to gain further insight into the interaction
between vocal tract acoustics, structural dynamics, and aerodynamics for different vocal
tract lengths. The variation of the vocal tract length thereby changes the acoustic properties
of the vocal tract, allowing a systematic investigation of the relationship between flow
and acoustics.

Within the present contribution, the experimental results reported in [14,15] are ex-
tended substantially, and accompanying simulations are conducted to report the details
on the non-negligible mechanical-acoustic back-coupling (feedback of the vocal tract reso-
nances on the vibration) which is leading to the so-called “non-linear” filtering property at
certain conditions (e.g., singing). Thereby, nonlinear effects can be, e.g., a nonlinear behav-
ior of the vocal fold material, large mechanical deformations, or a contact between the vocal
folds during phonation. For this purpose, experimental investigations will be performed
on a simplified, synthetic larynx model using laser scanning vibrometry and high-speed
camera (HSC) records. From a computational perspective, the simplified lumped-mass
representation and the one-dimensional wave equation presented in [9] is significantly
extended to a three-dimensional finite element model, being able to represent any given
upper airway geometry [16]. This numerical simulation model is able to describe the most
efficient vocal fold motion mode and the phenomena of the linear filter range, as well as
the non-linear interaction and coupling of modes potentially leading to deviations in the
oscillation frequency and the maxima jumps. Nevertheless, the governing equations of the
acoustic and structural dynamics fields are linear, meaning that no hard contact between
the vocal folds or nonlinear mechanical material laws is incorporated. Furthermore, the
similarity of these numerically computed modes with experimental data is used to explain
the details of the mechanical-acoustic feedback. The findings exhibit that the presented
simulation approach yields similar results to the measurements which enables to use the
simplified linear numerical model to gain insights into the linear coupling effects between
mechanic and acoustic fields. In the final discussion, the limitations are explained and the
connection of the numerical and experimental findings to other voice parameters like the
sound pressure level and vocal efficiency are drawn.

The paper is organized as follows. Section 2 describes the experimental setup. In
Section 3, the numerical model of the quadratic mechanical-acoustic eigenvalue system
is presented. Section 4 reports the experimental results of the vocal fold motion and the
numerical results of the eigenmode analysis. The application results are discussed in
Section 5 providing also the model limitations. Conclusions are drawn in Section 6.
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2. Experimental Study

The synthetic vocal folds are based on the vocal fold M5 geometry model, proposed
by Scherer et al. [17], with the detailed geometry presented in [14] and were cast from a
single layer of silicone. The specimens were made of a three-component addition-cure
silicone (Smooth-on, Inc., Macungie, PA, USA). The compound consists of a two-part
Ecoflex 0030© (A + B) silicone rubber and three-parts silicone thinner (T) assembling the
mixture 113 as described in [18]. The experimental test rig is shown schematically in
Figure 1. The flow through the setup with a volume discharge of V̇ is generated by a mass
flow generator [19] and takes place from left to right as drawn by the arrow at the inflow.
First, the flow is acoustically preconditioned by an acoustic silencer [20,21] before entering
the subglottal tube and then the vocal folds. The vocal folds are marked in red and are
located between the subglottal channel and the first section of the simplified vocal tract,
both having a rectangular cross-section of ∆y× ∆x = 18 mm× 15 mm that anatomically
corresponds to the lateral–longitudinal orientation of a human larynx. The vocal tract
consists of two sections: the first is a rectangular channel with the same dimensions as
the vocal folds and the subglottal channel. Connected to this, there is a second section
that has a circular cross-section. The second section consists of two telescopic tubes that
enable continuously varying the length of the vocal tract, allowing its acoustic resonance
frequencies to be adjusted. The measurements are performed for different vocal tract
lengths L in the range L ∈ [170, 930] mm.

Additionally, the vocal fold motion was investigated by laser scanning vibrometry
(LSV) in [14]. Before the vocal folds section, a curved subglottal channel is placed with a
small optical window to record the vocal folds’ surface motion (see Figure 1).

silencer

sub
glot

tal

cha
nne

l

vo
ca

l t
ra

ct
vocal folds

Figure 1. The experimental setup. The vocal folds are marked in red and are located between the
vocal tract and the curved subglottal channel. A silencer is placed in front of the vocal folds to
dampen the sound in the inflow. The flow direction is from left to right.

This approach can examine the surface motion on the subglottal and supraglottal sides
using two LSVs. As depicted in Figure 2, the LSV measurement positioning is illustrated.
A total of 748 measurement points are measured, 374 on each vocal fold surface. For the
high-speed camera recordings, the camera is set up at position 2 to record the surface
motion by video. A wall pressure sensor is placed in the subglottal channel below the vocal
folds to synchronize the measurements at a specific start time of each measurement. Its
signal generates a trigger signal that determines the start time.

LSVLSV

Pos. 1 Pos. 2

subglottalchannel
vocal tract

Figure 2. Schematic of the experimental setup for the LSV measurements.
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3. Numerical Model

This section describes the numerical model using the Finite Element (FE) method. All
numerical simulations have been performed using Ansys Mechanical 2022 R2 [22,23].

3.1. Governing Equations

The governing equations of the acoustic and solid mechanic field, as well as their
physical coupling conditions, are discussed in the following.

3.1.1. Acoustic Field

Using the linear acoustic wave equation [24] (Equation (5.28)) to describe the acoustic
field in the context of human phonation is state of the art and this approach is commonly
used in the literature, e.g., [1,3,16,25]. Therefore, the acoustic field in a 3D acoustic domain
Ωa is governed by

1
c2

0

∂2 p
∂t2 − ∆p = 0, (1)

where p is the acoustic pressure, c0 =
√

K/ρ0 is the isentropic speed of sound computed
from the bulk modulus K, and the ambient fluid mass density ρ0, t is time, and ∆ = ∇ · ∇
is the Laplacian. For the acoustic domain, all boundaries except the inlet and outlet surfaces
Γin and Γout, and the interface boundary to the mechanic domain ΓIF, as depicted in Figure 3
are considered sound hard, i.e., homogeneous Neumann boundary conditions are imposed
on the pressure. This is justified by the fact that the specific acoustic impedance of air
(a fluid) is several orders of magnitude smaller than the specific acoustic impedance of the
duct wall of the experimental setup made of acrylic glass, and the large impedance jump
of three orders of magnitude, is approximated by a sound-hard boundary condition. At
the surface Γin, a homogeneous Dirichlet boundary condition is applied on the pressure,
which models a sound soft boundary [24] (Chapter 5.4). At Γout, the radiation impedance is
adjusted to the test rig [26]. For air at 22 °C (experimental condition), which is the medium
in the acoustic domain Ωa, typical values are c0 = 346.25 m/s and ρ0 = 1.225 kg/m3.

