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Abstract: (1) Background: Patients with severe physical impairments (spinal cord injury, cerebral
palsy, amyotrophic lateral sclerosis) often have limited mobility due to physical limitations, and may
even be bedridden all day long, losing the ability to take care of themselves. In more severe cases, the
ability to speak may even be lost, making even basic communication very difficult. (2) Methods: This
research will design a set of image-assistive communication equipment based on artificial intelligence
to solve communication problems of daily needs. Using artificial intelligence for facial positioning,
and facial-motion-recognition-generated Morse code, and then translating it into readable characters
or commands, it allows users to control computer software by themselves and communicate through
wireless networks or a Bluetooth protocol to control environment peripherals. (3) Results: In this
study, 23 human-typed data sets were subjected to recognition using fuzzy algorithms. The average
recognition rates for expert-generated data and data input by individuals with disabilities were 99.83%
and 98.6%, respectively. (4) Conclusions: Through this system, users can express their thoughts
and needs through their facial movements, thereby improving their quality of life and having an
independent living space. Moreover, the system can be used without touching external switches,
greatly improving convenience and safety.

Keywords: artificial intelligence; communication; Morse code; disabilities; caregiver

1. Introduction

According to the World Report on Disability [1] issued by the World Health Organiza-
tion, the proportion of the global population aged 60 and over is projected to double from
11% to 22%, with an estimated 15% of the world’s population experiencing disabilities by
2050. Severe disability encompasses conditions like quadriplegia, wherein individuals with
significant health issues or disabilities, such as impairments in movement and speech, are
confined to a bed throughout the year. They are unable to perform most actions, limited to
only basic functions like blinking, moving their cheeks, or twitching their fingers. Their
daily existence primarily involves gazing at the ceiling and contemplating. Individuals
facing severe disabilities lack the capacity to move independently or communicate with
others. However, their sensory and autonomic nervous systems remain unaffected, preserv-
ing their hearing, vision, touch, smell, taste, thinking, and cognitive abilities. Care robots
(CRs) are transforming the processes of care, therapy, assistance, and rehabilitation. The
Policy Department for Economic, Scientific and Quality of Life Policies of the European
Parliament categorized the CRs into the following four groups: robotic surgery, care and
socially assistive robots, rehabilitation systems, and training for health and care workers [2].

This study is part of the field of assistive robots for care and social interaction, where
connecting with others or operating machines is a huge challenge for those with severe dis-
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abilities due to their limitations. “Communication” denotes the process of sharing thoughts,
transmitting information, and establishing connections. Effective communication relies on
appropriate communication tools or media. These tools encompass language, written text,
bodily movements, facial expressions, and various interactive information formats. Certain
profound disabilities, such as amyotrophic lateral sclerosis (ALS), motor neuron disease
(MND), cerebral palsy (CP), spinal cord injury (SCI), and post-stroke intubation, can lead
to enduring impairments in both speech and mobility. These conditions can present signifi-
cant barriers to engaging with the external world, leading to challenges in articulation, the
inability to communicate directly, and even the potential for misunderstandings to arise
between caregivers and individuals living with these disabilities. Individuals like those
afflicted with ALS, MND, CP, SCI, and post-stroke intubation can significantly enhance
their quality of life through the assistance of augmentative communication systems [3].
Therefore, the development of assistive communication systems holds paramount impor-
tance in enhancing communication capabilities of individuals with disabilities. In summary,
resolving the communication predicament stands as the most pressing issue, promising to
infuse greater meaning and happiness into the lives of those severely disabled.

