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Abstract: Otitis media with effusion (OME), primarily seen in children aged 2 years and younger,
is characterized by the presence of fluid in the middle ear, often resulting in hearing loss and aural
fullness. While deep learning networks have been explored to aid OME diagnosis, prior work
did not often specify if pediatric images were used for training, causing uncertainties about their
clinical relevance, especially due to important distinctions between the tympanic membranes of
small children and adults. We trained cross-validated ResNet50, DenseNet201, InceptionV3, and
InceptionResNetV2 models on 1150 pediatric tympanic membrane images from otoendoscopes to
classify OME. When assessed using a separate dataset of 100 pediatric tympanic membrane images,
the models achieved mean accuracies of 92.9% (ResNet50), 97.2% (DenseNet201), 96.0% (InceptionV3),
and 94.8% (InceptionResNetV2), compared to the seven otolaryngologists that achieved accuracies
between 84.0% and 69.0%. The results showed that even the worst-performing model trained on fold
3 of InceptionResNetV2 with an accuracy of 88.0% exceeded the accuracy of the highest-performing
otolaryngologist at 84.0%. Our findings suggest that these specifically trained deep learning models
can potentially enhance the clinical diagnosis of OME using pediatric otoendoscopic tympanic
membrane images.

Keywords: otitis media with effusion; otoendoscope; tympanic membrane; pediatric; artificial
intelligence; deep learning; ResNet; DenseNet; Inception; InceptionResNet

1. Introduction

Otitis media with effusion (OME), also referred to as middle ear effusion (MEE), is
a condition involving a build-up of fluid in the middle ear, usually stemming from an
infection or inflammation disrupting the eustachian tube [1–3]. OME occurs most often
in children following an upper respiratory infection or an ear infection, mainly due to
shorter, undeveloped eustachian tubes being prone to blockages from bacterial infection or
inflammation from recovery and irritants, such as allergens or smoke [4–6]. Symptoms of
OME are usually painless, with reports of minor hearing loss and a feeling of fullness [3].
As such, there is difficulty in trying to diagnose OME with minor symptoms, and it can even
go undiagnosed due to a lack of urgency in treating a painless condition [7]. While there
is little risk of severe ear damage from untreated OME, particularly due to most children
recovering from complications on their own, conductive hearing loss from persistent OME
can risk affecting the child’s development of verbal communication and behavior even
after OME resolves [8–10].
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Traditionally, the diagnosis of OME involved the visual examination of the eardrum
using otoscopes with illuminating magnifying lenses, providing a clear view of the ear canal
for identifying fluid in the middle ear—a key diagnostic criterion of OME [11]. Additionally,
otoscopes were often equipped with pneumatic bulbs that deliver a puff of air onto the
tympanic membrane to assess for reduced mobility, a common characteristic of OME.
However, the accurate diagnosis of OME using an otoscope can be challenging due to a
lack of experience or training to accurately determine the features of OME, coupled with
the uncooperative nature of the young children being diagnosed [12]. In an attempt to
overcome these difficulties, modern otoendoscopes that can take clear digital images with
a wide field of view were developed to provide access to real-time and recorded images
of the tympanic membrane, even in young patients with narrow external auditory canals.
Nonetheless, the diagnostic accuracies of otoendoscopes were still inconsistent, especially
in inexperienced clinicians, due to differences in training and interpretation skills [13–15].

To alleviate the problems of subjective OME diagnosis, previous studies have ex-
plored the use of deep learning algorithms for classifying between healthy and OME using
images of the tympanic membrane. A meta-review study showed that various studies
were able to use a variety of neural networks, such as InceptionV3 and ResNet, to train
on multiple otoendoscopic images for classification, reporting accuracies ranging from
76% to 97% [16–21]. However, deep learning OME diagnosis studies commonly utilized
proprietary tympanic membrane images with varying acquisition protocols (otoscope,
otoendoscope), preprocessing protocols (cropping, histogram equalization, augmentation),
and evaluation metrics. Therefore, the application of external models to clinical settings
can be challenging due to the potential use of images with different resolutions, angles,
and formats in the training process than the images obtained with a clinic’s own imaging
techniques and equipment, which can lead to unexpected results when classifying [16]. Ad-
ditional validation studies using proprietary datasets obtained with personalized protocols
may be beneficial for institutions considering their use in clinical practice.