Figure 3. Schematic sketch of the longitudinal cut of the investigated geometry. Ωa and Ωm are the
acoustic and mechanic domains, respectively, ΓIF is the interface surface (blue), Γfix is the fixed surface
of the mechanic domain (green), and Γin and Γout are inlet and outlet surfaces (red), respectively. The
length L is varied.

3.1.2. Mechanic Field

Newton’s second law (conservation of momentum) in differential form states that

~f = ρ
∂2~d
∂t2 , (2)

where ~f = ∇ · σ +~g is the force density computed from the stress tensor σ and external
body forces ~g, ρ is the material’s mass density, and ~d = (d1, d2, d3) is the displacement.
Thus, Equation (2) can be reformulated to

ρ
∂2~d
∂t2 −∇ · σ = ~g. (3)
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The external body forces are assumed to be zero. Furthermore, a linear elastic stress
strain s relationship is assumed σ = C : s in concludence with [27], where the stiff-
ness tensor C depends on the Young’s modulus E and the Poisson ratio ν, as defined
in [23] (Equations (2)–(4)). The silicone rubber material used in the experiments was char-
acterized in [18], called “mixture 113”. From [18] (Table 3), we know that for the used
silicone mixture ν = 0.499 and ρ = 976 kg/m3. The Young’s modulus E will be described
in Section 3.3.

3.1.3. Finite Element Formulation of Mechanic-Acoustic Coupling

Using the FE method, the following matrix-vector equation is set up for each finite
element, of the coupled mechanic-acoustic problem [23] (Equations (8)–(32))[

Me 0
Mfs Mp

e

]
∂2

∂t2

(
de
pe

)
+

[
Ce 0
0 Cp

e

]
∂

∂t

(
de
pe

)
+

[
Ke Kfs

0 Kp
e

](
de
pe

)
=

[
Fe
0

]
, (4)

with de and pe, being mathematical vectors collecting the unknowns at the degrees of free-
dom from one element, for (mechanic) displacement and (acoustic) pressure, respectively.
The size of de is 3Ndof,e and of pe it is Ndof,e, where Ndof,e is the number of degrees of free-
dom. Considering one node of the mesh, either 3 degrees of freedom for the displacement or
one degree of freedom for the pressure are sought, depending on the location of the respec-
tive node in the computational domain. Thereby, Me, Ce and Ke are standard element mass,
damping and stiffness matrices of the mechanics domain, respectively [23] (Section 2.2).
Furthermore, Mp

e , Cp
e , and Kp

e , are the standard element mass, damping and stiffness matri-
ces of the acoustic domain [23] (Section 8.2). Cp

e accounts for the damping of the open duct
radiation [26]. The coupling terms are Mfs for the kinematic coupling condition and Kfs for
the dynamic coupling condition, which are described in [23] (Section 8.4). At the interface
between air and the vocal folds, the continuity requires that the normal component of
the mechanical surface velocity is equal to the normal component of the acoustic particle
velocity. This is the so-called kinematic coupling condition and can be rewritten in an
acoustic pressure formulation as [24] (Section 8.1)

~n ·
(

∂2~d
∂t2 +

1
ρ0
∇p

)
= 0, (5)

where ~n is the outward pointing normal vector at the interface ΓIF, which is depicted in
Figure 3. Furthermore, the continuity of the normal component of the forces must be
satisfied [24] (Section 8.1), i.e.,

~n · σ +~np = 0. (6)

Finally, the forcing vector Fe is zero due to no externally applied element forces.

3.2. Eigenvalue Problem

In order to recast the system of Equation (4) into an eigenvalue problem, a harmonic
ansatz for pressure and displacement is introduced as

p = R
{

p̃eiωt
}

, ~d = R
{
~̃deiωt

}
, (7)

where ω = 2π f is the angular frequency and “i” is the imaginary unit. Therewith, using
zero forcing on the right-hand side of the system of equations, Equation (4) is reformu-
lated to

−ω2
[

Me 0
Mfs Mp

e

](
d̃e
p̃e

)
+ iω

[
Ce 0
0 Cp

e

](
d̃
p̃e

)
+

[
Ke Kfs

0 Kp
e

](
d̃e
p̃e

)
=

[
0
0

]
, (8)

which is a quadratic eigenvalue problem in ω. Using the substitution method described
in [23] (Section 15.16.6), the quadratic eigenvalue problem is transformed into an equivalent
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system of generalized eigenvalue problems. This system is solved with Ansys Mechani-
cal [22].

3.3. Material Damping Model

Rupitsch et al. [18] characterized the damping behavior of the same material used
for the present study. Therein, they introduced a model for a complex-valued frequency-
dependent equivalent Young’s modulus E( f ) as

E( f ) = ER( f ) + iEI( f ), tan δ( f ) = 2ξ( f ) =
EI( f )
ER( f )

,

ER( f ) = AR + BR f + CR log10

(
f + 1 Hz

1 Hz

)
,

EI( f ) = AI + BI f + CI log10

(
f + 1 Hz

1 Hz

)
,

(9)

where {AR, BR, CR} are coefficients of the real part ER( f ), and {AI, BI, CI} are coefficients of
the imaginary part EI( f ) of E( f ). Thereby, AR is equivalent to the static Young’s modulus,
which can be obtained by a tensile test. From real and imaginary parts ER( f ) and EI( f ), the
damping ξ( f ) and a loss factor tan δ( f ) can be obtained. For the silicone mixture material of
interest, Rupitsch et al. [18] found parameters for E( f ), as listed in Table 1, by fitting param-
eters of a FE simulation to measurements results from a vibration transmission analyzer.

Table 1. Model parameters for frequency-dependent Young’s Modulus E( f ) determined by
Rupitsch et al. (“mixture 113”) [18].

