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Abstract: We propose a novel transfer learning framework for pathological image analysis, the
Response-based Cross-task Knowledge Distillation (RCKD), which improves the performance of the
model by pretraining it on a large unlabeled dataset guided by a high-performance teacher model.
RCKD first pretrains a student model to predict the nuclei segmentation results of the teacher model
for unlabeled pathological images, and then fine-tunes the pretrained model for the downstream
tasks, such as organ cancer sub-type classification and cancer region segmentation, using relatively
small target datasets. Unlike conventional knowledge distillation, RCKD does not require that the
target tasks of the teacher and student models be the same. Moreover, unlike conventional transfer
learning, RCKD can transfer knowledge between models with different architectures. In addition,
we propose a lightweight architecture, the Convolutional neural network with Spatial Attention
by Transformers (CSAT), for processing high-resolution pathological images with limited memory
and computation. CSAT exhibited a top-1 accuracy of 78.6% on ImageNet with only 3M parameters
and 1.08 G multiply-accumulate (MAC) operations. When pretrained by RCKD, CSAT exhibited
average classification and segmentation accuracies of 94.2% and 0.673 mIoU on six pathological
image datasets, which is 4% and 0.043 mIoU higher than EfficientNet-B0, and 7.4% and 0.006 mIoU
higher than ConvNextV2-Atto pretrained on ImageNet, respectively.

Keywords: deep learning; nuclei segmentation; knowledge distillation; contrastive learning; self
supervised learning

1. Introduction
1.1. Background

Pathological image analysis aims to extract useful information from pathological
images commonly acquired through a whole slide scanner or camera. It covers various
tasks, such as classification, segmentation, and detection of cells, nuclei, or cancerous
regions, and is one of the core technologies for computer-aided diagnosis. Since deep
learning exhibited outstanding performance in the ImageNet challenge [1], researchers
have actively applied deep learning to pathological image analysis. Deep learning showed
excellent performance in multiple challenges such as mitosis detection [2,3], breast cancer
classification [4], and gland segmentation [5]. Currently, deep learning is widely used as a
core algorithm in many pathological image analysis challenges [6]. In spite of that, there is
a lot of room for improvement.

One of the main challenges is the difficulty of building a large-scale dataset for each
pathological image analysis task. Collecting a large amount of data is restricted by privacy
concerns. Moreover, labeling pathological images is more difficult and expensive than ordi-
nary images. For example, training a deep learning model that predicts the aggressiveness
of a tumor requires a dataset containing mitosis counting, cell segmentation labels, and the
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patient’s prognosis. Building such a dataset consumes significant time and effort from
skilled pathologists [7].

Transfer learning is widely used in pathological image analysis to overcome the scarcity
of labeled data and achieve high performance. A widely used approach is the pretraining
and fine-tuning strategy, which first learns general knowledge by pretraining a model for an
upstream task that can share knowledge with the target task using a large dataset, and then
fine-tunes the pretrained model for the target task, also called the downstream task, using
a relatively small target dataset [8,9]. However, because the characteristics of pathological
images differ significantly from those of general images, transferring knowledge learned
from a general image dataset, such as ImageNet [10], to a pathological image analysis task
is less effective than ordinary transfer learning settings.

As an alternative, researchers have actively studied to learn features from unlabeled
pathological images [11–17]. Recently, various unsupervised and self-supervised learning
techniques, such as contrastive learning and masked autoencoders, have exhibited excellent
performance in many computer vision tasks [18]. However, self-supervised learning
algorithms do not perform as well in pathological image analysis as it does in other areas of
computer vision, as described in Section 1.2.1. As a result, none of the existing supervised
or self-supervised pretraining methods showed sufficient performance in pathological
image analysis.

In addition, pathological images generally have significantly higher resolution than
ordinary images, resulting in substantial increases in computational and memory require-
ments. For example, The Cancer Genome Atlas (TCGA) dataset [19] consists of images
with a resolution of 20,000 × 40,000 pixels, which is hundreds of times the size of im-
ages in conventional datasets. Most pathological image analysis models decompose the
whole-slide images (WSI) into patches to reduce the overhead. Nevertheless, memory
and computational load is still an important issue in pathological image analysis. Many
studies have been conducted to reduce deep learning models, but more research is needed
to process high-resolution pathological images. Consequently, to achieve high performance
in pathological image analysis in a general computing environment, we need not only a
pretraining method that is effective in learning knowledge from unlabeled pathological
images but also a lightweight architecture to reduce computational and memory overhead.

1.2. Related Work

In this subsection, we briefly introduce prior studies on self-supervised learning for
pathological image analysis and efficient network architectures. We also present prior work
on knowledge distillation and visual attention models on which the proposed methods
are based.

1.2.1. Self-Supervised Learning for Pathological Image Analysis

Inspired by the success of self-supervised learning (SSL) in computer vision, many
researchers have applied these techniques to pathological image analysis. Boyd et al. [11] ap-
plied a generative model-based learning method called visual field expansion. Ciga et al. [12]
and Dehaene et al. [13] applied contrastive learning techniques such as SimCLR [20] and
MoCoV2 [21] to pathological image analysis.

However, existing self-supervised pretraining techniques are less effective in patho-
logical image analysis than in other computer vision fields. Zhang et al. [14] and Li
et al. [15] reported analysis results suggesting that contrastive learning techniques are
less effective for pathological image analysis. Koohbanani et al. [16] show a significant
difference in performance between domain-agnostic and domain-specific tasks, suggesting
that pathological images should be analyzed using pathological image-specific learning
methods. Lin et al. [17] suggest a method to improve the performance of contrastive learn-
ing on pathological images by increasing the self-invariance, intra-invariance within a WSI,
and inter-invariance across WSIs of the feature. However, their method requires clustering
the feature vectors in each epoch, resulting in a significant increase in memory requirements.
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1.2.2. Knowledge Distillation

Knowledge distillation (KD) is a technique for improving the training of a relatively
small student model by exploiting the knowledge of a large and powerful teacher model.
KD has been widely used to compress heavy models or to improve the performance of
lightweight models. In the early days of KD, the student model learned to mimic the
logits of the teacher model for each training sample [22], which is called response-based
knowledge distillation (RKD). In a subsequent study, Adriana et al. [23] proposed feature-
based knowledge distillation, which trains the student model using the intermediate
features of the teacher model, enabling a more accurate approximation of the teacher
model [24]. However, KD is primarily used under the assumption that the teacher and
student models perform the same task in the same domain. KD performance often severely
decreases when the task or domain of the student model differs from that of the teacher
model. Li et al. [25] argued that the limitation comes from the fact that KD mainly transfers
knowledge about global representation, and KD is less effective in transferring knowledge
about local representation. To address this problem, they suggested using sub-modules to
complement local knowledge.