Most importantly, studies failed to differentiate between pediatric and adult patients,
and they often lacked a direct comparison of deep learning model performances with
those of experts and clinicians, making it difficult to evaluate the clinical potential of
each trained model, especially when applied to pediatric patients [16]. Clarifying the use
of pediatric data is particularly important due to major differences in the orientation of
the tympanic membranes of small children and adults. The dimensions of the ear canal
expand from 4.5 × 7.7 mm in children aged 5–8 to 5.4 × 8.6 mm in adults aged over
18, and the membrane slopes from the posterosuperior to the anteroinferior direction,
allowing for a larger size compared to the ear canal [22,23]. As children mature, the growth
of the skull base shifts the tympanic membrane toward a more vertical orientation [24].
Consequently, imaging acquired at a less perpendicular angle to the tympanic membrane’s
plane using an otoendoscope in children could lead to apparent dimensional differences
when compared with adults. As such, it is vital that the classification models are trained on
pediatric tympanic membrane images, given the substantial anatomical differences from
adult images and considering that the primary application of the model is the diagnosis of
otitis media with effusion predominantly in pediatric patients.

For this study, we prepared 1150 pediatric tympanic membrane otoendoscopic images
differentiated by control and OME, then we utilized various deep learning models, such as
ResNet50, DenseNet201, InceptionV3, and InceptionResNetV2, to train a neural network to
distinguish critical features of OME in asymptomatic pediatric patients for the differential
diagnosis of OME. A dataset of 100 additional images separate from the 1150 images was set
aside to compare the performance of the trained deep learning model with the diagnostic
performance of otolaryngologists. We aimed to validate the diagnostic performance of a
deep learning model trained on proprietary tympanic membrane images then evaluate the
model’s potential for aiding the clinical diagnosis of OME.
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2. Materials and Methods
2.1. Dataset

The institutional review boards of the Clinical Research Institute at our medical center
approved this study (IRB No. B-1905/540-114) and waived the requirements for informed
consent, considering the retrospective study design and the use of anonymized patient
data. Data were collected from an electronic medical records database and analyzed
anonymously. All methods employed in this study were in accordance with the approved
guidelines and the Declaration of Helsinki.

A total of 1250 tympanic membrane images were collected from otoendoscopic ex-
aminations of pediatric patients under 15 years of age, following the Korea-based clinical
practice guideline recommendations for pediatric OME [25]. These images were obtained
using a 0◦ straight telescope (diameter of 3 mm, Karl Storz, Tullingen, Germany) during
examinations for suspected OME or other clinical conditions with a normal tympanic
membrane, such as sudden sensorineural hearing loss. The inclusion of such conditions
was to enrich our dataset for the model’s training and make it more representative of the
diverse clinical cases that might be encountered. However, this condition was carefully
selected, given that it is less common in this age group compared to adults.

Each image was thoroughly examined before inclusion. Low-quality blurry images
from motion artifacts, out-of-focus images, and images with more than half of the tympanic
membrane obscured by cerumen were excluded to ensure that sufficient quality images
were used for training. For the images of normal tympanic membranes, diagnoses were
confirmed by experienced otolaryngologists to ensure the accuracy of the “normal” la-
bel. For the OME group, only images from ears with confirmed middle ear effusion by
myringotomy were included, serving as a reference standard for the diagnosis of OME.
This rigorous selection process aimed to ensure the reliability and validity of our training
data, which is essential for the effective training of our deep learning model.