AR BR CR AI BI CI ν

7.02 kPa 1.09× 101 8.02× 102 4.05× 103 1.07× 101 −1.21× 103 0.499

The model of Rupitsch et al. [18] can be interpreted as an extension to the standard
Rayleigh damping model [24] (Section 3.7.2). However, Rupitsch’s model is not available in
Ansys Mechanical; therefore, the material model introduced in [18] is approximated in an
f1 = 140 Hz with a Rayleigh damping model. Note, that this Rayleigh damping model is
only an approximation. Using the model of Rupitsch et al. [18] would lead to a non-linear
eigenvalue simulation [28] instead of the linear one proposed, limiting the applicability of
the model to frequencies around f1 = 140 Hz. However, the iterative algorithm increases
the computational cost significantly, and therefore a simple Rayleigh approximation of
Rupitsch’s model has been found as a suitable tradeoff balancing computational cost and
accuracy for the present investigation. Thus, the damping matrix Ce in the mechanic
domain in Equation (8) is composed of a linear combination of mass and stiffness matrices

Ce = αMe + βKe. (10)

The Rayleigh model coefficients α and β are obtained from ξ( f ) and ER( f ) at a frequency
of interest f1 using a small frequency deviation ∆ f [24] (p. 113), such that

β( f1) =
4∆ f ξ( f1)

( f1 + ∆ f )2 − ( f1 − ∆ f )2

α( f1) = 2( f1 + ∆ f )ξ( f1)− β( f1 + ∆ f )2
(11)

In Table 2, the obtained values for α( f1) and β( f1) and Young’s modulus ER( f1) are listed
for the operating frequency f1 = 140 Hz.
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Table 2. Rayleigh parameters α and β for the operating point f1 = 140 Hz as well as Young’s modulus
evaluated by approximating the dynamic model of Rupitsch [18].

f1 α( f1) β( f1) ER( f1)

140 Hz 126.2313 1.631× 10−4 10.26 kPa

The Rayleigh approximation of the Rupitsch model will use a frequency-independent
Youngs modulus. In Figure 4, the model of Rupitsch et al. is compared to the standard
Rayleigh damping model in the operating point f1 = 140 Hz exemplarily. For further
calculations, an operating point in the experimentally estimated fundamental frequency f0
range is selected [14].

0 20 40 60 80 100 120 140 160 180 200

8

10

12

E
R
(f

)
in

k
P
a

0 20 40 60 80 100 120 140 160 180 200

f in Hz

0.2

0.4

0.6

ta
n
/

Rupitsch et al. 2011 (dynamic model), mixture 113
Rayleigh damping for f2 = 140 Hz

Figure 4. Comparison of the dynamic model of [18] with Rayleigh damping in frequency bands of
±20 Hz around the operating point f1 = 140 Hz.

3.4. Simulation Setup

In Figure 3, a sketch of the longitudinal cut of the investigated 3D-geometry is depicted.
It shows the acoustic and mechanic domains Ωa and Ωm, respectively. For the numerical
simulations, the length L is varied from 200 mm to 900 mm in steps of 20 mm, see Figure 3.

3.5. Mesh Convergence Study

The convergence of the FE model with decreasing element size (using second-order fi-
nite elements) was assessed. In a similar manner as in [29], a relative frequency error ErrL2

rel, f ,

ErrL2
rel, f =

√√√√√√∑Nmodes
i=1

(
f (i)mode,ref − f (i)mode,num

)2

∑Nmodes
i=1

(
f (i)mode,ref

)2 (12)

was defined, where f (i)mode,ref are the modal frequencies of a reference (benchmark) simula-

tion using a very fine mesh, and f (i)mode,num are the modal frequencies of the mesh that is
tested against the reference. The number of investigated modes is Nmodes = 20 accounting
for the range of interest. The parameters of the investigated meshes and the result of the
mesh convergence study are listed in Table 3. The approximate element size has been
chosen based on an upper frequency limit of 8.5 kHz, resulting in a wavelength λ that
is discretized with 10, 20, or 40 elements in the subglottal and supraglottal regions (also
called “duct” in Table 3). The region around the vocal folds is discretized much finer and
unstructured due to the small glottal gap that must be discretized sufficiently fine. For the
later numerical study, mesh 2 of Table 3 was used, as an error ErrL2

rel, f < 0.5% was seen
as an acceptable compromise between computational speed and accuracy. The discretiza-
tion error reduces monotonically. Approximately, it reduces by two orders of magnitude
for each grid refinement order. This correlates with the use of a second-order spatial
discretization schemes.
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Table 3. Mesh convergence analysis of the numerical model for the coupled mechanic-acoustic
system. The supraglottal length L was 1050 mm for all meshes (see Figure 3).

Mesh
Approx. Elem. Size (in mm) Wavelength at f = 8.5 kHz

ErrL2
rel, fDuct VT Duct VT

mesh 1 4.0 1.4 λ/10 λ/29 0.0086
mesh 2 2.0 0.7 λ/20 λ/58 0.0020
mesh 3 (reference) 1.0 0.35 λ/40 λ/115 —

4. Results
4.1. Experimental Results

From the LSV results of the fluid flow perturbation, the oscillation frequency of the
vocal folds can be estimated using the discrete Fourier transform. The measurements
were conducted in the range L ∈ [170, 930] mm with an increment of 10 mm between the
measurements. The results of this analysis, i.e., the primary oscillation frequency of the
vocal folds f0 as a function of the duct length, are reported in Figure 5. The background
of this figure is colored by the acoustic input impedance of the vocal tract computed via
a transmission line model [30]. For this purpose, the VT is divided into sections of equal
cross-section, whereby the frequency-dependent vocal tract input impedance Zin can be
calculated by a concatenation of matrix multiplications. The maxima of the reactance of
Zin correspond to the VT resonance frequencies [26], which coincides for the current duct
configuration with the maximum of the amplitude of Zin. Additionally, the fundamental
frequency f0 based on particle image velocimetry data from [31] is displayed in Figure 5.
In doing so, the time series signals are Fourier transformed and the most dominant peak
in the amplitude spectrum is picked defining the respective f0 at a corresponding duct
length L. Figure 5 shows clearly that the trends of the experiments are reproducible. For
duct length below L = 360 mm, a regime is detected where the acoustic resonance of
the duct does not influence the fundamental frequency f0. At around L = 400 mm, the
oscillation shape of the vocal folds is suddenly completely different explained by mode
switching of the silicon vocal fold oscillation. In a study by Sundberg et al. [8], pitch jumps
and voice breaks occured for singers through long tube with different resistances [8]. For
larger lengths and below the actual alignment with the acoustic resonance frequency of
the duct, the fundamental frequency is gradually shifted towards the acoustic resonance
frequency with increasing duct length until a length of about L = 600 mm. Above this duct
length, alignment takes place with the acoustic resonance frequency of the duct.

