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Abstract: Osteoporosis, marked by low bone mineral density (BMD) and a high fracture risk, is a
major health issue. Recent progress in medical imaging, especially CT scans, offers new ways of
diagnosing and assessing osteoporosis. This review examines the use of AI analysis of CT scans
to stratify BMD and diagnose osteoporosis. By summarizing the relevant studies, we aimed to
assess the effectiveness, constraints, and potential impact of AI-based osteoporosis classification
(severity) via CT. A systematic search of electronic databases (PubMed, MEDLINE, Web of Science,
ClinicalTrials.gov) was conducted according to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines. A total of 39 articles were retrieved from the databases,
and the key findings were compiled and summarized, including the regions analyzed, the type of CT
imaging, and their efficacy in predicting BMD compared with conventional DXA studies. Important
considerations and limitations are also discussed. The overall reported accuracy, sensitivity, and
specificity of AI in classifying osteoporosis using CT images ranged from 61.8% to 99.4%, 41.0% to
100.0%, and 31.0% to 100.0% respectively, with areas under the curve (AUCs) ranging from 0.582 to
0.994. While additional research is necessary to validate the clinical efficacy and reproducibility of
these AI tools before incorporating them into routine clinical practice, these studies demonstrate the
promising potential of using CT to opportunistically predict and classify osteoporosis without the
need for DEXA.

Keywords: artificial intelligence; machine learning; deep learning; osteoporosis; imaging;
computed tomography

1. Introduction

Osteoporosis is characterized by low bone mineral density (BMD) and microstructural
degradation of the bone tissue [1], rendering bones more brittle and susceptible to fractures.
According to a recent meta-analysis conducted in 2021 by Salari et al. [2], the global
prevalence of osteoporosis in women was 23.1%, while the prevalence of osteoporosis
among men was 11.7%, with the prevalence varying greatly between different countries [3].
The main complication of osteoporosis is fragility fractures, which are frequently linked
to heightened mortality and morbidity [4–6]. Substantial physical, psychological, social,
and economic repercussions due to significant osteoporotic fractures have been extensively
documented in prior studies [7–10]. These include reduced quality of life [11], increased
healthcare costs [12,13], increased mortality risks, limited physical activity, and loss of
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independence [14,15]. As a result, the early diagnosis of osteoporosis is crucial for timely
intervention and the prevention of osteoporotic fractures and their complications [16–18].

Dual-energy X-ray absorptiometry (DEXA) is endorsed by the World Health Organiza-
tion (WHO) as the gold standard for evaluating BMD and diagnosing osteoporosis [19–21].
The BMD values derived from DEXA are converted into T-scores, which are calculated on
the basis of the difference between the individual’s BMD and reference population mean
divided by the standard deviation of the population mean [22]. A T-score of −2.5 or less in-
dicates osteoporosis, and a T-score between −1.0 and −2.5 is defined as osteopenia [23,24].

While DEXA remains the most commonly utilized quantitative radiologic method
for assessing bone mass [25,26] due to its non-invasiveness and cost-efficiency [27–29],
certain limitations must be considered. Firstly, DEXA’s diagnostic capability is mainly
confined to BMD alone [30,31] and suboptimal screening rates have been reported [32,33].
Additionally, it is constrained by its planar technique (two-dimensional measurement)
for assessing and quantifying BMD and predicting fracture risk [34,35]. Moreover, DEXA
measurements are sensitive to degenerative changes, leading to the potential overestimation
of BMD [36–38], and the presence of overlying structures (such as atherosclerosis [39]) or
morphological abnormalities (post-laminectomy, metallic implants, etc. [40–42]) may also
impact BMD measurements.

Dual-energy computed tomography (DECT) is a radiological technique that can be
used for measuring bone mineral density (BMD). The concept of using dual-energy com-
puted tomography (DECT) to evaluate BMD was first studied more than four decades
ago [43]. DECT measures the attenuation of X-rays as they pass through the bone. This
attenuation is affected by the density of the tissue, and by acquiring images at different
energy levels (typically high and low energy levels), DECT can calculate the BMD of the
bone in the region of interest [44,45].

DECT has shown similar sensitivity to the gold standard DEXA for the evaluation of
bone density and the prediction of associated osteoporotic fractures [46–48]. For instance,
Booz et al. [45] reported a DECT sensitivity of up to 96.0% and a specificity of 93.0% in
detecting osteoporosis compared with DEXA. Another study by Gruenewald et al. [49]
found that DECT-derived BMD exhibited a sensitivity of 85.5% and a specificity of 89.2%
in predicting osteoporotic-associated fractures. In addition to its diagnostic accuracy,
DECT offers distinct advantages, including its capability to assess extended dimensional
information [50] and to evaluate local changes in BMD. Notably, DECT excels in accurately
distinguishing between trabecular and cortical bone, providing valuable insights into
the trabecular bone microstructure, such as local parameters like trabecular spacing and
connectivity. These capabilities are crucial for the comprehensive evaluation of bone
health [51,52]. However, DECT has not been widely used to screen for osteoporosis due to
the high radiation dose [53,54], which is a limitation of its unique diagnostic capabilities [55].
Furthermore, it often requires an in-scan calibration phantom [56–58], which makes it
difficult to use it for routine BMD measurements in CT scans acquired for indications other
than BMD measurements [59] or the retrospective measurement of BMD [60,61].

One potential future innovation is to evaluate bone mineral density (BMD) exclusively
through CT scans, eliminating the need for DEXA or DECT scans. This could have significant
clinical implications for several reasons: first, it allows for the simultaneous provision of
both anatomical visualization and quantitative data [62,63]; second, individuals who have
undergone CT scans as part of routine health assessments or other medical indications could
be screened automatically [64–66]; third, a vast CT database could be leveraged to identify
patients that may require referral and treatment [67–69]; and finally, this approach could lead
to decreased expenses [70] and radiation exposure [71–73], as the patient may not need to
undergo further radiological investigations before the diagnosis and treatment of osteoporosis.

BMD values extracted from CT images were initially determined by establishing a pos-
itive correlation between attenuation values or radiodensity (expressed as Hounsfield Units
(HUs)) measured at various locations on CT scans and corresponding BMD values obtained
from DEXA dating back as early as 2013 [74]. Subsequently, many other studies [67,75–78]
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confirmed the feasibility of trabecular HU values for screening osteoporosis on CT. How-
ever, most studies have involved manual or semi-automatic segmentation, which is often
time-consuming due to the required manual input and/or computing power [79] and other
limitations [80–82].