The training/validation/testing datasets contained 592 OME and 558 normal tympanic
membrane images. Of these 1150 images, 920 images were used for the training/validation
datasets, consisting of 474 OME images and 446 normal images, which were split into a
ratio of 8:2 for training (380 OME, 357 normal) and validation (94 OME, 89 normal). A
total of 230 images were used for the test dataset, which consisted of 118 OME images and
112 normal images. The 920 training images and 230 test images were randomly selected
for each cross-validation fold. An additional 50 OME and 50 normal images separate from
the training/validation dataset were set aside to compare deep learning model diagnostic
performances with those of 7 otolaryngologists. An example of data allocation is shown in
Figure 1.
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2.2. Development Environment

The system for deep learning consisted of 4 NVIDIA TITAN Xp (NVIDIA, Santa
Clara, CA, USA) graphics processing units (GPUs), a Xeon E5-1650 v4 (Intel, Santa Clara,
CA, USA) central processing unit (CPU), and 128 GB of random access memory (RAM).
Deep learning was conducted using Python 2.7.6 and the Keras 2.1.5 framework with a
TensorFlow backend in the Ubuntu 14.04 operating system.

2.3. Preprocessing

Unprocessed tympanic images taken by otoendoscopes were comprised of the tym-
panic membrane cropped in a circular shape with a black background. Due to the inconsis-
tent nature in which the images were captured, tympanic images were often uncentered and
varied in size. To preprocess each tympanic image, the minimum and maximum non-zero
x and y values of each circular tympanic image were obtained to crop out the unnecessary
background, maximizing the view of the tympanic membrane while normalizing each im-
age into a square shape. The cropped images were resized to a resolution of 256 × 256 then
histogram-equalized using contrast-limited adaptive histogram equalization (CLAHE). In
order to improve the number of training data used for this study, the preprocessed training
images were augmented for 20 batches, with a rotation range of 5, width and height shift
range of 0.05, shear range of 0.05, and zoom range of 0.05. A total of 17,468 images were
generated for training data.

2.4. Deep Learning

The deep learning classification neural network architectures used to train on tympanic
membrane images for diagnosis were ResNet50 [26], DenseNet201 [27], InceptionV3 [28],
and InceptionResNetV2 [29]. The traditional convolutional neural network that the models
are based on learns to map input data (like images) to the desired output (like class labels)
through a series of convolutional layers [30]. Each layer learns a part of this mapping
by adjusting its weights during training through a process known as backpropagation.
However, as the network gets deeper, the gradient (used to update the weights) can
become very small, leading to the vanishing gradient problem where gradients shrink
as they backpropagate through deep networks and make it hard to train layers at the
beginning of the network [31]. This makes it difficult for layers, especially the earlier ones,
to learn effectively.

The Residual Network (ResNet) is a deep neural network that primarily focuses on
solving the vanishing gradient problem [26]. By introducing skip connections, also referred
to as residual connections, ResNet allows gradients to flow directly back through these
connections, enabling the training of deeper networks while mitigating the degradation
problem. The residual connections also allow the network to establish an identity function
that ensures the higher layer performs as well as the lower layer without degrading
in performance. This alleviates the pressure of the model having to learn an end-to-
end mapping directly and allows the stacked layers to learn more refined and complex
mappings. Additionally, by combining direct signals with the outputs from the intermediate
layers, the network is better able to preserve the gradient magnitude throughout the training
process, facilitating learning across all layers.

The Dense Network (DenseNet) is a deep neural network architecture designed to
combat the vanishing gradient problem through a dense connectivity pattern among layers
that receives additional inputs from all preceding layers and passes on its own feature-
maps to all subsequent layers [27]. Each layer in DenseNet is connected to every other
layer in a feed-forward fashion, meaning that the feature maps learned by any layer are
directly accessible to all subsequent layers. This creates an environment where information
and gradients can be communicated much more effectively through the network. The
densely connected design of DenseNet also addresses the issue of vanishing gradients by
ensuring that each layer has direct access to the gradients from the loss function and the
original input signal, leading to implicit deep supervision during learning. The connectivity
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also allows feature maps to be reused throughout the network, significantly reducing the
number of parameters, as there is no need to relearn redundant feature-maps.