A few previous studies apply KD to pathological image analysis. DiPalma et al. [26]
propose a method for improving the computational efficiency of applying KD between
models with the same structure but different input resolutions, and Javed et al. [27] pro-
posed using additional modules to transfer knowledge stage-by-stage to learn robust
tissue heterogeneity. Zhang et al. [28] presented a method of distilling knowledge from
teacher models trained on diverse pathological datasets to help the student model learn
the characteristic features of various pathological images.

However, these studies aim to reduce the size of a high-performance model that
already exists and do not improve the performance of the high-performance model. It is
hard to improve the performance of a model for a pathological image analysis task through
conventional KD. Since the student model distills knowledge from the teacher model,
a strong teacher model is a key requirement for KD. In pathological image analysis, where
building a large-scale dataset is difficult, it is challenging to build a teacher model that
performs the same task as the student model and is powerful enough to guide the learning
of the student model.

1.2.3. Efficient Network Architectures for Image Analysis

There is a large body of previous work on the design of efficient network architectures.
VGG16 [29] demonstrated that stacking multiple convolution filters with a kernel size of
3× 3 can approximate a large kernel in image classification tasks. SqueezeNet [30] reduced
the number of parameters using 1× 1 convolutions and squeeze-expand modules, achiev-
ing similar performance to AlexNet with 50× fewer parameters. ResNet [31] proposed
a bottleneck structure to reduce the number of parameters in convolution blocks. Mo-
bileNet [32] reduced the number of parameters by up to 11% by decomposing convolution
operations into a depthwise convolution and a pointwise convolution.

MobileNetV2 [33] achieved outstanding performance with a small number of param-
eters and computation using an inverted residual block and a linear bottleneck. Most of
the recent architectures based on convolution or self-attention, such as EfficientNet [34],
EfficientNetV2 [35], CoAtNet [36], ConvNext [37], ConvNextV2 [38], EfficientFormer [39],
and EfficientFormerV2 [40], that exhibited good performance on ImageNet adopt the
MBConv module proposed in [33]. In particular, CoAtNet proposes an architecture that
combines CNN and self-attention. ConvNext achieved higher performance than Swin-
B [41] of similar size by modernizing ResNet with several recent techniques such as the
AdamW optimizer, a patchfy stem, large kernels of 7× 7 size, fewer activation functions,
and layer normalization.
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1.2.4. Visual Attention

The attention mechanism allows the model to concentrate on essential features by
assigning a weight to each feature based on its relevance. In general image process-
ing, attention mechanisms are often categorized into channel attention, which learns
the feature type to focus on, and spatial attention, which learns the locations of impor-
tant features. Different channels of a feature map in a deep neural network represent
different objects or concepts [42]. Hu et al. [43] proposed SENet, which estimates the
importance of each channel and scales the channels accordingly. Gao et al. [44] pointed
out that SENet is a simple structure designed to focus on important global information, so
a more sophisticated structure is needed to focus on details better. Lee et al. [45] further
reduced the size of SENet by applying a lightweight channel-wise fully-connected (CFC)
layer. However, channel attention models can only learn what to focus on, but not where.
Chen et al. [42], Park et al. [46], Woo et al. [47] demonstrated that using a combination of
spatial attention and channel attention is superior to using channel attention alone. Wang
et al. [48] showed that utilizing self-attention-based spatial attention can improve the
performance of CNNs.

Dosovitskiy et al. [49] propose a vision Transformer (ViT), which modifies the Trans-
former network to fit image processing and achieves higher performance than CNN on the
ImageNet dataset for the first time. Subsequent studies propose various image processing
models based on self-attention, such as SwinTransformer [41], which extends ViT to a
multi-scale structure, and CoAtNet, which combines separable convolution and multi-head
self-attention (MSA).

1.3. Research Objective

In this study, we aim to develop a pretraining method and a lightweight network
architecture to overcome the aforementioned challenges and improve the performance
and efficiency of various pathological image analysis tasks. To this end, we propose the
Response-based Cross-task Knowledge Distillation (RCKD) framework to learn knowledge
from unlabeled pathological images using a high-performance model developed for a
different task. We also propose the Convolutional neural network with Spatial Attention by
Transformer (CSAT), an effective and efficient architecture designed as a backbone network
for high-resolution image analysis. CSAT integrates multiple techniques that have shown
to be effective in recent studies on lightweight architectures and further improves the
performance through a novel Spatial Attention by Transformer (SAT) module. We expect
that the results of this study will help reduce the cost of pathological image analysis and
improve diagnostic performance by providing pathologists and researchers with fast and
efficient diagnostic and research methods.

2. Materials and Methods
2.1. Datasets

In this study, we used different datasets for three specific purposes. For the pretraining
of the model, we used the TCGA dataset, which consists of a large number of high-
resolution pathological images. For fine-tuning and evaluation of the downstream tasks,
we used six datasets described in Section 2.1.2. In addition, we used the ImageNet dataset
to evaluate the performance and efficiency of network architectures in the analysis of
general images not limited to pathological images.

2.1.1. Pretraining Dataset

TCGA dataset is one of the largest publicly available cancer genome datasets collected
primarily for use in the diagnosis, treatment, and prevention of cancer. TCGA dataset
includes more than 20,000 WSIs of stained tissue samples that belong to 33 different cancer
types. TCGA dataset is widely used in various fields of pathological image analysis.
From the TCGA dataset, we collected 11,716 WSIs from 32 different types of cancer. We
excluded the formalin-fixed paraffin-embedded (FFPE) slide images because their quality
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was poor. These samples were collected from a variety of organs, including the breast,
brain, ovary, lung, kidney, prostate, stomach, and liver. Then, we cut the selected WSIs into
non-overlapping patches of 1024× 1024 size at 20×magnification. We removed patches
whose average intensity values are not in the range of [50, 245] because most of such patches
consist of backgrounds rather than tissues. In this way, we collected 9,229,324 tissue patches.
The types of studies and the number of whole slide imaging (WSI) are presented in Table A1.
Among them, we randomly selected 400,000 patches and used them for pretraining.

2.1.2. Downstream Tasks and Datasets

For the fine-tuning and evaluation of the pretrained models, we used four segmenta-
tion datasets and two segmentation datasets. For the classification tasks, we used BACH
(microscopy) [50], CRC [51], BreakHis [52], and Lymph [53] datasets.

• The breast cancer histology images (BACH) microscopy dataset contains 400 hema-
toxylin and eosin (H&E) stained microscopy image patches categorized into four classes:
normal, benign, in situ carcinoma, and invasive carcinoma. Each class has 100 training
image patches. The average patch size is 2048× 1536 pixels.

