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Abstract: Current deep learning-based speech enhancement methods focus on enhancing the time–
frequency representation of the signal. However, conventional methods can lead to speech damage
due to resolution mismatch problems that emphasize only specific information in the time or fre-
quency domain. To address these challenges, this paper introduces a speech enhancement model
designed with a dual-path structure that identifies key speech characteristics in both the time and
time–frequency domains. Specifically, the time path aims to model semantic features hidden in the
waveform, while the time–frequency path attempts to compensate for the spectral details via a spectral
extension block. These two paths enhance temporal and spectral features via mask functions modeled
as LSTM, respectively, offering a comprehensive approach to speech enhancement. Experimental
results show that the proposed dual-path LSTM network consistently outperforms conventional
single-domain speech enhancement methods in terms of speech quality and intelligibility.

Keywords: speech enhancement; STFT; LSTM; encoder–decoder structure; dual-path network;
spectral extension block; mel-filter banks; merge algorithm

1. Introduction

Speech recognition is attracting attention as a promising technology for human–
computer interaction (HCI) due to its various advantages, such as fast input/output
speed. The natural and intuitive characteristics of speech enable faster multitasking and
information input, which facilitates more effective processing for many tasks; however,
maintaining the quality of speech signals becomes challenging in noisy environments and
leads to information loss. Speech enhancement research aims to address this by removing
noise and distortions from speech signals based on various audio signal processing tech-
niques to continuously improve the overall intelligibility and perceived quality of speech.
Speech enhancement is a preprocessing technique used in various fields, such as smart
cars, smart hearing aids, and voice over internet protocol services [1,2]. Conventional
speech enhancement algorithms rely primarily on the statistical modeling of either speech
or noise, frequently yielding unpredictable performance outcomes in non-stationary noise
scenarios [3–5].

In recent years, the use of deep learning techniques has become predominant in the
field of speech enhancement. Mapping techniques that directly estimate clean compo-
nents of input signals or features and masking techniques that indirectly remove noise
components by estimating mask functions are commonly employed in supervised learn-
ing. These processes utilize a variety of network models, including feedforward neural
networks (FNN), recurrent neural networks (RNN), and convolutional neural networks
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(CNN), and in recent years, long short-term memory (LSTM) has shown significant per-
formance improvements over other neural networks [6–9]. Many deep learning-based
speech enhancement methods utilize the magnitude values of the spectrum extracted via
short-time Fourier transforms (STFT) as input data. The magnitude spectrum, which pos-
sesses regular characteristics, is not only easy to learn but also effective in distinguishing
speech and noise components. However, this approach only improves the magnitude
spectrum and does not deal with phases, leading to performance limitations. Two methods
are proposed to address the phase estimation problem: one based on time analysis and
another on time–frequency analysis in complex domains.

Luo et al. proposed a time domain method called a fully convolutional time domain
audio separation network (Conv-TasNet) composed of 1D convolutional layers [10]. This
model extracts time domain features without frequency decomposition, using convolu-
tional layers, and estimates the ideal ratio mask separating noise and speech to enhance
speech quality [11]; however, Conv-TasNet does not consider frequency components; mini-
mizing distortions in the time domain does not guarantee the accuracy of speech spectrum
estimation.

Hu et al. introduced a time–frequency domain method called the deep complex con-
volution current network (DCCRN). This structure is composed of complex convolutional
layers and complex LSTM [12]. The network models noise and speech as a complex ratio
mask using a complex neural network, capturing the correlation between the spectral
information, representing frequency, and the phase information, representing time in a
complex domain. This approach displays excellent noise reduction performance, even
in low signal-to-noise ratio (SNR) environments, but successful noise reduction from the
time–frequency representation requires high-resolution frequency decomposition of the
noisy signal, which requires a long temporal window for the computation of the STFT.
Longer windows result in a decrease in time resolution. This means that the ability to
capture and process rapid changes in the speech signal is diminished.

To overcome these limitations, this paper proposes a dual-path LSTM network aimed
at effectively capturing and exploiting distinctive speech characteristics across two distinct
domains (time and time–frequency). These two paths utilize LSTM networks to map
mask functions and enhance temporal and spectral features, respectively. To improve the
semantic information of temporal features, a 1D convolutional encoder–decoder structure
with non-negative constraints is incorporated in the time domain path, and a spectral
extension block is introduced in the time–frequency domain path to preserve spectral
details. Subsequently, a merge algorithm is applied to combine the enhanced features from
each domain, promoting mutual supplementation and ultimately improving the quality of
the speech signal. Experimental results demonstrate that the proposed dual-path LSTM
network is competitive over conventional single-domain speech enhancement methods.
The main contributions of this paper are as follows:

• For more accurate speech restoration, a dual-path LSTM network is proposed that
complementarily learns time and time–frequency domain information.