In recent times, computers have become an integral part of contemporary life, serv-
ing essential roles in work, entertainment, and daily routines. Nevertheless, for indi-
viduals afflicted with severe physical disabilities, operating a computer often presents a
formidable challenge. Thanks to the rapid progression of technology, numerous augmen-
tative and alternative communication (AAC) solutions have emerged as viable options
to facilitate communication and interaction for these patients [3–29]. These innovative
alternatives encompass a wide array of approaches, including eye tracking [8,9], head con-
trol devices [10–12], infrared control devices [12,13], voice control systems [14], auxiliary
physiological signal devices like electrooculogram (EOG) switches [15–17], electromyogra-
phy (EMG) switches [18–20], electroencephalography (EEG) devices [21–27], and scanning
auxiliary input tools [28]. Eye-tracking technology has shown substantial contributions in
various research areas particularly in health care, education, and industrially. Eye tracking
has been able to provide valuable support for individuals with severe disabilities as a use-
ful tool for human–computer interaction [9]. A head-operated computer mouse employs
two tilt sensors placed in the headset to determine the head position and function as a
simple head-operated computer mouse. One tilt sensor detects the lateral head motion to
drive the left/right displacement of the mouse. The other one detects the head’s vertical
motion to move up and down with respect to the displacement of the mouse. A touch
switch device was designed to contact gently with the operator’s cheek. The operator
may puff his cheek to trigger the device to perform single click, double clicks, and drag
commands [10]. An eyeglass-type infrared (IR)-controlled computer interface for the dis-
abled may serve to assist those who suffer from spinal cord injuries or other handicaps
in operating a computer. This design use of an infrared remote module fastened to the
eyeglasses could allow the convenient control of the input motion on the keys of a computer
keyboard and mouse which are all modified with infrared receiving/signal-processing
modules [13]. Physiological signals such as EOG, EMG, and EEG can be instrumental
in solving communication or computer control problems for severely disabled patients.
However, these signals are susceptible to interference from environmental factors, leading
to system instability. Scanning auxiliary input tools are polling-based devices, exemplified
by the Assistive Context-Aware Toolkit developed by Intel for Dr. Hawking, where users
only need to use controllable parts of their body to operate it. One drawback is its relatively
slower operation [28]. Additionally, some AAC options incorporate communication boards
integrated into AAC devices, enabling users with speech impairments to communicate by
interacting with predefined commands [4]. Moreover, AAC applications have been devel-
oped to empower users to express their thoughts, needs, and ideas through speech notation
technology [5]. The introduction of the tongue drive system has significantly improved
the interaction between individuals with severe disabilities and their surroundings [6]. In
parallel, certain systems rely on the recognition of specific breathing patterns to convey
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pre-established words, simplifying the process of patients expressing their needs [7]. Dr.
Wu, the author of this study, has also played a pioneering role in the development of the
Morse code Translator (MCT), aiming to address accessibility issues for individuals with
severe disabilities [29]. Regrettably, some of the AAC devices mentioned earlier [6–29]
necessitate users to wear them and rely on caregivers for their operation. In the absence of
assistance, patients are left with no alternative but to wait.

Over the past decade, due to the advancement of machine learning technology, the
reduction in computer computation and storage costs, and the accumulation of extensive
data sets, the field of artificial intelligence has undergone rapid development. This growth
has resulted in numerous breakthroughs in practical applications, including automated
financial transactions, real-time financial anomaly detection, and the widespread adoption
of self-driving vehicles and drones. These achievements underscore the vast potential
of artificial intelligence technology. In an effort to address the issue of severely disabled
patients relying on caregivers to assist them in donning and configuring AAC equipment,
this research project aims to create a contactless assistive communication system using
artificial intelligence image recognition modules. This groundbreaking system enables users
to interact with external devices without the need for physical contact. It employs facial
motion recognition to replace traditional keyboard and mouse functions, granting users
independent control over computers and various 3C products to meet their daily needs.

2. Materials and Methods

This study introduces a Morse code translation system (AIMcT) based on artificial
intelligence enhanced images. The system uses artificial intelligence technology to extract
facial features [30,31], encode facial movements, and then convert them into keyboard or
mouse control commands through fuzzy time recognition algorithms to achieve computer
interaction. The design approach to the AIMcT system is outlined below, and Figure 1
illustrates the architecture of an AIMcT system designed for severe disabilities.
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2.1. Face Feature Detection

The system uses the webcam to obtain the user’s face image, OpenCV for basic image
processing, the face anchor provided by Dlib to obtain the user’s detailed face features, and
finally sets the specific action to trigger the input signal according to Morse code.