• The colorectal cancer (CRC) dataset was collected for the classification of tissue areas
from H&E stained WSIs of colorectal adenocarcinoma patients. It includes a total of
100,000 non-overlapping image patches in the training dataset extracted from 86 WSIs
of cancer and normal tissues. The average patch size is 224× 224 pixels. The patches
were manually labeled by pathologists into nine tissue classes: adipose (ADI), back-
ground (BACK), debris (DEB), lymphocytes (LYM), mucus (MUC), smooth muscle
(MUS), normal colon mucosa (NORM), cancer-associated stroma (STR), and colorec-
tal adenocarcinoma epithelium (TUM). The validation dataset includes 7180 image
patches extracted from 50 colorectal adenocarcinoma patients.

• The breast cancer histopathological (BreakHis) dataset was collected for binary
breast cancer classification. It contains a total of 7909 breast tumor tissue image
patches from 82 patients, consisting of 2480 benign and 5429 malignant tumor patches.
BreakHis includes four types of benign tumors: adenosis, fibroadenoma, phyllodes
tumor, and tubular adenoma, as well as four types of malignant tumors: ductal carci-
noma, lobular carcinoma, mucinous carcinoma, and papillary carcinoma. The average
patch size is 700× 460 pixels.

• The Lymph dataset was collected for the classification of malignant lymph node
cancer. It provides a total of 374 training image patches, with 113 image patches of
chronic lymphocytic leukemia (CLL), 139 image patches of follicular lymphoma (FL),
and 122 image patches of mantle cell lymphoma (MCL). The average patch size is
1388× 1040 pixels.

For the segmentation tasks, we used the BACH (WSI) [50] and GlaS [54] datasets.

• The BACH WSI dataset consists of 10 WSIs with an average size of 40, 517× 58, 509
scanned at a resolution of 0.467 µ/pixel. It includes pixel-wise annotations in four
region categories (normal, benign, in situ carcinoma, and invasive carcinoma). In this
study, we cut the WSIs into 4,453 non-overlapping patches of 1024× 1024 size at 10×
magnification.

• The gland segmentation in colon histology images (GlaS) dataset is the benchmark
dataset for the Gland Segmentation Challenge Contest at MICCAI in 2015. It consists
of 165 image patches derived from 16 H&E stained histological sections of stage T3
or T42 colorectal adenocarcinoma. Each section originates from a different patient.
The WSIs were digitized at a pixel resolution of 0.465 µm. The GlaS dataset consists of
74 benign and 91 malignant gland image patches, each with pixel-wise annotations.
The average patch size is 775× 522 pixels.

Since the BACH (microscopy), BreakHis, and Lymph datasets only release training
sets to the public, we randomly split their training sets by 6:2:2 and used them for training,
validation, and testing, respectively. The CRC and GlaS datasets provide the training
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and validation sets but not the test set. We used 80% of their training sets for training
and 20% for validation and measured the performance on the validation set. The BACH
(WSI) dataset consists of ten WSIs. We used five of them for training, three for validation,
and two for testing. Table 1 summarizes the task, classes, data size, number of patches,
magnification ratio, and size of patches for the downstream datasets.

Table 1. Pathological image datasets for target tasks. (BACH: the BreAst Cancer Histology dataset,
CRC: ColoRectal Cancer dataset, BreakHis: the Breast cancer Histopathological dataset, GlaS: the
Gland Segmentation in colon histology images dataset).

Datasets Tasks Classes Data Size
Number of Patches
[Train, Validation,

Test]

Magnification/
Patch Size

BACH [50]
(microscopy)

Breast cancer subtype
classification

Normal, Benign,
In situ carcinoma,

Invasive carcinoma

400
patches

400
[240, 80, 80]

20×/
2048×1536

CRC [51]
Colorectal cancer and

normal tissue
classification

Adipose, Background,
Debris,

Lymphocytes, Mucus,
Smooth muscle,

Normal colon mucosa,
Cancer-associated

stroma,
Colorectal

adenocarcinoma
epithelium

107,180
patches

107,180
[80,000, 20,000,

7180]

20×/
224×224

BreakHis [52]

Malignant and benign
tissue

classification in breast
cancer

Benign tumors,
Malignant tumors

7909
patches

7909
[4745, 1582, 1582]

4×, 10×, 20×,
40×/

700×460

Lymph [53] Malignant lymph node
cancer classification

Chronic lymphocytic
leukemia,

Follicular lymphoma,
Mantle cell lymphoma

374
patches

374
[224, 75, 75]

40×/
1388×1040

BACH [50]
(WSI)

Breast cancer
subtype segmentation

Normal, Benign,
In situ carcinoma,

Invasive carcinoma

10
WSIs

4483
[2388, 1214, 881]

10×/
1024×1024

GlaS [54] Gland segmentation Benign gland, Malignant
gland

165
patches

165
[68, 17, 80]

20×/
775×522

2.1.3. General Image Dataset

We used the ImageNet dataset to evaluate the performance and efficiency of model
architectures in general image classification. The ImageNet large-scale visual recognition
dataset includes 1000 classes, ranging from common objects such as ‘banana’ to abstract
concepts like ‘bubble’. It contains 1,281,167 training images, 50,000 validation images,
and 100,000 test images. The average image size within the dataset is approximately
469× 387 pixels.

2.2. Response-Based Cross-Task Knowledge Distillation

The pretraining and fine-tuning strategy is a widely used approach to achieve high
performance with relatively small datasets. However, existing pretraining methods are
ineffective for pathological images, as described in the previous section. To overcome
this limitation, we repurpose knowledge distillation to learn knowledge from unlabeled
pathological images. RCKD is a novel transfer learning framework for pathological image
analysis, which can be used as an alternative to the existing pretraining techniques.
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Figure 1 illustrates the overall procedure of RCKD. The RCKD framework pretrains
the backbone of a pathological image analysis model as a student model with the guidance
of a high-performance teacher model. The teacher model is a high-performance network
developed for a different task, such as nuclei segmentation, that can share knowledge with
pathological image analysis tasks. First, the teacher model predicts binary nuclei segmenta-
tion maps of unlabeled pathological images. Then, the student model that combines the
backbone and a segmentation head learns to output the binary nuclei segmentation map as
close as possible to the output of the teacher model. At the same time as it is learning nuclei
segmentation with the prediction of the teacher model as a pseudo label, the student model
learns features useful for pathological image analysis. After pretraining, we remove the
nuclei segmentation head from the student model, combine the pretrained backbone with
a new head for the downstream task, and fine-tune it using the target data. The detailed
procedure is described in Sections 2.2.1 and 2.2.2.

Pretraining dataset 

(TCGA)

Nuclei

segmenation map

Classification tasks

Teacher model

Student model

Pretrained nuclei segmenation model

Backbone for pathological 

image analysis

Knowledge 

distillation loss

Segmentation

head

Backbone for pathology 

image analysis

Segmentation tasks

Segmentation

head

Classification

head

BACH
(microscopy)

CRC

BreakHis Lymph

BACH
(WSI)

GlaS

(a) (b)

Figure 1. The overall procedure of RCKD. (a) Pretraining from unlabeled pathological images.
(b) Fine-tuning for downstream tasks.