With the recent advent of artificial intelligence (AI) technology, machine learning
and deep learning models have applications in osteoporosis detection and classification.
These applications encompass osteoporosis risk prediction [83–85] and fracture risk as-
sessment [86–89]. Notably, AI has been employed to streamline the complex processing
of CT images and enhance automated segmentation [90–92], which has been utilized for
BMD measurement and classification in multiple studies [93–103]. Radiomics involves the
extraction and analysis of a large number of quantitative features from medical images,
such as CT scans. These features capture intricate details in the images (beyond the human
eye), enabling a more comprehensive understanding of the underlying tissue characteris-
tics. Radiomics and texture analysis with deep learning techniques have also been used to
analyze trabecular bone structure in CT images, providing insights into bone quality and
microstructure that are not attainable through DEXA or visual measurements alone, thereby
improving the accuracy of diagnosing osteoporosis [104,105]. While many studies have
focused on the use of AI for classifying or detecting osteoporosis, they often suffer from
limitations, such as single-center designs, limited patient samples, and a lack of validation
in real clinical settings.

While several studies in the literature have examined the use of AI to classify os-
teoporosis in CT images, these studies exhibit significant variation and heterogeneity. A
literature gap exists because no studies have systematically consolidated and synthesized
these varied research efforts for a comprehensive analysis and summary. Hence, this review
article aims to provide an overview of the available evidence on the effectiveness and value
of AI techniques in diagnosing osteoporosis and classifying BMD using CT imaging. In this
study, our classification of BMD was defined as the severity of osteoporosis, specifically dis-
tinguishing between normal BMD and low BMD (including osteopenia and osteoporosis)
on the basis of the WHO definition derived from the T-score.

2. Materials and Methods
2.1. Literature Search Strategy

A systematic search of the major electronic databases (PubMed, MEDLINE, Web of
Science, and ClinicalTrials.gov) was conducted in concordance with the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines using keywords
and/or medical subject headings (MeSH) for the following key terms: (“Artificial intelli-
gence” OR “AI” OR “deep learning” OR “machine learning” OR “convolutional neural
network*” OR “neural network” OR “radiomics”) AND (“osteoporosis” OR “osteopenia”
OR “osteopaenia” OR (“bone” AND “mineral” AND “density”) OR “BMD”) AND (“DEXA”
OR “absorptiometry”) AND (“CT” OR (“Computed” AND “Tomography”)). Two authors
(W.O. and R.L.) performed independent reviews of the collected references and selected
the appropriate studies for detailed full-text screening. The last date of the reference and
literature search was 14 August 2023. Any potential conflicts were resolved by consensus
or by appeal to a third author (J.T.P.D.H).

2.2. Study Screening and Selection Criteria

No specific limitations were set for the reference and literature search. The primary
inclusion criteria encompassed scientific studies that utilized radiomics techniques, artificial
intelligence (AI), or deep learning to classify osteoporosis in a diverse range of CT studies
and compared their results to those of conventional DXA studies when possible. Articles
excluded from further analysis comprised case reports, editorial correspondence (such as
letters, commentaries, and opinion pieces), and review articles. Publications focusing on
non-imaging radiomics techniques or articles that did not employ AI technology to classify
osteoporosis from CT images were also excluded from the analysis.



Bioengineering 2023, 10, 1364 4 of 26

2.3. Data Extraction and Reporting

All selected research articles were retrieved and compiled into a spreadsheet using
Microsoft Excel Version 16.78.3 (Microsoft Corporation, Washington, DC, USA). Information
gathered from the individual research articles included:

1. Research article details: complete authorship, date of journal or publication, and
journal name;

2. Main clinical use: classify osteoporosis (either normal vs. abnormal BMD or normal
vs. osteopenia vs. osteoporosis);

3. Research study details: type of study, patient or imaging modality, body parts scanned,
and area of bone segmented for analysis (e.g., internal or external data sets);

4. Machine learning techniques used: radiomics, artificial or convolutional neural net-
works, etc.;

5. Performance compared with DEXA: for example, the sensitivity, specificity, accuracy,
correlation coefficients, and AUCs were obtained when possible.

3. Results
3.1. Search Results

The preliminary search of the main electronic medical databases (Figure 1) identified a
total of 87 relevant articles, which were screened using the aforementioned criteria. This
screening led to the initial exclusion of eight publications, and the remaining 79 articles
underwent further full-text analysis to determine inclusion. Upon detailed analysis of the
text, a further 48 publications were removed, as they either did not focus on the classification
of osteoporosis or did not utilize AI methods. An additional eight articles were included
after manually reviewing the bibliography of the selected articles. Overall, this culminated
in a total of 39 articles (Figure 1) for in-depth analysis. The key findings were compiled
and summarized in this review (Table 1). Most studies lacked detailed data to create 2 × 2
contingency tables, and hence a formal meta-analysis could not be performed.

Our search identified that of the 39 studies, 22 (56.4%) focused on unenhanced CT,
whereas the remaining 17 (43.5%) investigated a combination of enhanced and unenhanced
CT studies. Regarding the types of CT studies analyzed, 18 (46.1%) utilized CT abdomen
and/or pelvis scans or related CTs encompassing the lumbar spine. Additionally, six (15.4%)
studies were centered on CT scans of the thorax, including low-dose-screening CT. Two
(5.1%) studies concentrated on CT coronary artery calcium scoring (CTCA), one of which
also incorporated low-dose CT thorax in its analysis. A total of 10 (25.6%) studies were
conducted on spine CTs, including one on the cervical spine and two on the thoracolumbar
spine; the remainder were primarily on the lumbar/lumbosacral spine. The remaining
3/39 (7.7%) studies pertained to CTs of extremities or areas that were not specified. The
majority of studies (21/39, 53.8%) analyzed one or more lumbar vertebrae to classify
osteoporosis, while 6/39 (15.4%) focused on the thoracic vertebrae, 3/39 (7.7%) focused
on the thoracolumbar vertebrae, and 1/39 (2.6%) focused on the cervical vertebrae. The
remaining 4/39 studies (10.2%) assessed other non-axial bones, such as the knees, ribs, and
wrists, while 2/39 (5.1%) analyzed soft tissues/muscles to classify osteoporosis.