2.1.1. Image Straightening

When the image captured with the camera is tilted, the system will automatically
adjust the image to the vertical direction so that Dlib’s image feature calculation can operate
normally. When using Dlib to obtain the subject’s facial feature anchor point, the confidence
value returned by the Dlib function is used as the basis for whether to rotate the image.
The confidence value is a number between 0 and 1. The system uses the function provided
by OpenCV to rotate the image until the system obtains a confidence value of the face
anchor point higher than the threshold, and then stops rotating the image. This system
sets the image rotation correction threshold to 0.7, and the angle of each image rotation is
±5 degrees.
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2.1.2. Image Compensation

In the image capture part of this study, a webcam with only 2 million pixels or more
is required. The effectiveness of the AIMcT system might be susceptible to factors like
the surrounding lighting conditions. This variable could affect the overall accuracy of the
AIMcT system’s outcomes. Regarding the impact of lighting, OPENCV provides relevant
compensation functions designed to mitigate the destabilizing effects of varying light
conditions on the system’s reliability. In this study, logarithmic transformation and gamma
transformation were employed for compensation in situations of excessive darkness and
excessive brightness, respectively.

Logarithmic transformation serves to expand the low gray value portion of the image,
thereby revealing more details in that range, while compressing the high gray value portion
to reduce excessive detail. This approach emphasizes the low gray value portion of the
image, as described in Equation (1).

S = c × logv + 1(1 + v × r) r ∈ [0,1] (1)

On the other hand, gamma transformation primarily serves for image correction,
rectifying images with excessively high or low gray values to enhance contrast, as expressed
in Equation (2).

S = c × rγ r ∈ [0,1] (2)

S is the output gray level of the pixel, c and γ are constants, r is the input gray level of
the pixel, and v + 1 is the base number.

This adjustment is aimed at enabling the Dlib module to acquire optimal facial
recognition images, thereby enhancing the system’s ability to accurately detect and track
facial movements.

2.1.3. Dlib Module

Dlib is a modern C++ toolkit that encompasses machine learning algorithms and tools
designed for developing complex software in C++ to address real-world problems. In
the AI Face feature extraction component, we utilized the Dlib image recognition module
(version 19.8.1) [30], as depicted in Figure 2, to identify the mouth and eye regions as
areas for autonomous movements. A facial movement recognition algorithm was created
using 68 feature points, with P0–P16 representing the facial contours, P17–P26 denoting
the eyebrows, P27–P35 corresponding to the nose, and P36–P47 and P42–P47 assigned to
the right and left eyes, respectively. The mouth region is delineated by P48–P54, which
represent the upper lip contours, P61–P63 for the inner contours of the upper lip, P55–P60
and P64 for the outer contours of the lower lip, and P65–P67 capturing the inner contours
of the lower lip.

While the mouth was in motion, we calculated the distance h between P62 and
P66 (Equation (3)). When h exceeds 10 pixels, it indicates an open mouth; otherwise, it
signifies a closed mouth. We recorded the duration of both mouth opening and closing.
We utilized the duration of both opening and closing times to dynamically adjust the
judgment threshold for distinguishing between long and short durations through a fuzzy
algorithm, thereby facilitating automatic identification. For instance, if the opening time
falls below the threshold, it is categorized as a short opening time (dot), while durations
above the threshold are classified as long opening times (dash). Subsequently, movement
encoding is based on the amalgamation of long and short opening times, where a brief
closing time signifies a command combination, while a prolonged closing time signifies a
command output.

h =
√
(P66x − P62x)

2 +
(

P66y − P62y
)2 (3)
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Figure 2. Dlib image recognition module [30].