Nuclei segmentation is an effective upstream task to pretrain pathological image anal-
ysis models for the following reasons. First, pathological images are generally composed of
textures rather than large-scale objects with fixed shapes. Therefore, learning low-level local
features is crucial in most pathological image analysis tasks. Since nuclei segmentation is a
pixel-level classification task, it drives the model to learn local and positional information.
Second, a cell is the basic unit of an organ [55], and the nucleus is the core component
of a cell. Most pathological images contain many nuclei and can, therefore, be used as
training data for nuclei segmentation. Third, since nuclei have less shape variation than
other components in pathological images, the features learned for nuclei segmentation
can be useful for analyzing other types of pathological images. Fourth, the state-of-the-art
(SOTA) nuclei segmentation models provide excellent performance and are sufficient to
guide the pretraining of the student model.

2.2.1. Pretraining from Unlabeled Pathological Images

The teacher model takes an unlabeled pathological image x as input and predicts a
binary nuclei segmentation map as Equation (1).

y = fteacher(x), f or x ∈ D, (1)
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where fteacher(·) is a teacher model, D ⊂ R3xHxW is a set of pathological images without
segmentation labels, and y ∈ RHxW is a probability map predicted by fteacher(·), where yij is
the estimated probability that a pixel xij belongs to a nuclei region. Then, we convert y into
a binary segmentation map N(x) ∈ {0, 1}HxW with a threshold value α, as Equation (2).

N(x)ij =

{
1 if yij >= α

0 otherwise,
(2)

where α = 0.5 in our study.
For the teacher model fteacher(·), we used StarDist [56] pretrained on the MoNuSeg2018 [57]

and TNBC [58] datasets. StarDist won the CoNIC challenge in 2022 [59]. StarDist segments
nuclei regions using a U-Net [60] based model and represents them as star convex polygons.
The structure and hyperparameters of StarDist are presented in Figure 2. Figure 3 displays
the pathological image samples used for pretraining and the pseudo label N(x) estimated
by StarDist.

5
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8
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6
4

1
2
8
x
1
2
8

1 132 32 32 12864

64 64

128 128

128 128

256 64

32128

2
5
6
x
2
5
6

5
1
2
x
5
1
2
Conv3x3

Max pooling

Upsampling

Concatenate

32

64

32

Conv1x1

Stage Input size Ouput size
Teachder model

hyper-parameters

Encoder

Stage1 512x512 256x256 L=2, D=32, Conv3x3

Stage2 256x256 128x128 L=2, D=64, Conv3x3

Stage3 128x128 64x64 L=2, D=128, Conv3x3

Bridge

Stage4 64x64 128x128 L=2, D=128, Conv3x3

Decoder

Stage5 128x128 256x256 L=2, D=64, Conv3x3

Stage6 256x256 512x512 L=2, D=32, Conv3x3

Stage7 512x512 512x512
L=2, D=32, Conv3x3

L=1, D=128, Conv3x3

L=1, D=1, Conv1x1

Figure 2. The structure and hyperparameters of the teacher model, StarDist. The kernel size and
stride of the Max pooling are two in all layers. For upsampling, StarDist utilizes bilinear interpolation
with an upsampling ratio of two.

To pretrain the backbone network via RCKD, we combine it with a segmentation head
and train the combined model to predict the segmentation map identical to the pseudo
label N(x) for each image x ∈ D. In this study, we implemented the backbone network
using a novel lightweight network, CSAT, described in Section 2.3, and the segmentation
head using the U-Net decoder. The pretraining loss LKD(θ|x) is defined as Equation (3).

LKD(θ|x) =
1

H ×W

H

∑
i

W

∑
j

CE( fstudent(xij; θ), N(xij)),

θ = argminθ

1
|D| ∑

x∈D
LKD(θ|x)

(3)

where fstudent(x; θ) is a student model parameterized by θ and CE(·, ·) denotes the cross-
entropy loss. After pretraining, we transfer the student model fstudent(x; θ), replace the
nuclei segmentation head with a new head for the target task, and fine-tune it on the
target data.
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acc blca brca

gbm hnsc kich

lusc meso ov

(a)

acc blca brca

gbm hnsc kich

lusc meso ov

(b)

Figure 3. Pathological images in the TCGA dataset by organ (a) and the corresponding binary
nuclei segmentation maps estimated by the teacher model, StarDist (b). The blue color indicates
the estimated nuclei regions. (acc: adrenocortical carcinoma, blca: bladder urothelial carcinoma,
brca: breast invasive carcinoma, gbm: glioblastoma multiforme, hnsc: head and neck squamous cell
carcinoma, kich: kidney chromophobe, lusc: lung squamous cell carcinoma, meso: mesothelioma,
and ov: ovarian serous cystadenocarcinoma).

Following the unified scheme for ImageNet (USI) [61], we first pretrain the student
model on ImageNet data to improve performance and training speed before RCKD. We
optimize the student model using the layer-wise adaptive rate scaling (LARS) optimizer [62]
with an initial learning rate of zero and a batch size of 64. LARS automatically adjusts the
learning rate for each layer, allowing training to proceed even when the initial learning
rate is set to zero. We normalize the input image to 512× 512 size by bilinear interpolation
and warm up for 10 epochs out of 100 training epochs. The pretraining procedure is
summarized in Algorithm 1.

Algorithm 1 Pretraining Procedure
1: W . WSI in pretraining dataset (TCGA)
2: KD . Knowledge distillation
3: fteacher . Teacher model
4: fstudent . Student model
5: Mag . Magnification ratio of WSI
6: Psize . Patch size
7: Sn . Number of samples for pretraining
8: procedure PRETRAIN(W, KD, fteacher , fstudent, Mag, Psize, Sn)
9: P = GetPatches(W, Mag, (Psize, Psize)) . Get patches from a WSI

10: Ptissue = SelectTissuePatches(P) . Discard background patches
11: D = RandomSampling(Ptissue, Sn) . Select patches for pretraining
12: for all x in D do
13: N = fteacher(x) . Make pseudo label
14: Loss = KD( fstudent(x), N) . Knowledge distillation
15: Backpropagate(Loss, fstudent)

16: return fstudent

* In this study, Mag = 20, Psize = 1024, and Sn = 400, 000.



Bioengineering 2023, 10, 1279 10 of 24

2.2.2. Fine-Tuning for Pathological Image Analysis Tasks

To transfer the knowledge of the pretrained student model to the downstream task,
we first build a model ftarget(x; θ) for the target task by replacing the nuclei segmentation
head used to pretrain the student model with a new head for the target task. Then, we
fine-tune ftarget(x; θ) by supervised learning to minimize a task-specific loss on the labeled
target dataset. In this study, we fine-tuned ftarget(x; θ) to four classification datasets: BACH
(microscopy), CRC, BreakHis, Lymph, as well as two segmentation datasets: BACH (WSI),
GlaS. We used focal loss [63] to mitigate potential problems caused by data imbalance.