The overall accuracy, sensitivity, and specificity of AI in classifying osteoporosis ranged
from 61.8% to 99.4%, 41.0% to 100.0%, and 31.0% to 100.0% respectively, with AUCs ranging
from 0.582 to 0.994. Of note, studies with two-label classification (normal versus abnormal
BMD) achieved relatively higher performance in general compared with studies with three-
label classification (normal vs. osteopenia vs. osteoporosis). Subdividing the analyzed
regions showed that features from the lumbar vertebra appeared to achieve the highest
AUC of 0.994. This is likely because binary classification is inherently simpler for AI models
to handle. The model only needs to decide between two classes, which can result in a more
straightforward decision boundary [106]. Furthermore, it is easier for AI models to identify
and learn discriminative features when distinguishing between normal and abnormal
BMD. In three-label classification, the model must discern finer distinctions, which can
be more challenging and may require a larger, more complex model [107]. It is crucial to
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stress that the choice between binary (two-label) and ternary (three-label) classification
should be guided by the specific clinical or research objectives. While binary classification
may enhance accuracy, ternary classification can provide more intricate clinical insights
and guide nuanced treatment decisions. Finally, it is worth noting that studies that have
focused on the cervical and thoracic vertebrae have demonstrated only a moderate degree
of correlation (r = 0.270 to 0.670) in contrast to studies encompassing the lumber vertebra
(r = 0.582–0.911). The rest of the results for various subgroups are summarized in Table 2.
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3.2. Artificial Intelligence

Artificial intelligence, often abbreviated as AI, involves harnessing the computational
abilities of machines to carry out tasks resembling human activities [108]. This encompasses
utilizing specific inputs to create outcomes that hold potential additional value [109]. Re-
cent advancements in medical imaging alongside the accumulation of significant quantities
of digital images and reports [110,111] have ignited increased worldwide interest in imple-
menting AI in the medical imaging domain [112]. Initially conceived to aid radiologists in
identifying and evaluating potential irregularities, both AI and computer-aided diagnostic
(CAD) systems focus on amplifying efficiency, enhancing detection rates, and minimizing
errors [113,114]. As a result, dedicated initiatives are striving to enhance AI’s diagnostic
capabilities and optimize its efficiency for seamless integration into clinical practice. The
emergence of convolutional neural networks, inspired by the mechanisms of the human
brain, has introduced a range of computational learning models primarily centered around
machine learning (ML) and deep learning (DL) algorithms [115]. These models have played
a pivotal role in propelling the widespread adoption of AI in radiology.
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3.3. Machine Learning, Deep Learning, and Radiomics

Machine learning (ML) is a branch of artificial intelligence (AI) that involves training
models to make predictions on the basis of existing datasets. These models use their learned
knowledge to perform tasks on new, unfamiliar data. To apply ML, data inputs are collected
and labeled by experts or extracted using computational methods. Supervised ML models
learn from data labeled by human experts to make predictions or classify information, while
unsupervised models learn from unlabelled data to uncover patterns and relationships
within datasets. Unsupervised models can be used to represent datasets more efficiently
and understand their inherent structures. This representation can be a preliminary step
before training a supervised model, potentially enhancing its performance.

Deep learning (DL), a subset of ML (Figure 2), mimics the structure of neural networks
in the brain. It employs artificial neural networks with multiple hidden layers to solve com-
plex problems. These hidden layers enable the system to continuously learn and improve
its performance by incorporating new knowledge. Unlike traditional ML, which requires
manual extraction of features from input images, DL methods learn features directly from
input images using multilayer neural networks like convolutional neural networks (CNNs).
This approach allows DL systems to not only map image features to outputs but also learn
the features themselves. Examples of DL outputs include image categories (classification),
object locations (detection), and pixel labels (segmentation). Deep learning has given rise
to the field of radiomics, which entails extracting a multitude of quantitative features from
medical images, including CT scans, to unveil hidden patterns through computational
analysis. In the context of bone health, radiomics employing deep learning techniques has
the potential to identify imaging features related to important pathological and histological
characteristics of bone trabeculae. These features can surpass human diagnostic capabil-
ities and potentially outperform conventional imaging methods. The primary machine
learning methods in use are radiomics-based feature analysis (Figure 3), which involves
manually designed feature extraction integrated into deep learning training datasets [116],
and convolutional neural networks (CNN), which automatically extract valuable image
features to classify data directly from input images [117]. CNNs enable the identification
of diagnostic patterns and features that exceed human capacity and have applications in
osteoporosis diagnosis and classification [118,119].
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deep learning represents a subset that enables the computation of neural networks with multiple
layers. CNN is a subset of deep learning characterized by convolutional layers.
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Table 1. Key characteristics of the selected articles.

Authors Artificial Intelligence
Method

Publication
Year Main Objectives Title of Journal Main Type of CT Areas Sampled Performance

Yasaka K.
et al. [66] CNN 2020 Predict

osteoporosis European Radiology Unenhanced CT of
abdomen L1 vertebra

r = 0.852 (p < 0.001), AUC = 0.965
(internal validation) 0.840 (p < 0.001),

AUC = 0.970 (external validation)

Kang J.W.
et al. [61] ResNet-101v2, CNN 2023 Classify

osteoporosis
Frontiers in
Physiology

Unenhanced CT of
abdomen L1 vertebra r = 0.900

F1 score = 0.875

Uemura K.
et al. [120] Computer-aided system 2023 Classify

osteoporosis
Archives of

Osteoporosis
Unenhanced CT of

abdomen

Axial slice of the L1
vertebra (L1-vBMD)
Axial slices of L1–L4

(CT-vBMD)
Coronal L1–L4

(CT-aBMD)

r = 0.364, AUC = 0.582 (L1-vBMD);
r = 0.456, AUC = 0.657 (CT-vBMD);
r = 0.911, AUC = 0.941 (CT-aBMD)

Savage R.H.
et al. [121]

Wavelet features,
AdaBoost, and local
geometry constraints

2020 Classify
osteoporosis

Journal of Thoracic
Imaging

Unenhanced CT of
thorax Thoracic vertebrae

Moderate correlation, r = 0.55 (p < 0.001)
Significant difference between normal

control patients and osteoporotic group
(p = 0.045)

Pickhardt
P.J. et al.

[101]

CNN (U-Net,
TernausNet) 2022 Classify

osteoporosis Radiology CT of abdomen L1 bone (one to seven
slices)

AUC = 0.860–0.930
Sensitivity: 85.4%–94.0%; Specificity:

94.6%–98.3%.
Accuracy: 89.0%–94.0%

Fang Y. et al.
[95]

CNN (DenseNet-121),
U-Net 2021 Classify

osteoporosis European Radiology CT of abdomen and
CT of spine L1–L4 vertebrae r > 0.980 (p < 0.001)

Cohen’s kappa = 0.868–0.888)

Pan Y. et al.
[122] U-Net 2020 Classify

osteoporosis European Radiology Low-dose CT of
thorax T1–L2 vertebrae

r = 0.964–0.968
Mean errors: 2.2–4.0 mg/cm

AUC = 0.927 (osteoporosis), 0.942 (low
BMD)

Tang C. et
al. [123]

CNN (MS-Net,
BMDC-Net) 2021 Classify

osteoporosis
Osteoporosis
International

CT of abdomen or
lumbar spine L1 vertebra Accuracy: 76.7%

AUC = 0.917
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Table 1. Cont.