2.1.4. Fuzzy Time Recognition Algorithm

The artificial intelligence-enhanced Morse code translation system’s management of
image command combinations hinges on the identification of mouth opening and closing
states, as well as the duration of the intervals between them. The artificial intelligence
Dlib module is used to detect the mouth opening and closing status. To enhance input
efficiency and accuracy, and maintain the stability of these command combinations, the
system dynamically adjusts the time threshold for opening/closing mouth movements.
This study employed a fuzzy time recognition algorithm (FTR) for precise time threshold
fine-tuning. Figure 3 illustrates the differentiation between long (dash) and short (dot)
signals, determined by the duration between mouth opening and closing. The system
combines the durations of closing and opening times to generate command combinations.
For instance, if a long opening time repeats three times, the system produces the letter “o.”
This system can generate characters as specified in the Morse code table [27].

Bioengineering 2023, 10, x FOR PEER REVIEW 6 of 15 
 

 
Figure 3. Schematic diagram of continuous mouth movements. 

The FTR [29] is described as follows: 
The block diagram of the fuzzy motion recognition algorithm is shown in Figure 4. 

The variable z−1 is a unit delay for the next step. 
  

Figure 3. Schematic diagram of continuous mouth movements.

The FTR [29] is described as follows:
The block diagram of the fuzzy motion recognition algorithm is shown in Figure 4.

The variable z−1 is a unit delay for the next step.
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For the purpose of achieving stable and effortless typing, the duration between mouth
opening and closing, designated as the input signal I(k), undergoes normalization and
constraint through the limitation function (LF).

LF =

{
x(k) = I(k), I(k) < thresholdk
x(k) = 1

3 I(k), I(k) ≥ thresholdk
(4)

For the kth frame, X(k), the prediction error ek of a fuzzy algorithm is estimated as

ek =
X(k)−Y(k− 1)

L
, (5)

where Y(k − 1) is the threshold at the k − 1 frame. The initial threshold value, Y(0), is
predefined. It can be estimated using the average power energy of the first M-frames. L is
the error tolerance range, which we define as 100 ms, when ek is larger than 1 or smaller
than −1. Thus ek is 1 or −1, respectively.

This study employed linguistic rules to establish the relationship between input and
output. In the process of fuzzification and defuzzification, fuzzy sets A and B were utilized,
with the input range of the fuzzifier and the output range of the defuzzifier spanning from
−1 to 1. To ensure algorithm performance and stability, a total of five fuzzy sets were
used. These five fuzzy sets are defined as follows: negative large (LN), negative small (SN),
zero (ZE), positive small (SP), and positive large (LP). The fuzzifier operated across the
range from A1 to A5, where A1 represents LN, A2 stands for SN, A3 corresponds to ZE, A4
signifies SP, and A5 denotes LP. Similarly, the defuzzifier covered the range from B1 to B5,
with B1 representing LN, B2 for SN, B3 for ZE, B4 for SP, and B5 for LP. According to the
fuzzy set calculations, the fuzzy inference rules are as follows.

If ei is Ai then e′k is Bi, i = 1, 2, . . . , 5, (6)

where ei is the input variable of fuzzifier in the fuzzy sets A and e′k is the output variable of
the defuzzifier in the fuzzy sets B.

Following this, a defuzzification process was employed to yield a finite output number.
In this study, the center of gravity method was utilized to calculate the output variable, e′k,
for the fuzzy threshold as follows:

e′k =
∑n

i=1 Si(ek)Bi(ek)

∑n
i=1 Si(ek)

, (7)

where Si is the membership grade of the ith premise in the inference rule, and Bi is the
central value of the ith conclusion in the inference rule.