The model for a classification task predicts the probability that the input image belongs
to each class in the form of a vector as Equation (4).

ys(x) = ftarget(x; θ) ∈ RT , (4)

where T is the number of target classes. We fine-tune the parameter θ to minimize the focal
loss defined as Equation (5).

Lclassi f ication(θ|x) = −α(1− ys(x)t)
γ log ys(x)t, (5)

where (x, t) ∈ Dtarget is a pair of target data, and its class label and parameters α and γ are
set to 0.25 and 2, respectively.

A segmentation model predicts the probability of each target class (e.g., an object or
region) for each pixel in the form of a 3D map as Equation (6).

ys(x) = ftarget(x; θ) ∈ RT×H×W , (6)

where H×W is the size of the input image, and T is the number of target objects or regions.
The loss function for the fine-tuning of a segmentation task is defined as Equation (7).

Lsegmentation(θ|x) = −
1

HxW

H

∑
i

W

∑
j

α(1− ys(x)tij)
γ log ys(x)tij (7)

When fine-tuning the model for classification tasks, we implemented classification heads
by combining a linear layer and a softmax layer. For segmentation tasks, we built segmentation
heads following the decoder of U-Net. To reduce the potential bias caused by the composition
of the training, validation, and test sets, which can be serious in pathological image analysis
where the number of samples is usually small, we repeated the data splitting and experiment
five times by changing the random seed and evaluated the models by the average performance.
The fine-tuning procedure is summarized in Algorithm 2.

Algorithm 2 Fine-tuning Procedure
1: ftarget . Pretrained student model
2: D . Target dataset
3: N f old . Total number of folds
4: Nepoch . Total number of training epochs
5: Nstop . Patience number for early stopping
6: procedure FINE-TUNE( ftarget, D, N f old, Nepoch, Nstop)
7: for fold in range [1, N f old] do
8: Xtrain, Ytrain, Xval , Yval , Xtest, Ytest = LoadData(D, fold)
9: for epoch in range [1, Nepoch] do

10: for i in range [1, |Xtrain|] do
11: Ltrain = L f ocal( ftarget(Xtrain(i)), Ytrain(i))
12: Backpropagate(Ltrain, ftarget)

13: LVal =
1

|Xval |) ∑
|Xval |
j=1 L f ocal( ftarget(Xval(j), Yval(j))

14: CheckForEarlyStopping(Lval , Nstop)

15: Atest =
1

|Xtest | ∑|Xtest |
k=1 Accuracy( ftarget(Xtest(k)), Ytest(k))

16: Aaverage = 1
N f old

∑
N f old
f old=1 Atest( f old)

17: return Aaverage

* In this study, N f old = 5, Nepoch = 200, and Nstop = 20.
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2.3. Convolutional Neural Network with Spatial Attention by Transformer

In this section, we present CSAT, a lightweight network designed for use as a general-
purpose backbone network in high-resolution pathological image analysis. CSAT combines
multiple techniques that have been proven effective in recent studies on lightweight net-
works. In addition, we improved its performance by adding a novel SAT module. Moreover,
we reduce the computational and memory requirements of the Transformer for comput-
ing spatial attention by estimating attention weights at a reduced resolution and then
upsampling the attention map to the size of the feature map.

2.3.1. Overall Structure

CoAtNet and AlterNet [64] exhibited improved performance by applying convolution
for feature extraction in the low-level layers and aggregating features using multi-head self-
attention (MSA) or Transformer blocks in the high-level layers. A few subsequent models,
such as EfficientFormerV2, apply similar network configurations. CSAT also applies
convolutions to extract features in the low-level layers and Transformers to aggregate
feature maps in the high-level layers. The overall structure of CSAT is illustrated in
Figure 4.

The structure and hyper-parameters of CSAT are based on EfficientFormerV2, a
lightweight network designed for mobile environments. The bottom of CSAT consists
of a patchfy stem [37] that splits the image into patches and reshapes each patch into a
vector. These patches are then fed into the subsequent stages. Stages 1 and 2 are composed
of two SAT blocks described in Section 2.3.2. Stages 3 and 4 consist of six and four SAT
blocks followed by two Transformer blocks [65]. The SAT block extracts local features by
convolutions and then re-scales the feature elements by spatial attention computed by an
SAT module. The structure and hyper-parameters of CSAT are presented in Table 2.

(a)

Input

Conv4x4, stride 4, 32 

SAT block, 32
(2 blocks)

SAT block, 48
(2 blocks)

Stem

Stage1

Stage2

Stage3

Stage4

H x W

SAT block, 96
(6 blocks)

Transformer block
(2 blocks)

SAT block, 176
(4 blocks)

Transformer block
(2 blocks)

Output

H/4 x W/4

H/8 x W/8

H/16 x W/16

H/32 x W/32

H/32 x W/32

DWConv7x7

Conv 1x1Conv1x1

GRN

SAT

Max
pool

Avg
pool

Adaptive 
avg pool

C, H, W

1, H, W

Conv7x7

Transformer
block

Upsampling

concat
2, H, W

2, 7, 7

1, 7, 7

1, 7, 7

1, H, W

(b) (c)

Input Input

Figure 4. The architecture of CSAT. (a) overall structure, (b) SAT block, and (c) SAT module.
Convk×k, DWConvk×k represent the convolution and depthwise convolution with a kernel size of
k× k, respectively. C, H, and W denote the channel, height, and width of the input image, respectively.
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Table 2. The structure and hyper-parameters of CSAT. L denotes the number of blocks and D denotes
the number of channels.

Stages Input Size Output Size CSAT Hyper-Parameters

Stem H, W H/4, W/4 L = 1, D = 32, Convolution block

Stage1 H/4, W/4 H/8, W/8 L = 2, D = 32, SAT block

Stage2 H/8, W/8 H/16, W/16 L = 2, D = 48, SAT block

Stage3 H/16, W/16 H/32, W/32 L = 6, D = 96, SAT block
L = 2, D = 96, Transformer block

Stage4 H/32, W/32 H/32, W/32 L = 4, D = 176, SAT block
L = 2, D = 176, Transformer block

2.3.2. SAT Block

We designed the front part of the SAT block following Woo et al. [38]. It first extracts
local features using a depthwise convolution followed by a 1 × 1 convolution as in Howard
et al. [32]. Then, it applies global response normalization (GRN) to prevent any particular
feature map from being overly dominant. It also applies an additional 1× 1 convolution to
abstract the feature map.