Authors Artificial Intelligence
Method

Publication
Year Main Objectives Title of Journal Main Type of CT Areas Sampled Performance

Dzierżak, R.
et al. [93]

Deep CNN (VGG16,
VGG19, MobileNetV2,

Xception, ResNet50, and
InceptionResNetV2

2022 Classify
osteoporosis Sensors CT of lumbosacral

spine L1 vertebra

AUC = 0.883–0.973
Accuracy: 84.0%–95.0%
Sensitivity: 78.0%–96.0%
Specificity: 86.0%–98.0%

Breit H.C.
et al. [124] CNN 2023 Classify

osteoporosis
European Journal of

Radiology
Non-contrast CT of

thorax Thoracic vertebrae

r = 0.51, p < 0.001 (hip BMD); r = 0.34,
p = 0.01 (lumbar spine BMD)

Accuracy: 75.0%, Sensitivity: 93.0%,
Specificity: 61.0%; Significantly better

than clinical reports

Summers
R.M. et al.

[125]

Computer-aided
Software (QCT Pro

software, versions 3.2, 4
or 4.1)

2011 Classify
osteoporosis

Journal of Computer
Assisted

Tomography
CT, colonoscopy L1–L2 vertebrae

r = 0.980 (p < 0.0001)
95% limits of agreement were (−9.79,

8.46) mg/cc

Valentinitsch,
A. et al.

[126]
RF classifier 2019 Classify

osteoporosis
Osteoporosis
International

CT of thoracolumbar
spine

Thoracolumar
vertebrae AUC = 0.71–0.88

Sebro R.
et al. [103]

Naïve Bayes; RF; SVM;
XGBoost 2023 Classify

osteoporosis
Journal of

Neuroradiology CT of cervical spine C1–T1 vertebrae

AUC = 0.622–0.843
Accuracy: 74.6%–99.4%
Sensitivity: 85.0%–100%
Specificity: 56.7%–98.5%

Sebro R.
et al. [127]

(LASSO), Elastic Net,
Ridge regression, and

SVM with RBF
2022 Prediction of

osteoporosis
European Journal of

Radiology CT of thorax
Ribs, thoracic

vertebrae, sternum,
and clavicle

r > 0.4, p < 0.001
AUC = 0.702–0.757

Liu et al.
[128]

LR, SVM with RBF,
ANN, RF, eXtreme

Gradient Boosting and
Stacking

2022 Classify
osteoporosis BMC Bioinformatics

CT images covering
lumbar vertebral

bodies
L1–L4 vertebrae

AUC = 0.818–0.962
Accuracy: 86.6%–96.0%
Sensitivity: 71.6%–96.4%
Specificity: 91.6%–96.0%

Pan J. et al.
[100]

ResNet-101 residual
DCNN classification

model
2023 Classify

osteoporosis Research Square CT of thorax L1–L2 vertebrae, L1
vertebra

AUC = 0.940–0.990
Accuracy: 86.6%–94.7%
Sensitivity: 63.8%–97.6%
Specificity: 83.8%–93.0%
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Table 1. Cont.

Authors Artificial Intelligence
Method

Publication
Year Main Objectives Title of Journal Main Type of CT Areas Sampled Performance

Lim H.K.
et al. [129]

Aquarius iNtuition
v4.4.121, TeraRecon,

Medip, RF
2021 Classify

osteoporosis PloS ONE Unenhanced CT of
abdomen and pelvis Left femur

AUC = 0.959–0.960
Accuracy: 92.7%–92.9%; Sensitivity:

80.0%–86.6%; Specificity: 94.5%–95.8%;

Zhang K.
et al. [130] CNN 2023 Classify

osteoporosis

Computational
Intelligence and

Neuroscience

CT images covering
lumbar vertebral

bodies
L1–L2 vertebra

AUC = 0.965–0.985
Accuracy: 93.3%–97.1%
Sensitivity: 83.6%–96.4%
Specificity: 92.2%–97.6%

Nam K.H.
et al. [131]

MR, LR. Tensor flow and
Python 2019 Classify

osteoporosis

Journal of Korean
Neurosurgical

Society
CT of lumbar spine L1–L3 vertebra

AUC = 0.900
Accuracy: 92.5%
F1 score: 0.954;

Xu Y. et al.
[132] SVM and kNN 2013 Classify

osteoporosis
Microscopy Research

Technique Micro-CT - F1 score: 0.900–0.958
Precision: 91.3%–95.3%

Löffler, M.T.
et al. [98] CNN 2021 Classify

osteoporosis European Radiology CT of lumbar spine L1–L4

AUC = 0.860–0.885
Sensitivity: 41.0%–86.0%
Specificity: 78.0%–98.0%

(superior to DXA for predicting
osteoporosis in patients with vertebral

fractures

Krishnaraj
A. et al.

[133]

Machine learning-based
regression 2019 Classify

osteoporosis
Journal of American
College of Radiology

CT of abdomen and
pelvis L1–L4 vertebrae Accuracy: 82.0%; Sensitivity: 84.4%;

Specificity: 72.7%

Chen Y.C.
et al. [134] CNN (ResNet50), SVM 2023 Classify

osteoporosis European Radiology Low-dose CT of
thorax Thoracic vertebrae

AUC = 0.960–0.980
Accuracy: 85.0%–95.0%
Sensitivity: 85.0%–94.0%
Specificity: 85.0%–92.0%

Tariq A.
et al. [135] CNN (Densenet121) 2023 Classify

osteoporosis Medical Physics
Contrasted/non-
contrasted CT of

abdomen and pelvis
L3 vertebrae AUC = 0.830 (axial), 0.830 (coronal),

0.860 (imaging + demographic factors)
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Table 1. Cont.