• A 1D convolutional encoder–decoder structure with non-negative constraints to im-
prove semantic information about temporal features and a spectral extension block to
complement spectral details was found to capture better acoustic information.

• Experimental results show that combinations of different processing domains can
achieve better performance than single domains.

2. Materials and Methods
2.1. Datasets

The training dataset and test dataset consisted of audio data from various datasets
released at INTER SPEECH 2021 for the Deep Noise Suppression (DNS) challenge. The
speech data used for training was a subset of the Librispeech Corpus, which consists of
over 500 h of recorded data from more than 2150 speakers [13]. The noise data included
portions from the Audioset Corpus, Freesound, and WHAMR Corpus for a total of 180 h of
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data spread across 150 distinct categories [14,15]. The selected speech and noise data were
mixed to create a total of 200 h of training noise–mixed data using audio synthesis scripts
provided in the DNS challenge. To account for various noise environments, the mixed data
was adjusted to contain random SNR values ranging from −5 to 25 dB by adjusting the
levels of speech and noise during synthesis.

The 200 h training dataset was divided into separate sets for training (160 h) and
cross-validation (40 h). Additionally, a separate test dataset was constructed to rigorously
evaluate the model’s performance. The speech test dataset consisted of the Voice Bank
Corpus of 28 speakers’ voices, while the noise test dataset was composed of the DEMAND
Single Speaker and Noise Test Set, containing two types of artificial noise and eight types
of natural noise scenarios. The test dataset was designed to simulate challenging noise
environments commonly encountered in daily life, with SNRs ranging from 0 to 20 dB, and
included a total of 2000 audio test examples [16,17]. The total number of data instances
used was 22,000, distributed in an approximate ratio of 7:2:1 for training, validation, and
testing, respectively. All data samples were formatted using a 16 kHz sampling frequency
and saved in the WAV audio format.

2.2. Overview of the Proposed Method

The proposed dual-path LSTM-based speech enhancement network consists of three
stages: a learnable encoder–decoder structure; a spectral extension block; and a merge
module. The overall architecture of the algorithm is illustrated in Figure 1.

Figure 1. The main architecture of dual-path LSTM-based speech enhancement network.

As shown in Figure 1, noisy input is divided into two pathways that process high-
resolution temporal and spectral features. Segmentation and learnable encoders were
used in the time path, and STFT and Mel-filter banks were used in the frequency path.
These features model an ideal ratio mask that suppresses noise over an LSTM network.
Subsequently, the noisy features are element-wise multiplied by the estimated ideal ratio
mask to output only the enhanced speech component. The spectrum extension block
compensates for missing details of the estimated spectrum by exchanging full-band and
sub-band information of enhanced magnitude and Mel-spectral features. The compensated
spectrum is restored into a waveform using the Griffin–Lim Algorithm (GLA), which
reconstructs the phase information [18]. Restored with ISTFT (inverse STFT), the waveform
is converted to a time domain representation via the reuse of the encoder’s 1D convolution
layer to achieve dimensionality consistency with the temporal feature values estimated in
the first path. After that, the calculated feature vectors are merged following the proposed
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merge algorithm. The merged speech feature vector is transformed into frame data via the
decoder and synthesized into an enhanced speech signal.

2.3. Dual-Path LSTM-Based Speech Enhancement Model
2.3.1. Speech Enhancement in the Time Domain

Speech typically possesses strong temporal structures, making it desirable and nec-
essary for systems to model the time-dependent characteristics of noise and speech to
enhance speech performance. In this context, a 1D convolution-based encoder–decoder
deep learning framework was employed to achieve this goal.

Figure 2 illustrates the deep learning framework for the time domain proposed in
this paper.

Figure 2. The overall framework of the proposed encoder–decoder architecture to utilize high-
resolution time domain features for speech enhancement.