The rear part consists of a SAT module. As described in Section 2.3.3, the SAT mod-
ule re-scales the features by multiplying them by attention weights estimated from the
global context via a Transformer. Finally, the SAT block adds the input feature map, as in
He et al. [31]. Equation (8) summarizes the operation of the SAT block.

y = x + SAT(Conv1×1(GRN(Conv1×1(DWConv7×7(x))))), (8)

where Convk×k(·) and DWConvk×k(·) denote convolution and depthwise convolution with
a kernel size of k× k, respectively.

2.3.3. Spatial Attention by Transformer (SAT) Module

Spatial attention is a mechanism in which the model emphasizes important features
by multiplying feature elements by importance weights computed for each position. Lots
of previous studies compute spatial attention weights by convolution [47,66]. However,
such models have a limitation in that they estimate importance weights only from local
contexts without considering the global context.

To overcome this limitation, we propose a novel SAT module that refers to the global
context to compute spatial attention maps by applying a Transformer instead of convolution.
In CSAT, such modification increases the number of parameters by only 1.8 K. However,
the experimental results presented in Section 3.4 show that attention maps estimated from
the global context can lead to higher performance than those estimated from local contexts
in multiple pathological image analysis tasks.

One burden of applying a Transformer to a lightweight network is its computational
and memory complexity, which scales as the square of the input resolution. To reduce
the computational and memory overhead, we compute the attention map at a reduced
resolution and then upsample the attention map to match the resolution of the feature maps.

Following Woo et al. [47], we first reduce the channel dimension by applying max-
pooling and average-pooling in the channel direction as xs

max = Pmax(·) ∈ R1×H×W ,
xs

avg = Pavg(·) ∈ R1×H×W and concatenate the results as [xs
max, xs

avg] ∈ R2×H×W .
In general, each channel in the feature map represents a concept or object [42], and a

pooling operation along the channel axis aggregates this information at each position.
Then, we downsample the feature map using adaptive average pooling Paap(·) with a fixed
output resolution of h′ × w′, where h′ < h and w′ < w. In this study, we set h′ = w′ = 7.
We apply an additional convolution layer to abstract the reduced feature map.

MS = fspatial(x) = Conv7x7(Paap([Pavg(x); Pmax(x)])) (9)
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The Transformer block takes as input the reduced feature map MS combined with
positional encoding and produces an attention map at a resolution of h′ × w′. SAT applies
relative positional encoding computed by the position encoding generator (PEG) [67]. PEG
encodes positional information based on the local neighborhood of input tokens, which
makes the model applicable to images of different resolutions.

The Transformer block computes an attention map from the global context at a reduced
scale of h′ × w′ as Equation (10). Since we set h′ and w′ to small numbers, the additional
overhead is minimal.

Q, K, V = Linear(MS + PEG(MS))

SA(Q, K, V) = so f tmax(
QKT
√

d
)V,

(10)

where Q, K, and V are the query, key, and value vectors, d is feature dimension, and SA(·)
denotes self-attention.

Finally, we upsample the attention map to the size of the input feature map through
bilinear interpolation and multiply the upsampled attention map to the feature map as
Equation (11).

fatt(MS) = Upsample(SA(Q, K, V))

SAT(x) = x× fatt( fspatial(x)).
(11)

2.4. Evaluation Metrics and Experimental Environments

We evaluated the performance in classification and segmentation tasks using the
metrics of accuracy and mean intersection over union (mIoU), respectively, which are
computed as Equation (12).

accuracy(%) =
# of correctly classified samples

total # of samples
× 100%

mIoU =
1
C

C

∑
i=1

TPi
TPi + FPi + FNi

(12)

where C, TP, FP, and FN, respectively denote the number of classes, true positives, false
positives, and false negatives. Accuracy indicates how accurately the model predicts the
class of the input image across the entire dataset, while mIoU represents the average of the
ratio of the intersection over the union between the predicted and ground truth regions
across multiple classes, measuring the overlap between them.

We conducted experiments on a computer equipped with eight NVIDIA RTX A5000
GPUs, an Intel Xeon Gold 6226R CPU, and 540 GB of RAM. We built the software envi-
ronment based on Ubuntu 20.04, PyTorch v2.0 [68], CUDA v11.1, and CuDNN v8.5. We
counted the parameters and measured the amount of computation of the models in MACs
using the THOP library [69]. For the downstream tasks, we only counted the parameters
of the backbone because the parameters and MACs vary depending on the type of task.
However, in Section 3.5, we compared the number of parameters of the entire model with
those of the baseline models, including the task-specific head.

3. Results

In this section, we present the results of experiments to evaluate the performance and
efficiency of the proposed RCKD and CSAT compared with the pretraining methods and
model architectures proposed in previous studies.

3.1. Hyperparameter Search for Downstream Tasks

We first conducted preliminary experiments on the Lymph dataset to choose hyperpa-
rameters. We applied multiple candidate values for each hyperparameter and compared
the performance. For the input resolution, we compared two candidates: 224× 224 and
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384× 384. For the learning rate, we compared 0.001 and 0.0001. We also compared the
performance of the models trained with and without freezing the positional encoding.

The results are presented in Figure 5. The best performance was achieved with an input
resolution of 384× 384, a learning rate of 0.0001, and a frozen positional encoder. We used
these settings in all experiments. We fine-tuned the models with stochastic gradient descent
(SGD) optimizer with a batch size of 64. We trained the models for a maximum of 200 epochs.
However, we stopped training if the validation loss did not decrease for more than 20 epochs.
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Figure 5. Classification accuracy of CSAT models on the Lymph dataset according to hyperparameters.
The graph displays the average result of five experiments conducted with different data splits. R,
LR, and PE denote the resolution of the input image, the learning rate, and the weight used in the
positional encoding, respectively.

3.2. Performance in Downstream Tasks by Pretraining Method

We compared the performance of RCKD with three widely used pretraining methods:
supervised pretraining (SPT) on the ImageNet dataset and two contrastive learning methods,
Barlow Twins and MoCo. We pretrained four models for each of two distinct network architec-
tures, ResNet18 and CSAT, employing four different pretraining methods. After transferring
these pretrained models to the six downstream tasks listed in Table 1, we fine-tuned them on
the target datasets. Then, we measured the performance of each model on the corresponding
test sets. We also measured the performance of a model trained for the downstream tasks
from random parameters without any pretraining. Figure 6 and Table 3 present the results.
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Figure 6. The performance of CSAT and ResNet18 by pretraining methods for four classification tasks
(BACH (microscopy), CRC, BreakHis, and Lymph) and two segmentation tasks (BACH (WSI) and GlaS).
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RCKD significantly outperformed the three baseline pretraining methods. When
applied to ResNet18, RCKD exhibited an average accuracy of 92.6% in the classification
tasks, which is 7.6∼11% higher than the baseline pretraining methods. When applied
to CSAT, the average accuracy of RCKD was 94.2%, which is 7.9∼25.5% higher than the
baseline methods. In the segmentation tasks, RCKD showed average mIoUs of 0.665
and 0.673 when applied to ResNet18 and CSAT, respectively, which are 0.035∼0.046 and
0.002∼0.107 mIoUs higher than the baseline methods.