Authors Artificial Intelligence
Method

Publication
Year Main Objectives Title of Journal Main Type of CT Areas Sampled Performance

Elmahdy, M.
et al. [94] SVM with RBF 2023 Classify

osteoporosis

Studies in Health
Technology and

Informatics
CT of knee

Distal femur,
proximal tibia and
fibula, and patella

AUC = 0.937
Sensitivity: 83.3%
Specificity: 100.0%

Sollmann N.
et al. [136] CNN (DenseNet) 2022 Classify

osteoporosis
Journal of Bone

Mineral Research
CT of abdomen and

pelvis T6 to L5 vertebrae AUC = 0.815–0.862

Yang J. et al.
[69] CNN 2022 Classify

osteoporosis
Osteoporosis
International CT of thorax Thoracic vertebrae

AUC = 0.831–0.972
Sensitivity: 73.8%–95.6%
Specificity: 73.6%–88.0%

Sebro R.
et al. [137] SVM with RBF 2022 Classify

osteoporosis Diagnostics CT of wrist/forearm Forearm, carpal, and
metacarpal bones

AUC = 0.818 (radius)
Sensitivity: 69.2%
Specificity: 77.1%

r = 0.74–0.85

Yoshida K.
et al. [138] CNN (ResNet50) 2023 Classify

osteoporosis

Journal Computer
Assisted

Tomography

Non-contrasted CT
images covering
lumbar vertebral

bodies

L1–L4 vertebrae

AUC = 0.921–0.969
r = 0.81

Accuracy: 73.0%–94.0%
Sensitivity: 73.0%–100%
Specificity: 73.0%–94.0%

Dai H. et al.
[139] LASSO regression model 2023 Classify

osteoporosis Acta Radiological CT of abdomen Lumbar vertebrae r = 0.932

Huang C.B.
et al. [96]

LASSO, GNB, RF, LR,
SVM, GBM, XGBoost 2022 Classify

osteoporosis BMC Geriatrics CT of abdomen Psoas at L3 level
AUC = 0.860

Accuracy: 81.0%
Sensitivity: 70.0%, Specificity 92.0%

Naghavi M.
et al. [140] CNN (Unet) 2023 Classify

osteoporosis

Journal of the
American College of

Radiology

CT, coronary artery
calcium scoring Thoracic vertebrae

r = 0.84
AutoBMD averaged 15 s per report vs.

5.5 min for manual measurements
(p < 0.0001).

Naghavi M.
et al. [99] CNN (Unet) 2023 Classify

osteoporosis
European Journal of

Radiology Open

Low-dose CT of
thorax, CT, coronary

artery calcium
scoring

Thoracic vertebrae R2 = 0.95 (p < 0.0001)
Similar results in both modalities
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Table 1. Cont.

Authors Artificial Intelligence
Method

Publication
Year Main Objectives Title of Journal Main Type of CT Areas Sampled Performance

Küçükçiloğlu
Y. et al. [97]

CNN (InceptionV,
EfficientNetV2S,

ResNet50
2023 Classify

osteoporosis

Diagnostic
Interventional

Radiology

CT of lumbar spine
MRI of lumbar spine Lumbar vertebrae

AUC = 0.942–0.988(CT)
Accuracy: 98.8% (CT)
Sensitivity: 98.5% (CT)
Specificity: 99.2% (CT)

AUC = 0.980 (CT + MRI)
Accuracy: 96.8% (CT + MRI)
Sensitivity: 96.7% (CT + MRI)
Specificity: 96.8% (CT + MRI)

Wang J.
et al. [104] PyRadiomics, LASSO 2023 Classify

osteoporosis

BMC
Musculoskeletal

Disorder
CT of lumbar spine L1 vertebra

AUC = 0.902–0.988
Accuracy: 86.0%–94.0%
Sensitivity: 85.7%–87.5%
Specificity: 80.0%–97.2%

Jiang, Y.W.
et al. [105] mRMR, LASSO 2022 Detect

osteoporosis European Radiology CT of lumbar spine L1 vertebra

AUC = 0.762–0.969
Accuracy: 75.9%–87.1%
Sensitivity: 59.5%–73.0%
Specificity: 83.5%–93.7%

Xue Z. et al.
[141]

PyRadiomics, SVM, RF,
KNN 2022 Detect

osteoporosis

BMC
Musculoskeletal

Disorder
CT of lumbar spine L1–L4 vertebrae

AUC = 0.994 (normal vs. osteoporosis)
AUC = 0.866 (osteopenia vs.

osteoporosis)
AUC = 0.940 (normal vs. osteopenia)

Qiu H. et al.
[142] mRMR, LASSO 2022 Detect

osteoporosis
Frontiers in

Endocrinology
CT covering lumbar

vertebra bodies

Paravertebral
muscles at the level
of the L1 vertebra

AUC = 0.900 (radiomics); 0.950
(radiomics + clinical features)

Accuracy: 81.4%–88.1%
Sensitivity: 85.7%–88.9%
Specificity: 77.4%–87.5%

Mookiah
M.R.K. et al.

[143]
SVM 2018 Classify

osteoporosis
Osteoporosis
International

CT images covering
thoracolumbar spine Thoracolumbar spine

Accuracy: 83.0%
Sensitivity: 93.3%
Specificity: 79.3%

r = 0.91–0.96

Area under the curve (AUC), random forest (RF), support vector machine (SVM), artificial neural network (ANN), convolutional neural network (CNN), radial basis function (RBF),
logistic regression (LR), multiple regression (MR), k-nearest neighbor (kNN), least absolute shrinkage and selection operator (LASSO), Gaussian naïve Bayes (GNB), gradient boosting
machine (GBM), minimum redundancy–maximum relevance (mRMR).
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Table 2. Summary of Results.

Areas Sampled No. of
Studies

Area under the
Curve (AUC) Accuracy Sensitivity Specificity r

Cervical vertebrae 1 0.622–0.843 74.6%–99.4% 85.0%–100% 56.7%–98.5% 0.270–0.670

Thoracic vertebrae 6 0.831–0.980 85.0%–95.0% 73.8%–95.6% 73.6%–92.0% 0.34 0–0.510

Thoracolumbar vertebrae 4 0.710–0.952 83.0% 93.0% 79.3% 0.910–0.968

Lumbar vertebrae 21 0.582–0.994 73.0%–98.8% 41.0%–100% 73.0%–99.2% 0.582–0.911

Other regions 7 0.630–0.960 61.8%–92.9% 61.8%–95.0% 31.0%–100% 0.400–0.600

Overall 39 0.582–0.994 61.8%–99.4% 41.0%–100% 31.0%–100% 0.270–0.968
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analysis, and modeling.

3.4. General Workflow of BMD Classification in CT

The main methods for extracting valuable bone mineral density (BMD) information
from CT images involve the conversion of Hounsfield Units (HUs) measured within the
bones [97–99]. The HU is a relative quantitative measure of radiodensity used in CT
scans to quantify the density of specific tissues or substances within the body. It provides
information about the attenuation of X-rays as they pass through the tissue, with calibrated
values defined by the densities of air and water as reference points.

After deriving HU values from bones, BMD values can be computed using two
main approaches:

1. Phantom-Based Calibration: This method involves placing phantoms containing
known densities (such as dipotassium phosphate or calcium hydroxyapatite density
rods) beneath the subject during scan acquisition [62,101]. These phantoms are used to
calibrate measured HU values to BMD through linear equations. One challenge is that
phantom placement is not routinely performed in clinical CT scans [102]. However,
this challenge can be overcome by scanning the density phantom asynchronously
using the same scanner and scan protocol but without the patient present.