As shown in Figure 2, the noisy speech is segmented into frames of the form
Xt = [x1, . . . xk, . . . , xT ] for detailed temporal structure analysis, where k represents the
frame index, L is the window length, and T is the total number of frames. The segmented
frames are then processed by the learnable weight of the 1D convolution filter in the encoder
and converted into time domain features that represent the structural characteristics of the
waveform. The visualization of the encoder output in Figure 2 shows that the dark and light
colors of speech and noise are well distinguished. This indicates that the representation of
the encoder is effective in speech estimation.

Equation (1) represents the output results of the encoder:

W = Q(Xt ~U), (1)

where W represents the output of the encoder; Q is a non-negative activation function;
U represents the encoder filter’s weight functions; and ~ denotes the convolution operation.
As per Equation (1), following the 1D convolution operation of U, the input segment is
transformed into an N-dimensional representation corresponding to the length of the
convolution filters and outputs only positive values based on the non-negative activation
function. These constraints assume that the encoder output’s masking operation is only
valid when noise and speech waveforms can be represented as combinations of non-
negative weight functions. The unconstrained representation of the encoder can then be
followed by an unconstrained mask, which can affect the results of the masking operation.

LSTM estimates a mask with values ranging from 0 to 1 based on the encoder output
to distinguish noise from speech. The estimated mask extracts only the clean speech
component via its operations with the encoded feature vector. The clean speech vector is
then restored to its original input signal form via the decoder.
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Equation (2) represents the output results of the decoder:

X̂t = (M � W)~Y, (2)

where X̂t represents the segment of the estimated clean speech signal from the network;
M is the estimated mask from the network; Y represents the basic functions of the decoder
filters; and � denotes the Hadamard product operation. As shown in Equation (2), the
decoder uses a 1D transposed convolution operation that can be represented via matrix
multiplication based on the representation generated in the encoder. These operations
reconstruct the time features into a frame form and use an overlap-add (OLA) algorithm to
synthesize them into a complete waveform [19].

2.3.2. Speech Enhancement in the Frequency Domain

The frequency representation of a signal, known as the spectrum, is important for
preserving the overall frequency structure of speech and its naturalness; however, such
full-band information might be inadequate for removing specific types of noise present
in certain frequency ranges. To address this limitation, a spectral extension block was
employed.

Typically, the frequency range between 2 and 5 kHz is considered crucial for dis-
tinguishing and removing noise from speech. This range contains important bands for
speech perception, including consonants and various formant information that determines
speech intelligibility and quality, but it can also be challenging to remove noisy elements
with irregular patterns, such as pink noise and other environmental noise, since these
can overlap with the speech signal due to their abnormal patterns. Given that the Mel-
spectrum accurately reflects the nonlinear frequency information perceived by the human
auditory system, extracting the Mel-spectrum within a narrow frequency band emerges
as a potent strategy for precise noise reduction in the spectral region most impactful on
perceived speech quality. Additionally, the Mel-spectrum is less sensitive to small changes
in frequency, thus ensuring robust performance against variations in noise signals. In this
context, a method is proposed for effectively modeling complex spectral patterns inherent
in various environmental noises by appropriately utilizing the sub-band Mel-spectrum
based on human auditory characteristics to learn the important frequency structure of
speech and the overall frequency structure of the full-band spectrum.

To capture detailed frequency dependencies, the input of the network in the second
pathway transformed into the STFT form was represented as X(t, f ) = Mageiθ , where
Mag represents magnitude, eiθ denotes phase spectrum, and T and F represent time and
frequency resolutions, respectively. The magnitude spectrum is transformed into a sub-
band Mel-spectrum MS(t, f ) covering the range of approximately 2000 to 5000 Hz via
Mel-filter banks composed of m nonlinear filters and is concatenated with the full-band
spectrum before being input to the LSTM network.

Equations (3)–(5) represent the frequency domain input information of the network:

mel(m, f ) =


0, f < fmel [m − 1]

2( f− fmel [ f−m])
( fmel [m+1]− fmel [m−1])( fmel [m]− fmel [m−1]) , fmel [m − 1] ≤ f < fmel [m]

2( f− fmel [ f−m])
( fmel [m+1]− fmel [m−1])( fmel [m]− fmel [m−1]) , fmel [m] ≤ f < fmel [m + 1]

0, f ≥ fmel [m + 1]

, (3)

fmel = 2595log10

(
1 +

f
700

)
, (4)

X f = CONCAT(Mag(t, f ), MS(t, f )), where MS(t, f ) =
F−1

∑
f=0

mel(m, f ), (5)
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where mel(m, f ) represents the Mel-filter banks; X f is the concatenated magnitude spec-
trum; and CONCAT denotes the concatenation operation. As per Equation (5), the reason
for connecting the spectrums is that when sub-band spectrums are concatenated and input
as a single time step, the LSTM network can learn feature representations of human speech
perception. This can help the network better capture the overall noise distribution in the
sub-bands. The concatenated spectrums are then output in the form of a clean spectrum
using the estimated LSTM mask. Figure 3 illustrates the configuration of the spectrum
extension block, which integrates the advantages of the different frequency bands of the
spectrum.