Figure 6a–h shows eight snapshots from the synchronized LSV and HSC measure-
ments for a duct length of L = 200 mm. The LSV measurement points were phase-
synchronized based on a subglottal pressure sensor signal. The sensor recorded the
f0-periodic pressure time series from which the LSV records were triggered. These are
equidistantly distributed over one vibration period. The surface velocities are in the range
of about 2 m/s. It can be seen well that during the opening process (Figure 6a), the velocities
are maximum in the positive direction. This can be explained by the fact that before this,
in the closed state, high subglottal pressure quickly builds up upstream of the vocal folds,
accelerating the vocal folds upward while simultaneously opening them. The HSC images
also show a clear convergent-divergent deformation of the glottis. While in images (a)
and (b), there is still a convergent glottal duct shape, in image (c), the tips of the vocal
folds begin to oscillate toward the upper and lower edges, respectively, so that in images
(d) and (e), a divergent glottal duct shape can be seen. From image (f), a reverse process
occurs again to the initial position (a). This convergent-divergent glottal duct deformation
is essential to phonation to efficiently drive self-sustaining vocal fold oscillations [32].

Bandpass filtering can extract individual oscillation modes from the LSV data. The re-
sult of such filtering with cut-on and cut-off frequencies of 130 Hz and 180 Hz, respectively,
can be seen in Figure 7.
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Figure 5. Vocal tract input impedance as a function of frequency f and length L. Superimposed are
the primary oscillation frequencies of the vocal folds fo for the individual measurements.
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Figure 6. Time-synchronized LSV surface velocity and HSC measurements for a duct length of
L = 200 mm. The deflection of the points as well as the color in the LSV plots are proportional to the
measured surface velocity. The sequence (a–h) shows the oscillation of one complete period.
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Figure 7. Bandpass filtered LSV data synchronized with the HSC recordings for a duct length of
L = 200 mm. The oscillation at the fundamental frequency (1. mode) can be seen. The sequence (a–h)
shows the oscillation of a complete period.

The filter has isolated the lowest oscillation frequency f0 in the surface velocity spec-
trum, illustrating the oscillation at this first peak. Figure 8 shows a schematic representation
of the motion in this lowest oscillation mode. It can be seen that immediately after the
opening of the glottis, the surface velocities on the vocal fold top change from positive
to negative direction (Figure 7a–c). Figure 8 summarizes, in (a)–(c), the opening of the
vocal folds and illustrates the surface velocities accordingly. This leads to a rotation of the
upper surface, changing the convergent glottis shape to a divergent shape. As soon as the
maximum angle of divergence is reached, the opposite effect takes place, causing counter-
rotation and a convergent glottis shape again (Figure 7d–f) and in Figure 8 illustrations
(c)–(e). It can be concluded that the first mode is crucial for the divergent-convergent nature
of vocal fold oscillation. Thus, it is an important component of self-sustained oscillation.

(a) (b) (c) (d) (e)

Figure 8. Schematic representation of vocal fold movement. The schemas (a–e) show different
timesteps of one oscillation cycle. The red and blue arrows indicate the direction of surface velocity,
and the green arrows indicate the direction of motion as revealed by the HSC images. The changing
surface velocities on the vocal fold top cause rotation, responsible for the convergent-divergent
glottal motion.
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4.2. Numerical Results

Using the FE-based eigenvalue solver provided in Ansys Mechanical [22], the eigenval-
ues ω have been evaluated for (i) the acoustic system and (ii) the coupled mechanic-acoustic
system. For the coupled mechanic-acoustic systems, the viscoelastic material at an op-
erating condition of f1 = 140 Hz was used, as described in Section 3.3. The radiation
impedance of the open end was modeled such that the fundamental frequencies of the
acoustic modes match the test rig ones.

In Table 4, the first ten mode shapes from the numerical simulations are visualized for
four duct lengths L = {200, 400, 700, 800}mm. A view analogous to LSV Pos. 2 and HSC
(see Figure 2) has been used, which shows the superior surface view of the deformed VFs
superimposed by a color proportional to the displacement in z-direction d3.