2. Phantomless Internal Calibration: In this approach, the HU peak values of internal
reference regions, such as skeletal muscle and adipose tissue, are used. The reference
BMD density values for these internal references are determined using phantom-
calibrated scans from a cohort of patients [103]. These values are then extrapolated to
create a standard calibration curve for converting the trabecular HU to BMD [104,105]
through scan-specific equations.

Another reported method for determining BMD from CT images involves applying
HU thresholds for osteoporosis screening [48,61,106–108]. However, this method lacks
reliability due to HU sensitivity to X-ray energy, beam hardening artifacts, positioning, and
hardware-related variations, including different scan models and protocols [109–111].
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To enhance BMD prediction and classification, artificial intelligence (AI) and deep
learning methods are increasingly employed. These methods extract imaging data, includ-
ing CT attenuation (HU) of bones and texture features, to create models [112,113]. The
standard process for developing an AI model involves image acquisition and data selection,
segmentation, the extraction of image features within specified regions of interest (ROIs),
exploratory analysis with feature selection, and building the model [114,115]. The models
are validated using test sets, ideally comprising both internal and external data, to assess
their performance and generalizability [116]. The two primary machine learning methods
used are:

1. Feature-Based Imaging Feature Analysis: This approach involves manually extracting
various features and incorporating them into a training set for AI-based imaging
classification [117].

2. Deep Learning-Based Analysis (e.g., CNNs): CNNs employ deep learning to auto-
matically extract valuable imaging features by learning patterns directly from input
images [118]. This enables the detection and processing of distinct diagnostic patterns
and imaging features that go beyond what a human reader can accomplish [120],
potentially improving BMD classification.

4. Discussion
4.1. Advantages and Efficacy

CT examinations performed for other indications present a unique opportunity for
incidental osteoporosis screening with no additional cost, time penalty, or radiation expo-
sure for patients [74,144,145]. Many studies have already shown that information from a
single L1 vertebra body on CT correlates well not only with T-scores from DEXA [74] but
also with the risk of future osteoporotic fractures [146–148]. The wealth of data obtained
from this straightforward evaluation of trabecular attenuation values in CT scans can even
compete with the predictive capabilities offered by the more cumbersome FRAX (fracture
risk assessment tool) method [149,150]. The FRAX method is a widely used clinical tool that
estimates the 10-year probability of fractures on the basis of various clinical risk factors and
bone mineral density measurements. Despite its prevalence, the simplicity and accuracy of
trabecular attenuation values from CT scans present a compelling alternative for evaluating
bone health.

The utilization of CT images for osteoporosis prediction and classification has been
enabled by recent advancements in AI and deep learning techniques. Deep learning
methods like CNNs enhance the accuracy of osteoporosis diagnosis by constructing multi-
hidden-layer models and leveraging extensive training data sets to identify, extract, and
learn valuable features. These methods provide unique insights into bone quality and
microstructure that cannot be attained solely through DEXA scans or visual assessment,
ultimately elevating the accuracy of osteoporosis prediction and classification. Yasaka
et. al. [66] revealed that a BMD model using CNN on CT images was slightly superior
(AUC = 0.965–0.970) to past estimations of BMD using CT attenuation (AUC = 0.829–0.953)
alone (p = 0.013). Their BMD model also showed a higher positive correlation to DEXA-
based BMD estimation (r = 0.852 vs. r = 0.425 for CT attenuation alone, p < 0.001).

A crucial facet of AI technology lies in its proficiency for automated segmenta-
tion [151–153], which not only minimizes processing time but also improves the preci-
sion of region of interest (ROI) placement. This is especially advantageous in atypical
cases in which manual segmentation is both time-consuming and challenging, leading to
an enhancement in sensitivity when classifying osteoporosis in such complex scenarios.
The deep learning-based BMD tool developed by Pickhardt et al. [84] demonstrated a
significantly higher success rate in accurately placing and sizing regions of interest (ROIs)
compared with an older automated feature-based algorithm (99.3% vs. 89.4%, p < 0.001).
This difference was particularly evident among patients with suboptimal positioning, de-
formities like scoliosis, metallic hardware, or other structural variations that can impact
BMD measurements when using DEXA.
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Radiomics is a widely applied technique in clinical oncology for tasks such as cancer
detection and diagnosis, forecasting outcomes and prognosis, and predicting post-treatment
response [154–156]. Recently, several studies have emerged in which textural characteristics
extracted from X-rays, MRI scans, and DEXA scans have been applied to detect, diagnose,
and classify osteoporosis and other metabolic bone disorders [141–144]. However, the
diagnostic accuracy for osteoporosis on these modalities remains inadequate, with reported
values for the area under the curve (AUC) in osteoporosis classification typically hovering
around 0.8. These limitations may be attributed to the choice of the region of interest (ROI),
which often lacks a comprehensive 3D reconstruction of the entire vertebral body. As a
result, this omission potentially results in the exclusion of pertinent information, thereby
impacting the accuracy of the predictive model.

CT has the advantage of 3D evaluation of bone mineralization and allows for vol-
umetric analysis of the entire vertebral body rather than the assessment of just a small
sample of the vertebral body trabeculae. Volumetric measurement of BMD is known to
be more sensitive and precise than DEXA for detecting bone mineral loss, as it avoids
the superimposition of cortical bone and other soft tissues [157]. The model created by
Xue et al. [141] achieved a high AUC of 0.994 in differentiating normal and osteoporotic
bones using radiomics features extracted from volumetric analysis of the lumbar spine on
CT images.

Measuring CT attenuation or the Hounsfield Units (HUs) of vertebral bodies has
been extensively explored as a method for osteoporosis detection, given that it is an easily
accessible tool on most PACSs [158] with the assistance of phantom and phantomless cali-
bration. However, this approach has inherent limitations. Firstly, the calibration equation
is susceptible to variations in scan protocols, phantom positioning, and, in the case of
phantomless calibration, the patient cohort used [56,159]. As such, it cannot be applied
retrospectively, and it may not be reproducible in other cohorts or institutions. By contrast,
machine learning models incorporate the analysis of imaging features beyond CT attenua-
tion alone and may even surpass conventional HU measurements alone. Jiang et al. [88]
demonstrated the effectiveness of a CT-based radiomics signature generated through 3D
feature extraction from the lumbar spine. This approach outperformed HU measurements
alone, achieving an AUC of 0.960 (p < 0.05) and offering a higher overall net benefit, as
determined by decision curve analysis.