Figure 3. The overall framework of the proposed spectral extension blocks to utilize high-resolution
frequency domain features for speech enhancement.

As shown in Figure 3, the concatenated sub-band Mel-spectrum and full-band spec-
trum are enhanced by computation of the LSTM with the estimated noise suppression
mask and divided back into the Mel-spectrum and magnitude spectrum via a split func-
tion. The divided spectrums of the different frequency bands represent the magnitude
spectrum of the signals with noise components removed. The Mel-spectrum is restored
to the same dimension as the full-band spectrum via a pseudo-inverse matrix operation,
and the improved components of the spectrum are compared via subtraction between
the two spectrums to extract a more refined speech signal. Additionally, the Rectified
Linear Unit (ReLU) function was employed to extract the spectral details that the sub-band
Mel-spectrum was not able to estimate. The extracted speech component was operated
on with the sub-band spectrum to yield a more accurate single speech spectrum. Then,
the clean speech spectrum was combined with the noisy phase spectrum and transformed
into the time domain spectrum using inverse STFT. This process can result in an imbalance
between the magnitude and phase spectrums, which potentially limits the resulting audio
quality. To address this, a reconstruction process aligning the phase to the spectrum was
conducted using the Griffin–Lim Algorithm.

2.3.3. Dual-Path Time–Frequency Merging Technique

In this section, the time–frequency domain merging algorithm is described, which
integrates estimated speech features based on the parallel network proposed earlier, with
the aim of maximizing the performance of the speech enhancement model.

The time and frequency features of the estimated speech from the previous step might
not effectively remove noise in certain domain-specific parts or could have inaccurately
removed portions. To estimate a more accurate speech component, a method was employed
that involves dimension normalization and utilizing intersections, addressing potential
discrepancies between different domain estimates.

Equations (6)–(8) illustrate the process of the proposed time–frequency domain feature
merging algorithm.

St = Maskt � Q(Xt ~U), (6)
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S f = GLA
(

Mask f � X f

)
~U, (7)

Smerge = (S t − ReLU
(

St − S f

)
)~Y, (8)

where St represents the time domain feature vector of the masked speech from the first
pathway, S f signifies the value reshaped via the encoder based on the masked spectrum
from the second pathway, and Smerge stands for the enhanced speech signal via the merging
algorithm. As shown in Equation (8), the proposed merging algorithm utilizes differences
and the ReLU function to extract speech components that were commonly missed by the
domain-specific networks. Removing these components enhances the overall speech esti-
mation reliability of the proposed speech enhancement model. The merged speech feature
vector is transformed into a time-series frame format via the decoder and synthesized into
the final objective, a waveform of the speech signal, via the OLA algorithm.

2.3.4. Model Implementation and Training

Figure 4 shows the detailed structure of the implemented dual-path LSTM network.

Figure 4. Detailed description of the layers constituting the dual path LSTM network architecture for
speech enhancement.

As shown in Figure 4, the LSTM blocks in the network are composed of layer normal-
ization, LSTM, and fully connected layers aimed at improving the model’s stability and
convergence [20]. The depth of the LSTM layers was limited to two to prevent overfitting.
The first pathway input involved densely divided frames along the time axis. These frames
were encoded using 1D convolution filters with kernel size 16, stride 8, and length 512.
The window length for this input was determined considering the system environment,
training time, and performance variation across the different window lengths. In this
case, a window length of 5 ms with 50% overlap and a window length of 64 ms with
50% overlap were chosen. The second pathway input was created by concatenating the
high-resolution magnitude spectrum of the STFT representation and the Mel-spectrum
extracted via 128 filter banks. The length of the Mel-filter banks was decided based on the
same considerations mentioned earlier.