InceptionV3 is a deep neural network architecture with signature inception modules
to perform convolutions at multiple scales concurrently, allowing the model to handle
different aspects of the image with filters that are appropriate for each scale [28]. Incep-
tionV3, the third iteration of the inception architecture, refines this approach by factorizing
convolutions into smaller, more manageable operations, making the network faster and
also reducing the number of parameters. InceptionV3 also incorporates auxiliary classifiers
to propagate label information lower down in the network for additional regularization and
applies a grid size reduction technique to reduce the dimensions of the grid representation,
effectively increasing the depth and width of the network without a significant increase in
the computational cost.

InceptionResNetV2 is a neural network model that utilizes the multi-scaling inception
architecture in tandem with the residual connections [29]. The inception modules allow
the network to choose which scale to emphasize in each part of the image, while the
residual connections counteract the vanishing gradient by providing a direct path for the
gradient during backpropagation. The hybrid model using residual connections allows
for a deep and wide architecture with a significantly accelerated training process while
also providing a rich feature extraction capability through the inception modules. The
combination of the two architectures enhances the learning of high-level and low-level
features for accurate classification.

To achieve improved performances from the deep learning models, pretrained Ima-
geNet weights trained on approximately 1.3 million images from the ImageNet dataset were
used for transfer learning, augmenting parameters acquired from the dataset of the training
model [32]. Additionally, 5 k-fold cross-validation was performed for each model with
randomized training and testing datasets (maintaining the same abnormal, normal ratio
within each training and testing dataset) to detect overfitting. Each k-fold cross-validated
model was trained with the input size of 256 × 256 × 3, for 250 epochs, with a batch size of
40, using the Adam optimizer, a categorical cross-entropy loss function with a learning rate
of 0.0001.

2.5. Observer Study by Otolaryngologists

To measure interobserver agreement between the deep learning algorithm and oto-
laryngologists, 100 tympanic membrane images with varying degrees of diagnostic diffi-
culty were randomly selected from the 1250 image dataset. This test set was separated from
the training and validation sets. Then, 2 invited otologists with 11 to 19 years of experience
and 5 residents with 4 to 5 years of clinical otolaryngology training (3 fifth-year residents
and 2 fourth-year residents) were asked to label each otoendoscopic tympanic membrane
image to determine whether middle ear effusion was present or absent. Since clinical
information was not provided to the invited observers, they were not asked to distinguish
acute otitis media from OME. While reviewing the images, the invited radiologists were
also requested to rate the diagnostic confidence level of their OME diagnosis based on a
6-point ordinal scale: 1, definitely not OME; 2, probably not OME; 3, possibly not OME;
4, possibly OME; 5, probably OME; and 6, definitely OME. The accuracy, sensitivity, and
specificity of the results were determined from such data.

2.6. Statistical Analysis

The accuracy, sensitivity, specificity, and area under the receiver operating characteris-
tic curve (AUC) of each k-fold model trained through the deep learning algorithm were
measured. In the comparisons between deep learning models and observers, the accuracy
and AUC of each k-fold model were calculated using the probability predicted by the deep
learning, whereas the accuracies and AUCs of radiologists were determined using their
diagnostic confidence level of OME.
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2.7. Gradient-Weighted Class Activation Mapping

Gradient-weighted Class Activation Mapping (Grad-CAM) was utilized to visually
explain the decisions made using CNN-based models [33]. Grad-CAM produced heatmaps
overlaid on top of tympanic membrane images that designated the regions on each image
that were important for prediction.

3. Results
3.1. Model Performance

We evaluated the performances of each cross-validated k-fold ResNet50, DenseNet201,
InceptionV3, and InceptionResNetV2 model with accuracy, sensitivity, and specificity
as shown in Table 1. Across 5 k-folds, ResNet50 showed an average accuracy of 92.9%,
specificity of 86.5%, sensitivity of 99.2%, and AUC of 0.992. DenseNet201 showed an
average accuracy of 97.2%, specificity of 95.2%, sensitivity of 99.6%, and AUC of 0.999.
InceptionV3 showed an average accuracy of 96.0%, specificity of 95.4%, sensitivity of 97.0%,
and AUC of 0.995. InceptionResNetV2 showed an average accuracy of 94.8%, specificity of
92.2%, sensitivity of 98.8%, and AUC of 0.998.