At L = 200 mm, mode index 1 represents a mechanical mode opening and closing
the vocal folds with in-phase displacement in z-direction at a frequency of f = 81.29 Hz.
This mode possibly provides both aerodynamic constriction of the airflow as well as an
effective coupling to the acoustic plane wave with its in-phase displacement. The same
is valid for L ∈ {400 mm, 700 mm, 800 mm}. Mode index 2, which is at f = 81.98 Hz
for L = 200 mm does not contribute to acoustic radiation, because the z-component of
the displacement is not in phase for both vocal folds hence no acoustic wave is scattered
to the far field. The same is valid for L ∈ {400 mm, 700 mm, 800 mm}. At L = 200 mm,
mode index 3 represents an acoustically ineffective mechanical mode due to the displace-
ment being out of phase within the vocal folds for a frequency of f = 125.19 Hz. The
same holds for L ∈ {400 mm, 700 mm}. However, at L = 800 mm, an additional coupled
mechanical-acoustic motion pattern arises, which is similar to mode index 1. Based on
the mode shape morphology with a symmetric phase of the displacement z-component
(where the symmetry axis is the glottis center line), this mode is acoustically effective.
For mode index 4 at L = 200 mm being at f = 125.24 Hz the asymmetric displacement
z-component suggests an acoustically non-efficient mechanical mode. The same is valid
for L ∈ {400 mm, 700 mm}. Due to the additional coupled mechanical-acoustic motion
pattern at L = 800 mm however, mode index 4 of this length is the same as mode index 3
for L = 700 mm, which is again acoustically ineffective. Mode index 5 at L = 200 mm
presents an acoustically effective vibration pattern at a frequency of f = 137.88 Hz due to
the symmetry of the displacement z-component. Identical vibration patterns are present at
L = 400 mm and L = 700 mm, where in the latter case only a sign change is present overall.
In contrast to that, mode index 5 at L = 200 mm at f = 124.60 Hz is acoustically ineffective
due to the asymmetric displacement z-component. For mode index 6 at L = 200 mm being
at f = 138.06 Hz, as well as mode index 6 at L = 400 mm, acoustically ineffective vibration
patterns are present. In contrast to that, at L = 700 mm an acoustically effective additional
coupled mechanical-acoustic motion pattern arises, which is visually very similar to mode
index 3 at L = 800 mm. Furthermore, at L = 800 mm, an acoustically effective mode is
present. Mode indices 7 and 8 present acoustically ineffective vocal fold vibration patterns
for all four VT length configurations. For mode index 9 at L = 200 mm, which is at a
frequency of f = 154.04 Hz, an acoustically effective motion pattern is present. How-
ever, for L ∈ {400 mm, 700 mm, 800 mm}, the modes are acoustically ineffective due to the
asymmetries in the displacement z-component. Finally, for mode index 10 at L = 200 mm
being at f = 154.23 Hz, an acoustically inefficient mode is present. The same holds for
L = 400 mm. However, at L ∈ {700 mm, 800 mm}, the z-component of the displacement is
symmetric at the glottis center line, indicating acoustically effective vocal fold vibration
modes at these length configurations.

Summarizing the above, from Table 4 it is evident that the first ten mode shapes do
not change significantly comparing the cases L = 200 mm and L = 400 mm. However,
at L = 700 mm, an additional mode shape arises at mode 6, which shifts the subsequent
mode indices. The same additional mode shape also arises in the case of L = 800 mm,
which is mode 3, resulting once more in a shift of the mode indices. Regarding the effective
contributions of individual modes to phonation, it is important that the top surfaces of
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both VFs have the same phase throughout. Therefore, for the cases L = 200 mm and
L = 400 mm, the following modes can be considered effective for phonation: Modes 1,
5, and 9, with other modes having only minor contributions to phonation. The other
modes 2, 3, 4, 6, 7, 8, 10 are counterbalancing displacements and velocity patterns. This
counterbalancing pattern is not able to couple efficiently to a plane acoustic wave inside
the acoustic duct, which is in the case of the lowest formant a requirement for an effective
coupling of the mechanical and acoustic field. For instance, mode 2 is a parallel motion
of the left and right vocal fold which does not constrict the gap between the vocal folds
and thus being a very inefficient mode from the whole fluid-structure-acoustic interaction
perspective. This behavior in a higher order shape occurs for mode 4, 6, and 8. For the
case L = 700 mm, the following modes can be considered effective for phonation: Modes
1, 5, 6, 10. Finally, for case L = 800 mm, the following modes can be considered effective
for phonation: Modes 1, 3, 6, 10. It can be clearly seen, that in the case of L = 700 mm and
L = 800 mm an additional mode (“phonation-effective mode”) enters being the mode shape
with mode number 6 and 3 respectively. This phonation-effective mode is the coupled
mechanical-acoustic motion pattern when the acoustic back-coupling is active. When this
mode occurs, the mode numbers above this additional mode are shifted by one k← k + 1.
This behavior can be seen that the mode 5 in the case of L = 700 mm is mode 6 for the case
of L = 800 mm.

Table 4. Numerically obtained mode shapes for different VT lengths L. The color indicates the
displacement component d3 in z-direction, while the x and y-components of the displacement are
visualized by a scaled geometry deformation. Negative Displacement d3 < 0 is colored blue, positive
displacement d3 > 0 is colored red, and d3 = 0 is colored green. The displacement component d3 is
normalized to the maximum absolute value.

VT Length Mode Index 1 Mode Index 2 Mode Index 3 Mode Index 4 Mode Index 5

L = 200 mm

f = 81.29 Hz f = 81.98 Hz f = 125.19 Hz f = 125.24 Hz f = 137.88 Hz

L = 400 mm

f = 80.79 Hz f = 81.56 Hz f = 124.56 Hz f = 124.60 Hz f = 137.71 Hz

L = 700 mm

f = 80.65 Hz f = 81.56 Hz f = 124.55 Hz f = 124.60 Hz f = 137.72 Hz

L = 800 mm

f = 80.62 Hz f = 81.56 Hz f = 122.96 Hz f = 124.56 Hz f = 124.60 Hz
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Table 4. Cont.