The LSTM layers were designed with 256 nodes (units). These layers transform se-
mantic time and frequency feature vectors obtained based on the specific feature extraction
techniques for each domain into data-structured masks. These masks were estimated
accordingly and utilized the same structure as the input data. The estimated masks were
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multiplied with each input signal to effectively remove the noise components. Then, these
masked inputs underwent a restoration process tailored to their corresponding feature
extraction techniques that resulted in the generation of speech signals. This architecture
and design contribute to the extraction of semantic features from the different domains,
which facilitates noise reduction and clean speech restoration of the signals.

3. Results
3.1. Experiment Environment

All experiments were performed on a system with an Intel(R) Core (TM) I7-10700 CPU
@ 2.90 GHz, 16 GB RAM, and GeForce GTX 1660 SUPER 6GB. Data preprocessing, model
construction, and training were performed using the TensorFlow and Keras frameworks
based on the Python language. Considering the system environment characteristics and the
size of the collected dataset, a batch size of 16, a learning rate of 0.001, and 100 epochs were
used for model training. Additionally, a learning rate scheduler (early stopping function)
was employed to gradually reduce the learning rate by half based on the convergence of
the model’s loss value to optimize training time [21].

In the proposed dual-path speech enhancement model, the activation functions used in
the noise suppression module responsible for mask estimation are composed of hyperbolic
tangent (tanh) and sigmoid functions, depending on each pathway. These activation
functions help alleviate the vanishing gradient problem while effectively modeling the
nonlinearity of the speech signal, which allows the model to learn more complex and
diverse data representations. The non-negative constraint function for the encoder was
determined using a grid search, and ReLU was selected as a result. To ensure the model
could effectively estimate and remove noise, a loss function based on negative SNR and
the Adam (Adaptive Moment Estimation) optimization technique was utilized [22].

We evaluated the performance from the perspective of speech quality and intelligi-
bility using several metrics, including short-time objective intelligibility (STOI), extended
STOI (ESTOI), perceptual evaluation of speech quality (PESQ), and signal-to-noise ratio
(SNR) [23–26]. STOI measures the objective intelligibility of a degraded speech signal by
correlating the temporal envelopes of the degraded signal with its clean reference. Empiri-
cal evidence demonstrates a strong correlation between STOI scores and human speech
intelligibility ratings. ESTOI, on the other hand, assesses the objective intelligibility of de-
graded speech by analyzing spectral correlation coefficients in short time segments without
assuming the mutual independence of frequency bands like STOI does. Both STOI and
ESTOI scores range from 0 to 1, with higher values indicating better speech intelligibility.
PESQ is designed to gauge the subjective quality of perceived speech and produces values
ranging from 0 to 4.5. Higher PESQ values correspond to clearer speech. Lastly, SNR
quantifies the distortion ratio between clean and enhanced speech. It measures the ratio of
the energy of clean speech to the energy of distortion, with higher scores indicating smaller
amounts of distortion.

3.2. Performance Comparison with Benchmark Models

In this section, the evaluation results of a test dataset comprising 2000 noise-mixed
data points are presented. The performance of the dual-path architecture is compared with
A1, A2, A3, and the recent benchmark models, DCCRN. These correspond to single-domain
models that exclusively utilize complex spectral features, temporal features, Mel-spectral
features, and spectral extension blocks, respectively. The results are summarized in Table 1.

As shown in Table 1, our proposed dual-path LSTM model achieves notable enhance-
ments over DCCRN, demonstrating improvements of 0.107 for PESQ, 1.29% for STOI, 2.28%
for ESTOI, and 0.33 dB for SNR, under average conditions. These results demonstrate the
effectiveness of our dual-domain learning in enhancing speech quality and intelligibility.
Considering that the A1 model with time domain features performs better in terms of
PESQ and the A2 model with time–frequency domain features performs better in STOI, the
proposed method demonstrates consistent and balanced performance across all evaluation
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metrics. Our proposed method demonstrates a consistent and well-rounded performance
across all evaluation metrics. These results support the argument that the dual-path
LSTM network appropriately utilizes complementary characteristics to distinguish be-
tween speech and noise effectively. Moreover, when comparing ESTOI to STOI, it becomes
evident that ESTOI exhibits a more significant degree of improvement. Additional experi-
ments were conducted to confirm whether these results were consistent. Figure 5 shows
the STOI and ESTOI evaluation results of DCCRN and the proposed dual-path LSTM.

Table 1. Average value of performance evaluation metrics for each model using 2000 test data.