Table 1. Accuracy, sensitivity, specificity, and AUC of each k-fold cross-validated model.

Model k-Fold 1

ResNet50 1 2 3 4 5 Avg.

Accuracy 96.8% 95.6% 88.7% 90.0% 93.5% 92.9%
Specificity 95.6% 92.0% 77.7% 81.3% 85.7% 86.5%
Sensitivity 100.0% 99.2% 99.2% 97.5% 100.0% 99.2%

AUC 1.000 0.993 0.994 0.972 1.000 0.992

DenseNet201 1 2 3 4 5

Accuracy 99.0% 100.0% 97.0% 95.0% 95.0% 97.2%
Specificity 98.0% 100.0% 96.1% 90.9% 90.9% 95.2%
Sensitivity 100.0% 100.0% 98.0% 100.0% 100.0% 99.6%

AUC 1.000 1.000 0.996 1.000 0.998 0.999

InceptionV3 1 2 3 4 5

Accuracy 98.0% 99.0% 97.0% 89.0% 97.0% 96.0%
Specificity 97.0% 99.0% 95.0% 89.8% 96.1% 95.4%
Sensitivity 100.0% 99.0% 100.0% 89.0% 98.0% 97.0%

AUC 0.999 1.000 0.994 0.986 0.998 0.995

InceptionResNetV2 1 2 3 4 5

Accuracy 100.0% 97.0% 88.0% 92.0% 97.0% 94.8%
Specificity 100.0% 94.3% 80.6% 86.2% 100.0% 92.2%
Sensitivity 100.0% 100.0% 100.0% 100.0% 94.0% 98.0%

AUC 1.000 0.995 0.999 1.000 0.997 0.998
1 Each k-fold column represents the performance of each k-fold trained model evaluated on the 100-image dataset
unexposed to the trained models.

3.2. Comparison between Model Diagnostic Performance and Otolaryngologist Diagnostic
Performance

Each k-fold model performed predictions on 100 images (50 OME, 50 normal) un-
exposed to the deep learning model for comparison with the diagnostic performance of
otolaryngologists. The side-to-side accuracy comparisons between each trained model
and otolaryngologist are shown in Table 2. The mean accuracies and AUCs of the trained
models were 92.9% and 0.992 (ResNet50), 97.2% and 0.999 (DenseNet201), 96.0% and
0.995 (InceptionV3), and 94.8% and 0.998 (InceptionResNetV2), while the accuracies and
AUCs of physician observers were 81.0% and 0.845, 84.0% and 0.863, 74.0% and 0.743,
75.0% and 0.773, 69.0% and 0.798, 70.0% and 0.727, and 70.0% and 0.737. The order of
observers is ordered from the most experienced (1–2: faculty members in otology) to the
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least (3–5: fifth-year residents; 6–7: fourth-year residents). The highest accuracy perfor-
mance of physician observers was 84.0%, which did not exceed the average accuracy of the
lowest-performing model (ResNet50, 92.9%) nor the accuracy of the worst-case scenarios of
ResNet50 trained on k-fold 3 (88.7%), DensNet201 trained on k-fold 5 (95.0%), InceptionV3
trained on k-fold 4 (89.0%), and InceptionResNetV2 trained on k-fold 3 (88.0%).

Table 2. Comparison of diagnostic performance between the k-fold averages of each model and each
individual otolaryngologist.