Table 3. The performance of CSAT and ResNet18 by pretraining methods on six pathological
image analysis tasks. The boldface indicates the best performance. (Params, mIoU, and GMAC
denote the number of parameters, mean intersection over union, and giga multiply-accumulate
operations, respectively).

Model Params GMAC Pretraining
Methods

Classification
Accuracy (%)

Segmentation
Performance (mIoU)

BACH
(Microscopy) CRC BreakHis Lymph Average

Accuracy
BACH
(WSI) GlaS Average

mIoU

ResNet18

10.6 M 5.35 Random
Weight 53.7 80.2 85.0 63.7 70.6 0.355 0.83 0.592

10.6 M 5.35 Barlow Twins 71.4 93.7 93.8 77.8 84.1 0.40 0.861 0.630
10.6 M 5.35 MoCo 59.7 93.8 96.9 76.0 81.6 0.391 0.864 0.627

10.6 M 5.35 SPT on
ImageNet 74.4 95.5 95.5 74.6 85 0.373 0.866 0.619

10.6 M 5.35 RCKD 83.9 95.0 98.0 93.8 92.6 0.415 0.915 0.665

CSAT

2.8 M 1.08 Random
Weight 41.3 89.6 83.7 51.4 66.5 0.355 0.872 0.613

2.8 M 1.08 Barlow Twins 47.0 90.2 83.7 53.9 68.7 0.342 0.81 0.576
2.8 M 1.08 MoCo 47.1 90.6 85.5 52.6 68.9 0.35 0.783 0.566

2.8 M 1.08 SPT on
ImageNet 77.0 95.8 96.1 76.5 86.3 0.441 0.902 0.671

2.8 M 1.08 RCKD 90.6 95.3 98.6 92.5 94.2 0.435 0.912 0.673

3.3. Performance in Downstream Tasks by Model Architecture

To evaluate the efficiency and effectiveness of the proposed CSAT, we conducted a
comparative evaluation with two recently developed lightweight models, EfficientNet-B0
and ConvNextV2-Atto, which show outstanding performance with a small number of
parameters. EfficientNet-B0 and ConvNextV2-Atto consist of 3.8 M and 3.2 M parameters,
respectively, which are slightly larger than the size of CSAT with 2.8 M parameters.

Figure 7 and Table 4 present the evaluation results.
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Figure 7. The performance of CSAT and recent lightweight models on six pathological image analysis
tasks. (SPT denotes supervised pretraining).

In the classification tasks, the CSAT pretrained by RCKD showed the best average accuracy
of 94.2%. This model performed best for the BACH and BreakHis datasets. The supervised pre-
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trained EfficientNet-B0 performed best on the CRC dataset, and the EfficientNet-B0 pretrained
by RCKD performed best on the Lymph dataset. Despite having only 2.8 M parameters, which
is only 73.6% of the parameters in EfficientNet-B0, CSAT showed slightly higher performance
on average. Among the supervised pretrained baseline models, EfficientNet-B0 exhibited the
highest average accuracy of 90.2%. CSAT pretrained by RCKD outperformed this model by 4%.

Table 4. The performance of CSAT and recent lightweight models on six pathological image analysis
tasks. The boldface indicates the best performance. (Params, mIoU, and GMAC denote the number
of parameters, mean intersection over union, giga multiply-accumulate operations, respectively).

Model Params GMAC Pretraining
Methods

Classification
Accuracy (%)

Segmentation
Performance (mIoU)

BACH
(Microscopy) CRC BreakHis Lymph Average

Accuracy
BACH
(WSI) GlaS Average

mIoU

EfficientNet-B0 3.8 M 1.21 SPT on
ImageNet 82.2 96.8 97.4 84.7 90.2 0.399 0.861 0.630

EfficientNet-B0 3.8 M 1.21 RCKD 85.9 96.2 98.3 94.9 93.8 0.438 0.873 0.655

ConvNextV2-Atto 3.2 M 1.60 SPT on
ImageNet 78.6 95.1 96.6 77.2 86.8 0.434 0.901 0.667

ConvNextV2-Atto 3.2 M 1.60 RCKD 80.4 94.9 96.4 91.9 90.9 0.38 0.91 0.645

CSAT 2.8 M 1.08 SPT on
ImageNet 77.0 95.8 96.1 76.5 86.3 0.441 0.902 0.671

CSAT 2.8 M 1.08 RCKD 90.6 95.3 98.6 92.5 94.2 0.435 0.912 0.673

CSAT pretrained by RCKD also performed best in the segmentation tasks, showing an
average mIoU of 0.673. However, on the BACH (WSI) dataset, the supervised pretrained
CSAT exhibited the best performance. Both CSAT models outperformed EfficientNet-B0
and ConvNextV2-Atto on average.

3.4. Comparison with Previous Studies on Pathological Image Analysis

We compared the proposed methods with two recent studies on pathological image
analysis, Riasatian et al. [70] and Ciga et al. [12]. Riasatian et al. [70] present KimiaNet
pretrained by weakly supervised learning. Ciga et al. [12] apply SimCLR, a contrast learning
method for pretraining. We also included the masked auto-encoder (MAE) [71] in the baseline
models because, although it was not specialized for pathological image analysis, it has shown
excellent performance in recent studies on computer vision. For Riasatian et al. [70] and Ciga
et al. [12], we initialized the model by the pretrained parameters provided by the authors.
However, because we were unable to find any pretrained MAE models specifically designed
for pathological images, we only pretrained the MAE model using the TCGA dataset.

Figure 8 and Table 5 present the model architecture, pretraining method, the number
of parameters, computational complexity in GMAC, and the performance of the models.

Table 5. The performance of CSAT pretrained by RCKD compared with three previous studies on
six pathological image analysis tasks. The boldface indicates the best performance. (Params, mIoU,
and GMAC denote the number of parameters, mean intersection over union, and giga multiply-
accumulate operations, respectively).

Pretraining
Methods Model Params GMAC

Classification
Accuracy (%)

Segmentation
Performance (mIoU)

BACH
(Microscopy) CRC BreakHis Lymph Average

Accuracy
BACH
(WSI) GlaS Average

mIoU

KimiaNet
[70]

DensNet121 6.6M 8.51 61.3 93.8 96.3 71.5 80.7 0.385 0.804 0.594

SimCLR
[12]

ResNet18 10.6M 5.35 76.2 94.2 97.7 93.3 90.3 0.386 0.866 0.626

MAE
[71]

ViT-B 81.6M 49.3 62.3 94.1 93.1 71.3 80.2 0.378 0.763 0.570

RCKD CSAT 2.8M 1.08 90.6 95.3 98.6 92.5 94.2 0.435 0.912 0.673
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Figure 8. The performance of CSAT pretrained by RCKD compared with three previous studies on
six pathological image analysis tasks.