VT Length Mode Index 6 Mode Index 7 Mode Index 8 Mode Index 9 Mode Index 10

L = 200 mm

f = 138.06 Hz f = 143.44 Hz f = 143.52 Hz f = 154.04 Hz f = 154.23 Hz

L = 400 mm

f = 137.91 Hz f = 142.89 Hz f = 142.98 Hz f = 153.89 Hz f = 154.12 Hz

L = 700 mm

f = 139.18 Hz f = 137.90 Hz f = 142.87 Hz f = 142.95 Hz f = 153.98 Hz

L = 800 mm

f = 137.75 Hz f = 137.91 Hz f = 142.89 Hz f = 142.98 Hz f = 153.96 Hz

The additional modes are further investigated by connecting them with the acoustic
impedance of the vocal tract in the following. Based on visualizations of the mechanic
displacement, modes have been identified that are similar to those of the experimental
investigations. Figure 9 supplements Figure 5 by adding the simulation results of the
linear eigenfrequency (mode index 5, 6 and 9) of the coupled mechanic-acoustic eigenmode
simulation for varying duct length. For a duct length of less than 550 mm, the acoustic
and the mechanical eigenmodes are decoupled from each other, suggesting that acoustic
effects do not significantly influence the silicon vocal fold vibration pattern, as it is also
visible in Table 4. Between 550 mm and 700 mm, the coupled mechanical-acoustic mode is
aligned with the acoustic mode, which is the effect of the additional phonation-effective
mode depicted in Table 4. In this regime, the acoustic back-coupling strongly influences the
vibration frequency of the vocal fold motion. This indicates that acoustic effects of the fluid
are essential for the realistic determination of the oscillation frequency. For longer ducts, the
physical shape of the mode with index 9 is now the mode with index 10. Virtually shifting
oscillation frequency of a fixed mode index 9 to a lower frequency (where mode 5 is aligned
with the acoustic mode) compared to the uncoupled situation for a duct length below
550 mm due to the additional phonation-effective mode. In contrast to modes index 5 and
index 9, mode index 6 does not couple at all to the acoustic mode because the oscillation
pattern of the vocal folds is not acoustically effective (as indicated in the discussion of
Table 4 by the counteracting the motion in z-direction). Regarding a more detailed analysis
and the evolution of the modes with varying lengths, the modal assurance criterion (MAC)
is evaluated for the simulated and measured modes.
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Figure 9. Numerically evaluated eigenfrequencies of the acoustic and coupled mechanic-acoustic
system. The mechanical damping has been modeled by Rayleigh damping, which approximates the
Rupitsch model at the operating frequency of f = 140 Hz.

The modal assurance criterion (MAC) is a measure of the similarity between different
mechanical modes introduced in [33]. Given complex mode shapes in the form of two
mode shape vectors Φk and Ψl , it computes as follows [33]

MAC(Φk, Ψl) =

∣∣ΦT
k Ψ∗l

∣∣2(
ΦT

k Φ∗k
)(

ΨT
l Ψ∗l

) · 100 %. (13)

Thereby, k and l are the indices of the respective modes, i.e., the k-th mode shape of Φ

is compared with the l-th mode shape of Ψ. Hence, the MAC enables (i) comparisons of
simulated mode shapes with measured mode shapes, (ii) comparisons of mode shapes
originating from two different simulations, or (iii) self-comparisons of mode shapes from
one simulation or one measurement (Auto-MAC) showing the self-similarity of different
mode shapes of one configuration. However, the MAC requires that the mode shape pairs
Φk and Ψl are evaluated at identical coordinates. Therefore, the simulation result (i.e., the
displacement field) is interpolated using the FE basis functions to the measurement points.

Firstly, the self-comparisons of mode shapes from one simulation as Auto-MAC is
studied and illustrated in Figure 10. Therein, the MAC has been evaluated for the two LSV
positions separately (see Figure 2), and the mean MAC values of the two measurement
plane values are assessed. The three illustrations show the Auto-MAC of the simulated
modes for the duct length 200 mm, 400 mm and 700 mm, in the three subfigures (a), (b),
and (c), respectively. These lengths correspond to the three regimes (decoupling, alignment,
shift) of mode 9 in Figure 9. As intended by the MAC, it shows a strong correlation of the
modes with itself by the black squares in the diagonals of the matrix plots in Figure 10.
For all individual modes, a low similarity is present concerning the other modes, which
is expressed by the relatively low Auto-MAC values in the off-diagonal elements. This
behavior is present in all three regimes investigated. Qualitatively, the three sub-figures
look very similar, which expresses that the modes as a solution of the numerical system
have persistent shapes with a length variation. Especially for length 200 mm and 400 mm
and according to Table 4, the mode shapes are very similar (no coupling of the lower modes
to the mechanic field) and therefore this is expected for the Auto-MAC values. This may
allow us to use these shapes in a potential model order reduction over a wide range of
operating points that are, respectively, length variations. From Figure 10, the mode indices
and motions contributing to phonation show also correlations to each other, being the
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mode index numbers 1, 5, and 9 for length 200 mm and 400 mm. For length 700 mm, the
phonation-effective mode (index 6) is present, showing that a high MAC value is present
between mode index 1 and index 6.
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Figure 10. Auto-MAC of the simulation results. (a) Auto-MAC for L = 200 mm, (b) Auto-MAC for
L = 400 mm, and (c) Auto-MAC for L = 700 mm.

In Figure 11, the MAC is depicted for the modes k ∈ {1, 5, 10}, along VT length
variations using the simulation result data. With the k-th mode shape obtained from the VT
length L, the MAC is computed for two reference mode shapes: (i) the k-th mode shape
of L = 200 mm denoted as Ψ200 mm

k , and (ii) the (k− 1)-th mode shape for of L = 200 mm
denoted as Ψ200 mm

k−1 . As depicted in Figure 11, a shift in mode indices is evident, i.e., for each
mode index k, there is a critical VT length Lcrit at which the MAC(ΦL

k , Ψ200mm
k ) switches

from close to 100 % to close to 0 %, and the MAC(ΦL
k , Ψ200mm

k−1 ) simultaneously raises from
close to 0 % to close to 100 %. Therefrom it is evident that an index shift occurs, i.e., the
k-th mode for L < Lcrit is the (k− 1)-th mode for L > Lcrit. Together with Figure 9 and
Table 4, it can be concluded, that Lcrit depends on the mode index k, and it is located at the
intersection between the acoustic modes and the coupled acoustic-mechanic modes.
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Figure 11. Comparison of MAC values for mode indices k ∈ {6, 7, 10} across VT length variations.
The solid lines indicate the MAC based on the mode k of length 200 mm as reference, whereas the
dashed lines indicate that the MAC is computed based on the mode k− 1 as reference to illustrate a
switch in the mode number.

4.3. Comparison of Experimental and Numerical Results by Modal Assurance Criterion

To quantify the agreement between the measured surface velocities from the LSV
measurements with the numerical simulations, the MAC is evaluated for the measured
VT lengths. The result quantity of the simulation is the displacement ~d, the measurement