AI facilitates the seamless integration of radiomics with clinical information to cre-
ate a robust model for classifying BMD on the basis of CT images. Clinical data and
demographic traits [160,161] have been employed to identify individuals with osteoporosis
or osteoporotic fractures, playing a pivotal role in the development of various tools for
osteoporosis assessment [162]. The inclusion of clinical characteristics (such as age, sex,
and risk factors as per the National Osteoporosis Foundation Guidelines [145]) in BMD
assessment using DEXA has previously shown promising results in predicting osteoporosis,
as demonstrated by Wang et al. [104]. Their radiomics clinical model achieved an AUC of
0.988, compared with an AUC of 0.902 with radiomics alone (although this difference was
not statistically significant, p = 0.643). Notably, a radiomics model that incorporates both
clinical and CT imaging data has the potential to match or even surpass the performance of
DEXA alone, which primarily focuses on bone density analysis. A study by Liu et al. [128]
demonstrated that their logistic regression model including clinical and CT imaging data
achieved superior performance with an AUC of 0.962 compared with using either clinical
data alone (AUC = 0.819–0.828) or CT image features alone (AUC = 0.876–0.953). These
findings emphasize the promise of AI-driven models that leverage both radiomics and
clinical data for improved osteoporosis classification.

The primary objective of opportunistic osteoporosis screening via CT images is to
leverage CT scans conducted for unrelated purposes to diagnose and classify osteoporosis.
To date, no studies have compared the effectiveness of AI-assisted screening using CT scans
for other indications against those specifically conducted for osteoporosis diagnostics, such
as quantitative CT. However, we hypothesize that the latter methods may offer more accu-



Bioengineering 2023, 10, 1364 15 of 26

rate and detailed information, given their adherence to strict acquisition protocols [163,164].
Further studies are needed to evaluate this aspect, an important step before determining
the viability of opportunistic osteoporosis screening using CT scans from diverse medical
contexts. Later, this paper discusses various technical considerations for employing CT im-
ages from other indications in osteoporosis diagnosis and classification, providing valuable
insights for future studies and model development.

4.1.1. Technical Considerations: Labeling and Segmentation

An important aspect of automated segmentation lies in the precise labeling of bones
and vertebral levels [163]. In the majority of CT scans of the chest or abdomen, the entire
spine is not fully captured, and the vertebra of interest may be at the edge of the field of
view, resulting in partial inclusion. Consequently, the model’s capability should not rely on
the specific number or position of the vertebrae within the scan. Instead, it should consider
alternative features, such as rib count [150], for identification and segmentation. Accurate
labeling of vertebral levels is important as it has been demonstrated that BMD can decrease
from the thoracic to the lumbar spine [164,165]. Furthermore, the task of correct vertebral
labeling can be further complicated by the presence of transitional vertebrae [32,153].
Developing a robust AI model that includes such complex cases within its training set may
offer a potential solution to this challenge.

4.1.2. Technical Considerations: Contrast versus Non-Contrast

The majority of clinical CT scans employ contrast agents to examine structures such
as blood vessels, soft tissues, and other internal body organs for various medical condi-
tions. However, the use of contrast alters the way tissues absorb X-rays, resulting in an
approximate 8–10% increase in the CT attenuation of trabecular bone [154] compared with
unenhanced scans [155,156]. Notably, the impact of contrast on bone trabeculation varies
depending on the region of interest sampled, primarily due to differences in blood supply
and vasculature. Bauer et al. [166] demonstrated that contrast enhancement increased
synchronous phantom-derived BMD values by approximately 31% in the lumbar spine
and 2% in the proximal femur compared with unenhanced CT scans.

Several studies have explored the use of internal calibration to address differences
between contrasted and non-contrast studies, but these efforts have encountered limited
success [158,159]. Key challenges have been identified, including the heterogeneity in mar-
row enhancement caused by multiple factors, such as the time elapsed between contrast
administration and CT scan acquisition, heterogeneity in marrow enhancement due to dif-
ferences in bone mineral density, and other contributing factors [160]. With the emergence
of AI and machine learning, models can now be trained to incorporate both enhanced and
unenhanced CT scans, enabling them to adapt their prediction algorithms. This adaptation
may involve adjusting CT attenuation thresholds for patients with contrast-enhanced CT
studies [112] or even identifying the contrast phase to correct for variations [73,161]. This
approach could overcome the need for a one-size-fits-all internal calibration, making it
applicable to a wider range of datasets.

4.1.3. Technical Considerations: Areas Sampled

The location and types of bones selected for sampling are recognized to give varying
BMD results, a phenomenon also observed in DEXA studies [167]. In our study, we found
that investigations focusing on the thoracolumbar or lumbar spine (Table 2) generally
exhibited stronger positive correlations, reaching up to r = 0.968 and r = 0.911, respectively,
in comparison with examinations of other anatomical regions (such as cervical vertebrae,
with r = 0.670; thoracic vertebrae, with r = 0.510; and other body parts, with r = 0.600)
in relation to BMD results acquired via DEXA. This trend is likely due to the proximity
of the thoracolumbar and lumbar vertebrae to the areas typically sampled by DEXA
(usually the L1–L4 vertebrae) for BMD classification and osteoporosis assessment. Even
though variations in BMD exist across different bones, meaningful comparisons remain
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feasible between various skeletal sites due to the strong correlations established between
them [163–166].

Evaluating non-spinal skeletal sites on CT for osteoporosis represents a valuable clin-
ical approach to assessing bone health beyond traditional spine assessment. Analyzing
peripheral sites, such as the hip or wrist, could provide clinicians with a comprehensive
understanding of a patient’s overall skeletal integrity [168,169]. Furthermore, non-spinal
skeletal sites may be subjected to fewer degenerative changes [170], enhancing their predic-
tive value for BMD and future fracture risk. The sites evaluated in the literature include the
hip, distal femur [129], tibial, fibula [94], distal radius, hand bones [137], ribs, sternum, and
clavicle [127]. This broader assessment can be particularly useful in cases in which spine
imaging is not performed or when it will not provide a complete picture of the patient’s
bone health, e.g., vertebral degeneration, fractures, or instrumentation precludes accurate
assessment. Additionally, scanning these sites exposes essential organs to less radiation.

Detailed information about localized bone health at these peripheral sites can prove
important in guiding treatment decisions. For instance, Gruenewald et al. [34] demon-
strated the opportunistic evaluation of BMD during planning CT scans for distal radius
fracture fixation. This approach helped predict outcomes and the need for surgical bone
substitutes during fixation, especially for patients with a mean volumetric BMD lower than
79.6 mg/cm3 who required surgical bone substitutes during fixation, as well as patients
with a mean volumetric BMD lower than 71.1 mg/cm3 who developed bone non-union
(AUC = 0.710–0.910). This promising approach may extend to other common fracture
sites such as the femoral neck, helping predict the need for surgical treatment and guiding
interventions to enhance patient outcomes.