Trained Model Averages

ResNet50 DenseNet201 InceptionV3 InceptionResNetV2

Mean
Accuracy 92.9% (±3.1%) 97.2% (±2.0%) 96.0% (±2.0%) 94.8% (±4.3%)

Worst 1 88.7% 95.0% 89.0% 88.0%
Best 2 96.8% 100.0% 99.0% 100.0%
Mean AUC 0.992 (±0.010) 0.999 (±0.002) 0.995 (±0.005) 0.998 (±0.002)

Observer Judgement

Observer 1 2 3 4 5 6 7

Accuracy 81.0% 84.0% 74.0% 75.0% 69.0% 70.0% 70.0%
AUC 0.845 0.863 0.743 0.773 0.798 0.727 0.737

1 Worst refers to the lowest accuracy among the 5 k-folds (of each respective model type) displayed when
evaluating the performance of each k-fold trained model on the 100-image dataset unexposed to the trained
models. 2 Best refers to the highest accuracy among the 5 k-folds. Values in parentheses refer to the standard
deviation of the mean.

3.3. Grad-CAM Heatmaps

Heatmaps illustrating the focal points of tympanic membrane images utilized in
prediction overlaid on top of tympanic images are shown in Figure 2. The intense portions
of the heatmap (colored in red) seemed to focus on the anterior inferior quadrant of the
tympanic membrane (the most gravitationally dependent area of the middle ear where
fluid accumulates) in determining both normal and OME images.
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Figure 2. Class Activation Mapping (CAM) heatmap images of correctly predicted normal and OME
tympanic membrane images. Heatmap overlaid on top of each tympanic membrane with a more
intense color (red) indicates higher activation.

4. Discussion

For this study, we utilized 1150 pediatric tympanic membrane images to train and
test multiple cross-validated deep learning neural networks for diagnosing OME. The
correct diagnosis of OME can be heavily dependent on the experience of the observer,
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based on factors such as the training received, specializations, or years of practice [15,34].
In order to address the issues of inconsistent OME diagnostic accuracies in inexperienced
physicians, previous studies have utilized various forms of deep learning models trained
on tympanic membrane images to develop tools to assist OME diagnosis [16]. However,
few studies have specified the use of pediatric images in the training of these models,
making it difficult to verify their effectiveness in clinical OME diagnosis where pediatric
patients are prevalent [16]. Due to multiple differences in tympanic membrane images
acquired from young children and adults, it is important that training classification models
for OME, a disease that occurs mostly in children, be trained using pediatric images [22–24].
As such, we aimed to train deep learning classification models for OME diagnosis using
pediatric tympanic membrane images to aid the clinical diagnosis of OME in pediatric
patients. In our study, the cross-validated deep learning models trained on pediatric
tympanic membrane images attained mean accuracies and AUCs of 92.9% and 0.992
(ResNet50), 97.2% and 0.999 (DenseNet201), 96.0% and 0.995 (InceptionV3), and 94.8%
and 0.998 (InceptionResNetV2). Additionally, we compared the diagnosis performances
of the models trained on pediatric images with the diagnostic performance of multiple
otolaryngologists. Every model showed higher average diagnostic accuracies (92.9%, 97.2%,
96.0%, 94.8%) and AUCs (0.992, 0.999, 0.995, 0.998) than the highest diagnostic accuracy
(84%) and AUC (0.863) of otolaryngologists. Results showed that our diagnostic model
can outperform otologists who specialize in ear disorders and assist in diagnosing OME in
pediatric patients using tympanic membrane images obtained with an otoendoscope.

Various studies have utilized a variety of deep learning models to classify OME using
tympanic membrane images with robust accuracies. A study that trained on 267 pediatric
intraoperative ear images and used ResNet34 with ImageNet transfer learning managed
to reach an OME diagnostic accuracy of 83.8% despite its low training sample size of
270 images [21]. Other studies that utilized similar ResNet variants (ResNet101, ResNet50,
ResNet18) that trained on proprietary otoendoscopic images achieved accuracies of 91.7%,
93.4%, and 97.2% but did not specify whether the images used to train and test the models
were pediatric [17,19,20]. Other deep learning architectures aside from ResNet were also
utilized to train models that can classify OME using tympanic membrane images. Incep-
tionV3 deep learning models were also used to train and classify OME with accuracies
of 92.1% and 76.0% [17,18]. MobileNetV2, a mobile architecture designed to operate on
smart devices, was able to classify using pediatric otoscopic images transmitted to smart-
phones through Wi-Fi with an accuracy of 83.3% [20]. Our average accuracies of ResNet50,
DenseNet201, InceptionV3, and InceptionResNetV2 models (92.9%, 97.2%, 96.0%, 94.8%)
trained and validated using pediatric images were well within or exceeded the ranges of
previously reported studies.