quantity of the LSV is the velocity ~̇d = (ḋ1, ḋ2, ḋ3) = ∂~d/∂t. Furthermore, the simulation
results are available in the frequency domain a priori, while the measurements are delivered
in the time domain. Hence, the measured velocity field is Fourier transformed, such that
a frequency resolution of ∆ f = 10 Hz is achieved. Then, the measured velocity field is
compared to the simulation result (displacement) at the measurement points. The simulated
displacement results are therefore multiplied by iω being the Fourier transform of ∂/∂t.
Thereby, ω = 2π fm with fm being the mode frequency, respectively. The MAC matrices are
depicted for both LSV positions depicted in Figure 2 separately.
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In Figures 12–14, the MAC for L = {200, 400, 700}mm is depicted, respectively. The
modes identified by FE simulations are frequency-wise closely together; therefore, individ-
ual modes are hard to identify in the measurements. However, a qualitative assessment
of mode shape morphology similarities is possible nevertheless. In Figure 12, it is visible
that simulated modes 1 and 9 are mainly representing the experimental components at the
measured fundamental frequency, providing evidence on the phonation effective modes in
the decoupled regime. In Figure 13, the simulated mode 13 at 220 Hz explains the main
characteristics of the experimental results, indicating a dominating mode shift. Further-
more, more modes add minor contributions to the overall vibration behavior compared
to the decoupled regime. From Figure 14 one can conclude that the simulated modes 1,
5, and 6 (phonation-effective mode) are shifted to lower frequencies around 140 Hz while
also being similar to higher-frequency components at integer multiples (i.e., 280 Hz and
420 Hz). These comparisons to experimental modes provide a clear picture of which modes
are essential for the phonation in the decoupled and coupled mechanical-acoustic regime.

0
.0

50
.0

1
00

.0

1
50

.0

2
00

.0

2
50

.0

3
00

.0

3
50

.0

4
00

.0

4
50

.0

5
00

.0

measurement FFT frequency

1

3

5

7

9

11

13

15

17

19

m
o
d

e
in

d
ex

fo
r
L

=
20

0
m

m

0 10 20 30 40 50
MAC in %(a)

0
.0

50
.0

1
00

.0

1
50

.0

2
00

.0

2
50

.0

3
00

.0

3
50

.0

4
00

.0

4
50

.0

5
00

.0

measurement FFT frequency

1

3

5

7

9

11

13

15

17

19

m
o
d

e
in

d
ex

fo
r
L

=
20

0
m

m

0 10 20 30 40 50
MAC in %(b)

Figure 12. MAC for measured (LSV) and simulated modes with L = 200 mm for (a) subglottal LSV
Pos. 1 and (b) supraglottal LSV Pos. 2.
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Figure 13. MAC for measured (LSV) and simulated modes with L = 400 mm for (a) subglottal LSV
Pos. 1 and (b) supraglottal LSV Pos. 2.
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Figure 14. MAC for measured (LSV) and simulated modes with L = 700 mm for (a) subglottal LSV
Pos. 1 and (b) supraglottal LSV Pos. 2.
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5. Discussion
5.1. Model Limitations

Comparing Figure 5 and Figure 9 it can be clearly seen that the established model
provides a clear condition when the acoustic-structure back-coupling is present. The
frequency alignment and the decoupled regime can be predicted for varying duct length.
The limitations of the linear eigenfrequency analysis are that the non-linear effects of the
vocal fold contact and the multi-harmonic or chaotic oscillation behavior cannot be modeled
accordingly. Therefore, the regimes (as indicated in Figure 5) “small shift” and “mode
switching” cannot be explained by the coupled mechanical-acoustical model. Nevertheless,
the model is useful to learn about the interaction of the mechanical and acoustical fields.

5.2. Oscillation Pattern and Relation to Other Voice Parameters

Initially, a harmonic oscillation pattern was assumed by the eigenvalue computation
(see Equation (7)). In this paragraph, the limitations of this assumption are discussed using
aspects of nonlinear dynamics, as introduced by Herzel et al. [34]. Figure 15 shows the
phase space diagram of the oscillation in the z-direction (inferior-superior direction) of the
left vocal fold’s superior edge (according to the coordinate system defined in Figure 7).
Additionally, the time series of the velocity in z-direction ḋ3, the time series of the flow
derivative is displayed over one period. The velocity in z-direction ḋ3 is measured at the
point 7.5 mm and 7.1 mm (superior edge). Given the measured velocity ḋ3, the displacement
in z-direction d3 is estimated by integration of the high-pass filtered (110 Hz) velocity signal
ḋ3. The initial conditions d3(t = 0) = 0. In Figure 15, the displacement is normalized by
the initial vocal fold gap a = 0.2 mm and the velocity by a typical mucosal wave speed of
about cm = 1 m/s [35]. For normalized velocities ḋ3/cm being plotted over the normalized
displacement d3/a, the phase space diagram orbits are turning in the clockwise direction
for the left vocal fold (as indicated by the star as starting point and the circle as ending
point marker). Additional markers for the second orbit and the notch in the magenta and
black curve are marked by a square sign. The notch in the black and magenta curve is an
inflection of the velocity, where the superior edge undergoes a wiggle-like motion going
from deceleration to acceleration during the opening phase of the vocal fold. The orbit
of (d3/a, ḋ3/cm) for the duct length 200 mm has a somewhat elliptical shape, with slight
deviations from orbit to orbit. This can also be seen from the evolution of the ḋ3 over
a period of the oscillation. Despite some minor high-frequency patterns, the velocities
time signal has a dominant harmonic content at the oscillation frequency f0. According
to Figure 6, the highest surface velocity corresponds to the phase of closed vocal folds
and is indicated in Figure 15. Additionally, to the high-speed camera visualization, the
glottal flow [31] was correlated to the time series of the velocity. The flow derivative is
used to interpret the vocal fold motion, the opening and closing phase, and regarding [36],
it shows a connection of intra-glottal vortices causing a more rapid closing resulting in
an increased sound pressure level [37]. The flow rate derivative was estimated based on
two-dimensional particle image velocimetry data [31] averaging ten lines perpendicular to
the glottal jet at ten different streamwise positions starting at the vocal folds and assuming
full coherence in the third dimension. In doing so, the time series of varying glottal flow
rate V̇(t) was estimated and its time derivative dV(t)/dt computed. The estimated flow
rate derivative was normalized by the mean glottal flow V and the fundamental frequency
f0. For the length 200 case, the flow derivative increases monotonically over half a period
and declines approximately the other half of the period. This configuration is considered to
be the base configuration and results in a sound pressure level (SPL) in front of the duct of
82.5 dB [31].
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Figure 15. (a) Phase space diagram showing velocity ḋ3 and d3 displacement trajectories of the
superior edge of the left vocal fold in the inferior-superior direction for all considered vocal tract
lengths. The smaller orbit within the outer orbit (in the clockwise direction) for the L = 400 mm
case indicates periodic doubling and onset of chaotic behavior. The L = 200 mm and L = 700 mm
cases show more regular orbits and with a pronounced notch for L = 700 mm. The star marker (*)
is the starting point and the circle marker (◦) is the end point of one orbit. (b) Time history of the
inferior-superior velocity ḋ3 from PSV measurements. The square marker (�) indicates the periodic
doubling in the L = 400 mm case and the kink in the L = 200 mm and L = 700 mm case. (c) Time
history of the flow rate derivative V̇(t) extracted from the PIV measurements of [31].