Model SNR PESQ STOI ESTOI

DCCRN 16.4456 2.971 0.9395 0.8730
A1 (2 Layer, Non-negative) 14.6096 2.745 0.9206 0.8408
A2 (2 Layer, Mel-Spectrum) 14.7318 2.686 0.9249 0.8522

A3 (2 Layer, Extension Block) 15.0837 2.714 0.9273 0.8673
Dual-path LSTM 16.7756 3.078 0.9524 0.8958

Figure 5. STOI and ESTOI measurement results of benchmark and proposed model.

As shown in Figure 5, the proposed dual-path LSTM model showed an improvement
of 9.51% in STOI and 17.51% in ESTOI compared to noisy, and an improvement of 1.61% in
STOI and 2.73% in ESTOI compared to DCCRN. Considering Model A3 in Table 1 and the
experimental results in Figure 5, the higher improvement rate of ESTOI, which is sensitive
to spectral mismatches compared to STOI, supports the effectiveness of the proposed
spectral extension block in restoring spectral details that are prone to loss.

Figure 6 illustrates the magnitude spectrum of clean, noisy, and enhanced speech
signals, providing a visual comparison between models. As shown in (a) of Figure 6, since
DCCRN only considers the spectrum in the time–frequency domain, we can see that there is
still residual noise at the beginning and end of the waveform. Notably, the white box section
indicates DCCRN’s inability to accurately estimate the spectrum when speech and noise
are intertwined. In contrast, the proposed dual-path LSTM network adeptly compensates
for the loss of spectral detail, ensuring accurate restoration even under challenging speech
and noise conditions. However, looking at the 13–14 s range of the signal improved by the
proposed method, it was also found that the clean spectrum was damaged due to some
excessive noise suppression. This indicates that multi-domain information may lead to
unnecessary suppression of the noise spectrum.
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Figure 6. Visualized comparison results of enhanced signals with the proposed model and benchmark
model. (a) Spectrum and time domain waveforms of clean speech, noise speech, speech enhanced by
DCCRN, and speech enhanced by the proposed model. (b) Value of difference between enhanced
spectrum and clean speech spectrum.

Nonetheless, Figure 6b, which presents the discrepancy between the spectrum of the
enhanced signal and the spectrum of clean speech, serves as confirmation that the proposed
method is proficient in accurately estimating the speech spectrum across all frequency
bands.

4. Discussion

The experimental results presented above demonstrate that the proposed dual-path
LSTM network not only enhances speech quality but also offers a fresh perspective com-
pared to existing methods that primarily focus on complex spectrum processing. When
contrasted with single-domain approaches, whether they are time-based, time–frequency-
based, or multi-domain methods, they exhibit superior speech enhancement performance.
This improvement can be attributed to two key factors. Firstly, the widely used STFT
spectrum in single-domain methods may not provide sufficient information for accurate
speech estimation due to trade-offs between time and frequency resolutions. Secondly,
time–frequency domain networks, while effective at enhancing the spectrum of noisy
speech, may still leave residual noise in the time domain distribution.

To address these issues, we proposed a dual-path LSTM network in which both time
and time–frequency domain networks were optimized in a complementary manner along
their respective paths. Additionally, ablation experiments underscored the significance of
extracting limited-time domain features and the process of compensating for potentially
lost spectral details in the speech enhancement procedure.

In future studies, considering the relative simplicity of the proposed network structure,
we aim to further enhance its performance via the incorporation of additional structural
improvements, such as the integration of attention mechanisms.

5. Conclusions

In this paper, we presented a dual-path LSTM network that complemented the advan-
tages of the time and time–frequency domain, considering that single-domain representa-
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tions such as STFT were difficult to provide sufficient information for speech enhancement.
These dual paths conducted LSTM networks to map mask functions, enhancing both
temporal and spectral features. To improve the semantic content of temporal features, a
1D convolutional encoder–decoder structure with non-negative constraints was integrated
into the time domain path. In the time–frequency domain path, a spectral extension block
was introduced to preserve spectral details that were easy to lose. Subsequently, the merg-
ing algorithm was applied to combine the enhanced features from each domain, facilitating
mutual enhancement and ultimately enhancing the quality of the speech signal. Extensive
experimental results showed that the proposed dual-path LSTM network consistently
outperformed the existing single-domain methods. The proposed approach is anticipated
to serve as an assistive system in speaker recognition and various speech application fields.
Additionally, it holds potential for rehabilitation technologies for patients with various
hearing impairments in the future.
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