The threshold value is then updated by

Y(k) = Y(k− 1) + e′k × L, (8)

thresholdk = Y(k)× 2. (9)

Finally, the output is 1 which represents dash, if I(k) ≥ thresholdk−1; otherwise, the
output is 0 which represents dot.
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2.2. Human–Computer Interface

The human–computer interface layout of AIMcT is shown in Figure 5. The left side
of the picture is the mode indicator. The “Record” button will record the operation time
data of the practice mode for subsequent system performance analysis and improvement.
The right side is the system function settings, including display and operation settings and
the “Save” button which can save the settings. When the system is executed again, the
previous settings will be automatically loaded. The “hints” field will prompt the user with
operation information. For example, the practice mode will prompt the input sequence of
long and short sounds of Morse code characters. The keyboard mode will prompt to turn
on and off the input mode to prevent accidental input, mode switching codes, etc. The last
“output” field can be used as the output display of characters in the practice mode, giving
feedback to the user to correct the input method, so as to achieve the learning purpose of
becoming familiar with Morse code input.

Bioengineering 2023, 10, x FOR PEER REVIEW 8 of 15 
 

2.2. Human–Computer Interface 
The human–computer interface layout of AIMcT is shown in Figure 5. The left side 

of the picture is the mode indicator. The “Record” button will record the operation time 
data of the practice mode for subsequent system performance analysis and improvement. 
The right side is the system function settings, including display and operation settings and 
the “Save” button which can save the settings. When the system is executed again, the 
previous settings will be automatically loaded. The “hints” field will prompt the user with 
operation information. For example, the practice mode will prompt the input sequence of 
long and short sounds of Morse code characters. The keyboard mode will prompt to turn 
on and off the input mode to prevent accidental input, mode switching codes, etc. The last 
“output” field can be used as the output display of characters in the practice mode, giving 
feedback to the user to correct the input method, so as to achieve the learning purpose of 
becoming familiar with Morse code input. 

 
Figure 5. The human–computer interface layout of AIMcT. 

3. Results 
3.1. AIMcT System 

The system designed in this study is shown in Figure 5. It uses a webcam to capture 
images, the Dlib module to capture facial movement features and detect movement dura-
tion, then integrates it with the image Morse code fuzzy recognition system established in 
this research. Integrate and convert Morse code into corresponding text or instructions: 
This system has three primary modes: keyboard, mouse, and practice. In addition to being 
used as a replacement for the keyboard and mouse, the system can also be used to famil-
iarize users with the system through the training mode, and the three modes can be freely 
switched. This system also includes auxiliary functions such as mouse movement speed 
adjustment, image size adjustment, automatic image straightening and light compensa-
tion, making the system operation more stable and smooth. 

3.1.1. Automatic Image Straightening 
In the image straightening part, the system will automatically straighten the image 

based on the confidence value returned from the Dlib function. Figure 6 shows a 45-degree 
tilted image. The system cannot detect the facial anchor point. After nine adjustments of 
the system correction function, the system can accurately detect facial anchor points 

Figure 5. The human–computer interface layout of AIMcT.

3. Results
3.1. AIMcT System

The system designed in this study is shown in Figure 5. It uses a webcam to capture
images, the Dlib module to capture facial movement features and detect movement dura-
tion, then integrates it with the image Morse code fuzzy recognition system established
in this research. Integrate and convert Morse code into corresponding text or instructions:
This system has three primary modes: keyboard, mouse, and practice. In addition to being
used as a replacement for the keyboard and mouse, the system can also be used to familiar-
ize users with the system through the training mode, and the three modes can be freely
switched. This system also includes auxiliary functions such as mouse movement speed
adjustment, image size adjustment, automatic image straightening and light compensation,
making the system operation more stable and smooth.