At a length of 400 mm the orbit shows a secondary loop indicating a periodic doubling
at this length. A regular large orbit moves into a secondary orbit during each period. This
is also visible in the velocity evolution over a period. The secondary orbit is indicated
by the green square marker. It is indicated as secondary orbit and has nearly half the
velocity amplitude of the dominating orbit. Variations from orbit to orbit are visible by
the green dotted curves. Compared to the L = 200 mm case, the orbit variations of the
L = 400 mm case are larger. In general, this indication of periodic doubling strongly violates
the assumption of a harmonic ansatz, supporting the arguments that such a behavior cannot
be explained by the eigenvalue simulation. It displays a multi-harmonic nature of the
vocal fold oscillation at these conditions. The flow derivative for the length 400 case has a
comparable small and extended positive part of the time series, spanning about 0.7T and
a rapid negative closing dip twice as high as the positive part. This behavior of a sharp
negative dip was also observed in the investigations conducted in [36]. Additionally, the
flow derivative has a secondary oscillation which occurs at the same time as the periodic
doubling. For this case, the SPL in front of the duct is 95 dB [31].

The orbit of (z, ḋ3) for the length L = 700 mm has a elliptical shape with a kink in
the positive part of the positive velocity fluctuations (indicated by a magenta square sign).
Also for this case, slight deviations occur from orbit to orbit, which are comparable to
the L = 200 mm case. In this case, the positive part of the positive velocity fluctuations
is oscillating, since it does stay positive no secondary orbit is formed. This is already a
strong deviation from a pure harmonic velocity evolution. In connection to the closed
vocal fold, the kink in the phase space diagram happens shortly after the vocal folds have
closed. In this case, the flow derivative is positive for 0.6T and has a relative sharp negative
dip compared to the length L = 200 mm case. The evolution of the flow derivative looks
very similar to the one from the length L = 400 mm case. Where the kink occurs in the
phase space diagram, the flow derivative shows a secondary oscillation. In this case, the
SPL is 84 dB [31]. Comparing the three cases, it appears that the negative dip in the flow
derivative is positively correlated with the SPL, as well as the inertance effect, as described
by Titze [35], which gives a low supraglottal pressure that produces a push on vocal the
vocal folds during closing. Due to the correlation with SPL, the vocal efficiency at the length
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L = 400 mm case is about one order of magnitude higher than the length L = 200 mm
case [31]. Furthermore, the value of the vocal efficiency for the length L = 700 mm case
is increased [31], showing a positive correlation of the strength of the additional wiggle
in the flow derivative and the vocal efficiency. In relation to Figure 8, the motion in the
inferior-superior direction of the schematic and the phase space diagram are consistent.

6. Conclusions

The fluid-structure-acoustic interaction process, like human phonation process, is one
of the most challenging physical phenomena. To enhance the understanding of this type
of process, an experimental apparatus was designed to mechanically align the acoustic
of the duct and the coupled mechanic-acoustic mode of the coupled vibroacoustic setup
consisting of single mold silicone vocal folds and a straight duct. The experiments showed
that when increasing the supraglottal duct of the apparatus, the acoustic eigenfrequency
decreases monotonically. In the case when the acoustic eigenfrequency of the duct came into
the range of the fundamental (mechanical) vibration frequency of the silicone vocal folds
their vibration frequency deviated from it. This effect is dominant and strong deviations
occur, when the acoustic eigenfrequency of the duct is lower than the corresponding
mechanical eigenfrequency.

Regarding these experimental findings, the vocal folds motion of the uncoupled
and the coupled mechanical-acoustic eigenvalue problem are investigated. The purpose
of the simulation is to show that for a length smaller than the critical length (crossing
of the acoustic and the mechanical eigenfrequency), the mechanical eigenmodes of the
vocal folds in the neighborhood of the fundamental frequency are not influenced by the
acoustic (compressible) subsystem. Whereas, for a length longer than the critical length,
the combined system is of importance and the vibration frequency of the vocal folds is
aligned with the acoustic mode frequency. The results demonstrate that changing the
vocal tract length has an influence on the frequency of the mode arising by the coupled
mechanic-acoustic field. Furthermore, the quantitative comparison between numerical and
experimental results by means of the MAC exhibits a strong correlation of the coupled
mechanic-acoustic mode, indicating a strong contribution of this mode on phonation.
It was found that a changing vocal tract length allows for a changing frequency of the
coupled mode that greatly contributes to phonation. As a consequence of this analysis,
the findings report the importance of the interaction and the back-coupling of the acoustic
onto the mechanical structure in certain regimes. Whereas under normal conditions, the
back-coupling can be neglected as reported in numerous studies before. Finally, the use of
the eigenmode analysis is an elegant way of investigating the dependence of the modes
on each other. This may allow us to use these shapes in a potential model order reduction
over a wide range of operating points that are, respectively, length variations. Relating to
the acoustic-structure interaction, one recent publication by Manconi et al. [38] included
the characterization of this interaction by a dispersion curve. This approach could be
transferred to human phonation to display the dispersion relation of the mucosal wave,
but, as a prerequisite, equally spaced surface displacement data is necessary. However,
the measurement data capturing all nonlinear effects are not equally spaced. Hence, the
findings presented in [38] provide an interesting approach for future investigations.

Finally, the MAC measure between the simulated and experimental modes showed
which mode shapes effectively contribute to the phonation and which modes do not con-
tribute. As numerical and experimental results are in good agreement, the model can be
used to provide explanatory insight for acoustic contributions of individual modes. This
analysis provided a clear picture of both the coupled (source-filter interaction) and the de-
coupled (normal phonation) mechanical-acoustic regime. Furthermore, the results showed
strong correlations of the obtained vocal fold motion characteristics with previously found
correlations to other voice parameters like vocal efficiency and the sound pressure level.
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