In order to assess the possibility of utilizing the trained models for clinical usage, the
diagnostic accuracies of each model were compared with the diagnostic performances of
otolaryngologists. Otolaryngologists on average falsely diagnosed OME in 16.9 images and
normal in 8.4 images out of each 50 tested images, while the deep-trained model on average
falsely classified OME in 0.8 images and normal in 5.4 images. False diagnoses of OME were
more common in observers than in our trained models, likely due to the selective bias of the
observers being averse to incorrectly selecting false negatives. Confusion in diagnosis can
arise from the attentive focus on salient lesion areas that are identified as OME biomarkers,
which can be commonly misidentified when observing key characteristics of the tympanic
membrane [20]. The results of our Grad-CAM analysis, represented in Figure 2, indicate
that the deep learning networks placed significant weight on the anterior inferior quadrant
of the tympanic membrane when determining the correct diagnosis of OME. A focus on
such areas seemed to contribute to a higher classification accuracy compared to human
experts, potentially due to the networks’ ability to more effectively distinguish between
patterns that are commonly misidentified as normal or OME by otolaryngologists. When
comparing the performance of our models in diagnosing OME with the performance of
otolaryngologists, the models demonstrated higher average accuracies (92.9%, 97.2%, 96.0%,



Bioengineering 2023, 10, 1337 9 of 11

94.8%) in diagnosing OME. Even in the worst-case scenarios of each model (ResNet50:
88.7%; DenseNet201: 95.0%; InceptionV3: 89.0%; InceptionResNetV2: 88.0%), all of them
performed higher than the best-performing observer with an accuracy of 84.0%. The results
of our cross-validated deep learning models suggest that these models have the potential to
improve the accuracy of OME diagnosis in clinical settings, particularly in situations where
the diagnosis may be made by untrained pediatricians with lower diagnostic accuracy than
otolaryngologists.

There are several limitations to this study. First, while our study utilized a sufficient
number of images, they were acquired using the same type of otoendoscope, reducing
the generalization of the dataset. As such, it is possible that the trained model shows
different diagnostic accuracy in a clinical setting where a different otoendoscope and
image format can be used to acquire images for diagnosis. The potential difference in
diagnostic accuracy can be further exacerbated if the otoendoscopes utilized by untrained
clinicians are equipped with poor resolution or lighting. Future deep learning studies
with tympanic membrane images acquired with various types of endoscopes and imaging
formats could help alleviate this problem. Second, the data that were selected for this
model only consisted of high-quality images of tympanic membranes that were cerumen-
free. As such, the diagnostic performance of the model in cases where otoendoscopies
are performed by untrained clinicians on tympanic membranes that are obstructed and
cerumen-filled may be lower than the results shown in this study. Third, obtaining high-
quality images of the tympanic membrane in young patients proved challenging due to their
uncooperative nature. To overcome this obstacle, multiple images of the same tympanic
membrane were captured, and the image of superior quality was selected for inclusion
in the dataset used in this study. To address this issue in future research, endoscopic
recordings of the tympanic membrane could be employed to train and evaluate deep
learning models. Fourth, the tympanic membrane images were obtained predominantly
from Korean children, and potential differences in the tympanic membranes of different
populations were not accounted for. Future studies with a wider distribution of tympanic
membrane images obtained from various different populations world-wide could help
improve the generality of the trained classification models.

5. Conclusions

Our study was able to utilize ResNet50, DenseNet201, InceptionV3, and Inception-
ResNetV2 to train deep learning networks for differentially diagnosing OME in pediatric
tympanic membrane images. The trained networks showed better OME diagnostic accura-
cies on average than the diagnostic performance of seven otolaryngologists, showing their
potential for assisting in the clinical diagnosis of OME in pediatric patients.
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