3.1.1. Automatic Image Straightening

In the image straightening part, the system will automatically straighten the image
based on the confidence value returned from the Dlib function. Figure 6 shows a 45-degree
tilted image. The system cannot detect the facial anchor point. After nine adjustments of
the system correction function, the system can accurately detect facial anchor points
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3.1.2. Automatic Image Compensation

The image automatic compensation capability of the AIMcT system is illustrated in
Figure 7. Figure 7a depicts a state with no lighting, where the Dlib module is unable to
capture facial features. Following the system’s automatic light compensation calculation,
as shown in Figure 7b, the image brightness is enhanced. This enables the Dlib module to
function effectively, ensuring the AIMcT system’s proper operation, even during night-time.
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3.2. AIMcT System Performance Test

In this study, there are twenty-three human-typed data sets: thirteen data sets typed by
wireless experts who are skilled in Morse code typing, and the other ten data sets typed by
a person with a spinal cord injury. In Figure 8, the average recognition rates of expert data
and disabled individuals are 99.83% and 98.6%, respectively. To observe the adjustment
threshold of Morse code, we use the disability data set 2 to describe the recognition results,
as shown in Figure 9. Figure 9 displays Morse code sequences typed by the disabled
person. The symbol definitions are as follows: the ordinate represents the Morse code time
length in milliseconds (ms); the abscissa represents the points of Morse code sequences;
“∆” indicates the long element (dash or long-silence); “·” represents the short element (dot
or short-silence); “-.” refers to the predictive threshold; the green circle indicates the points
of error recognition.
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This result shows that through the fuzzy algorithm, disabled people can use this
system like experts, and it also proves that the fuzzy algorithm is effective in identifying
unstable Morse codes produced by disabled people.

3.3. Install and Apply

In order to be able to execute on different operating systems (Arch Linux (×86),
Windows 11 (64 bit ×86), and Raspberry Pi OS (64 bit arm64)), this research packages the
program code and related packages into program executable files that can be executed on
the operating system. When installing in the future, users only need to copy the folder
containing the executable file and related resources to the user’s computer. Then, we can
use any APPs on PC through operating the AIMcT. Here, Apps is an abbreviation for
application. An app is a piece of software. It can run on the Internet, on your computer.
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Figure 10 shows the time series and encoded data of a user typing “a” to “z” using
AIMcT in keyboard mode through a webcam and output to Microsoft Notepad. In addition,
AIMcT also has a mouse function, which can be switched to mouse mode through a mode
switching code [29].
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4. Discussion

Aside from offering an alternative to computer usage for individuals with severe
physical disabilities, this study serves the more critical purpose of addressing the limitations
of the previously examined MCT system [29].

When comparing MCT and AIMcT in Table 1, the MCT system, built around a single
microchip, demands intricate software and hardware design. Its development entails a
prolonged period, with a complex production process that presents maintenance challenges.
Human resources are needed for both production and upkeep. Additionally, external switch
positioning assistance is necessary during use, and system updates are not straightforward.

Table 1. Comparison between MCT and AIMcT.

MCT AIMcT

Production hardware software
Making process time consuming time saving

Price higher lower
Core microprocessor computer/embedded system

External switch contact contactless
Update difficult easy

Maintain difficult easy

In contrast, the AIMcT system can be described as application software compatible
with both computers and embedded systems. Its development is purely software-based,
resulting in significant time savings. Thanks to recent advancements in computer perfor-
mance, the AIMcT system exhibits remarkable stability and speed, allowing for effortless
updates whenever needed. Maintenance is streamlined and hassle-free.

5. Conclusions

The AI image Morse code translation system studied in this research allows users
to use it without wearing any devices. This breakthrough technology introduces a novel
assistive input tool designed to benefit individuals with severe disabilities, granting them
unrestricted access to computers.

While Morse code forms the cornerstone of the system, its implementation is greatly
facilitated by efficient recognition algorithms equipped with fuzzy time-tracking capabili-
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ties. This remarkable feature minimizes the learning curve for users, as their proficiency
naturally influences system performance. As the adage goes, practice yields perfection.
With dedicated practice, every user can harness this system effectively to communicate and
interact with others and enhance their quality of life.

Additionally, this system addresses the longstanding challenge of relying on exter-
nal assistance for the installation and adjustment of MCT. Moreover, streamlining the
production process, reducing costs, simplifying maintenance, and facilitating updates all
contribute to a substantially improved adoption rate. Through the utilization of this system,
those in need can rediscover the true essence of life.
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