Interestingly, two studies by Huang CB et al. [79] and Qiu H. et al. [127] adopted a
unique approach by sampling muscles rather than the bony skeleton to predict and classify
osteoporosis. This strategy capitalizes on the established link between sarcopenia and
osteoporosis [167–169]. Prior studies have shown that individuals with both sarcopenia
and low BMD have an increased risk of insufficiency fractures [129,170]. The radiomics
model developed by Huang CB et al., which employed gradient boosting methods (GBMs),
achieved an AUC of up to 0.860 and an accuracy of 81.0% on validation sets [79]. This
method of classifying osteoporosis is especially useful in cases in which direct sampling of
the vertebral body may not provide an accurate representation of bone density, for example,
in cases of severe spinal spondylosis [171].

The accuracy of a machine learning model utilizing CT attenuation values from multi-
ple bones in conjunction with clinical and demographic variables exceeded that of models
relying on a single bone. Uemura K. et al. [120] demonstrated that their model, when lim-
ited to sampling just the L1 vertebral region, achieved an AUC of 0.582, significantly lower
than when they expanded their sampling to include the L1–L4 vertebrae (AUC = 0.941).
Similarly, Sebro R et al. [137] showed that using data from multiple bones in the wrist
yielded superior accuracy in contrast to relying on CT attenuation values from a single
bone. These observations suggest that future comparative studies should be performed
across various skeletal areas to determine the optimal region(s) and the extent of sampling
for enhanced accuracy.

4.2. Other Potential Applications: Incorporating Molecular and Genetic Biomarkers

Recent advances in molecular diagnostics have shown remarkable potential in the
realm of bone mineral density (BMD) and osteoporosis diagnosis [172,173]. In particular,
testing for bone turnover markers (BTMs) detects peptides produced during bone matrix
formation and degradation [174,175]. These are substances found in the blood and urine,
providing information about the rate at which bone tissue is broken down (resorption)
and formed (formation). Notably, BTMs such as PINP (N-terminal propeptide of type I
procollagen) and CTX (C-telopeptide of type I collagen) [176] can offer early detection of
bone loss before it becomes severe, which is particularly valuable in identifying individ-
uals who may benefit from preventive measures and early intervention. This is possible
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because BTMs reflect the dynamic process of bone remodeling, thereby providing real-time
information about bone health before changes can be detected by conventional DEXA
scans [177,178]. However, these molecular tests and genetic analyses can be costly and
may require specialized laboratories [179,180]. Furthermore, they are subject to significant
pre-analytical and analytical variability, with a lack of standardization for BTM assays [181].

AI has the potential to assist in the molecular diagnosis and genetic analysis of osteo-
porosis when applied to CT scans. While relatively new in the field of bone health, the use of
AI to analyze imaging features to determine genomic signatures and advanced biomarkers
has been extensively studied in the realm of oncology, known as radiogenomics [182,183].
For instance, Ren et al. [184] and Fan et al. [185] were able to predict EGFR mutation status
using radiomics analysis on vertebral metastases from lung cancer, eliminating the need
for actual testing. Xu R. et al. [186] were able to develop a radiomics model to predict
molecular biomarkers such as estrogen receptors (ERs), progesterone receptors (PRs), and
human epidermal growth factor receptor 2 (HER2) status using ultrasound images of the
breast, which otherwise can only be obtained by biopsy or surgery. Similarly, AI models
could be trained to predict molecular markers (such as BTMs) and genetic markers from
CT images without the need for formal testing. The combination of AI with CT diagnostic
methods and molecular-level assessments has the potential to enhance our understanding
of osteoporosis, improve early detection, enable personalized treatment strategies, and
ultimately reduce the burden of this disease on individuals and healthcare systems.

4.3. Challenges in Implementation

Despite achieving numerous promising outcomes, the integration of various AI meth-
ods for CT screening of osteoporosis into clinical practice faces several challenges that need
addressing. Firstly, AI development requires a substantial volume of medical imaging data,
raising concerns about data ownership, usage for research, informed consent, and patient
confidentiality, often contingent on local legal frameworks [187]. In addition, the training
and validation of medical image algorithms involve a time-intensive and costly process
of labeling numerous parameters, typically performed by radiologists [188]. Relying on
smaller datasets from a single institution can yield unreliable results when applying the
AI model to a different population, posing challenges related to generalizability and re-
producibility [189,190]. To mitigate these issues, external validation and the use of large
multicentre databases as benchmarks are necessary to enhance AI model performance
before clinical implementation [191–193]. However, coordinating such extensive projects
can be challenging.

Additionally, the seamless integration of AI models into the clinical workflow and
interface with existing radiology information systems (RISs) and picture archiving and
communication systems (PACS) is crucial [194]. This integration can be problematic,
especially due to variations in IT environments across different institutions [195] and the
absence of standardized protocols for data sharing between digital systems [196].

5. Conclusions

This systematic review highlights the growing body of evidence that underscores
the promise of harnessing artificial intelligence in tandem with CT scans for osteoporosis
screening and classification. The synergy between advanced imaging technologies and
AI algorithms presents an opportunity to revolutionize osteoporosis diagnosis and risk
assessment. Our study highlights various key considerations for the use of CT imaging
as an opportunistic screening tool for osteoporosis, facilitated by AI assistance. These
insights may be helpful for forthcoming research, spanning model development through to
clinical integration.

Most of the research conducted in this field has consisted of preliminary investigations,
retrospective analyses, or studies conducted at single centers, often with small sample
sizes. Consequently, the models developed in these studies have limited applicability,
and when applied to external datasets, they often yield variable results due to significant
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heterogeneity. This variability hampers the ability to reproduce results consistently and
hinders the development of AI models suitable for clinical implementation. To address
this issue, additional research, particularly randomized controlled trials or large-scale
multi-center studies, is essential to validate these applications and pave the way for their
seamless integration into standard clinical practice.

This study also discussed the significance of technical considerations when analyzing
CT images for opportunistic osteoporosis diagnosis in non-osteoporosis contexts, offering
valuable insights for future model development. Furthermore, the incorporation of clinical
characteristics and radiomics features in AI-based osteoporosis diagnosis may outperform
conventional methods across diverse clinical settings. While this shows promise, further
research should address clinical and implementation aspects before clinical translation
is feasible.

Finally, our article offers a comprehensive review of the available evidence regarding
the use of CT images for classifying osteoporosis. However, it is important to acknowledge
the inherent limitations of a scoping review, such as the absence of detailed data extraction,
the omission of statistical analysis, and the lack of a formal quality assessment for the
included studies, which may have introduced subjectivity and potential bias into our
findings. Nevertheless, our review article should serve as a valuable resource for future
research projects in this field.
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