Despite the significantly smaller number of parameters and lower computational
complexity compared to the baseline models, the proposed model performed best on five
datasets among six downstream datasets and outperformed the baseline models on average
in both classification and segmentation tasks. On the Lymph dataset, ResNet18 pretrained
with SimCLR performed best. However, the proposed model showed a classification
accuracy on the Lymph dataset only 0.8% lower than the best model [12] with only 26.4%
of the parameters and 20.1% of the computation compared to the best model.

3.5. Evaluation of CSAT on ImageNet

Finally, we evaluated the performance of CSAT in general image classification using
the ImageNet dataset. In this experiment, we compared CSAT with ResNet18 because
ResNet18 is a lightweight model and widely used in computer vision. For an ablation
study, we built two variants for both CSAT and ResNet18, one with the SAT module
applied and one without. We trained the four models following USI [61], which is based
on knowledge distillation and modern tricks. Figure 9 and Table 6 presents the results.
With the SAT module, CSAT showed 2.4% higher classification accuracy than ResNet18
combined with the SAT module using 73.8% fewer parameters and 79.9% less computation.
Without the SAT module, CSAT exhibited 2.7% higher accuracy than the vanilla ResNet18
model. The SAT module increased the accuracy of ResNet18 by 0.5% and that of CSAT
by 0.2%.
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Figure 9. The performance of CSAT and ResNet18 on the ImageNet dataset.
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Table 6. The performance of CSAT and ResNet18 on the ImageNet dataset. (Params and GMAC
represent the number of parameters and giga multiply-accumulate operations, respectively).

Model SAT
Module

Params GMAC Classification
Accuracy (%)

ResNet18 X 11,689,512 5.35 75.7
ResNet18 O 11,690,544 5.35 76.2

CSAT X 3,063,272 1.08 78.4
CSAT O 3,065,078 1.08 78.6

3.6. Accuracy vs. Efficiency

In order to effectively analyze high-resolution pathological images in a general en-
vironment, not only performance but also computational and parameter efficiency are
important. Therefore, we compared the accuracy, the amount of computation, and the num-
ber of parameters of models according to architecture and pretraining method. Figure 10
summarizes the results. The horizontal axis represents the amount of computation, while
the vertical axis represents the average classification accuracy over the BACH (microscopy),
CRC, BreakHis, and Lymph datasets. The color and size of each circle represent the
pretraining methods and the number of parameters, respectively.
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Figure 10. A ball chart displaying the average classification accuracy according to model architecture
and pretraining method. The vertical axis represents the accuracy averaged for four classification
tasks listed in Table 1. The horizontal axis represents the computational complexity in GMAC.
The color and size of each circle represent the pretraining methods and the number of parameters,
respectively. The average classification accuracy of the models pretrained by RCKD, supervised
pretraining (SPT) on ImageNet, and self-supervised learning (SSL) on pathological images are 92.8%
(red line), 87% (blue line), and 78.9% (green line), respectively.

4. Discussion

As a transfer learning framework, RCKD has the following advantages. RCKD does
not require labeled data for pretraining and thus enables the student model to learn a lot
of knowledge from a large amount of unlabeled data. Furthermore, in RCKD, the student
model learns not only from the data but also from the teacher model. This is an important
advantage over conventional pretraining approaches where the model only learns from one
knowledge source, the training data. Unlike conventional knowledge distillation, RCKD
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can transfer knowledge from a teacher model developed for a different task. Moreover,
unlike conventional transfer learning methods, RCKD learns knowledge from the teacher
model without transferring model parameters, so it is applicable even when the teacher
and student models have different architectures.

On the other hand, RCKD shares the limitation of KD that the performance of the
student model depends on that of the teacher model. The experimental results in Section 3
show that the nuclei segmentation model, StarDist, is strong enough to guide the training
of the student model. However, to apply RCKD to other fields, it is necessary to search for
teacher models that perform well in the areas where knowledge can be shared with the
downstream task.

It is unclear why contrastive learning and MAE are less effective in pathological
image analysis than in other computer vision fields. One possible reason is the unique
characteristics of pathological images that differ from general images. While general
images mainly comprise objects with consistent large-scale shapes, pathological images
are composed of tissues with irregular sizes and shapes. We suspect that conventional
pretraining techniques prioritize global patterns over local details, despite the latter’s
significance in the analysis of pathological images.

5. Conclusions

Major challenges in pathological image analysis include the scarcity of labeled data
and the characteristics of pathological images significantly different from ordinary images,
which limits the effect of conventional transfer learning techniques. To overcome these lim-
itations, we proposed a novel Response-based Cross-task Knowledge Distillation (RCKD)
framework that learns knowledge from unlabeled pathological images guided by a teacher
model developed for a different task. In experiments, RCKD outperformed supervised
pretraining and contrastive learning by large margins. RCKD has additional advantages in
that it does not require manual labeling and can learn knowledge from a teacher model with
different architecture or target tasks. We also proposed the Convolutional neural network
with Spatial Attention by Transformers (CSAT), a lightweight architecture for the processing
of high-resolution pathological images, such as pathological images. CSAT outperformed
ResNet18 on ImageNet by a large margin. The CSAT pretrained by RCKD exhibited average
performances of 94.2% in classification tasks and 0.673 mIoU in segmentation tasks, which
are 3.9∼14% and 0.047∼0.103 mIoU higher than recent pathological image analysis models,
respectively. We expect that the results of this study will improve the performance and
efficiency of deep learning-based pathological image analysis models, thereby accelerating
the development of key techniques for AI-assisted, or fully automated diagnosis.
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Appendix A

This appendix provides the details of the TCGA dataset used for pretraining in Section 2.1.1.

Appendix A.1. Detail of the TCGA Dataset

In this paper, we use the TCGA dataset to validate the performance of our proposed
training method. Table A1 shows the number of WSIs and image patches of the 32 types of
cancer data we used.

Table A1. Total image patch of TCGA dataset extracted from WSI.

Study Abbreviation Study Name WSI # of Patches Magnification

ACC Adrenocortical carcinoma 227 246781 20×

BLCA Bladder Urothelial Carcinoma 458 457819 20×

BRCA Breast invasive carcinoma 1129 769008 20×

CESC Cervical squamous cell carcinoma and
endocervical adenocarcinoma 278 180447 20×

CHOL Cholangiocarcinoma 39 47288 20×

COAD Colon adenocarcinoma 441 243863 20×

DLBC Lymphoid Neoplasm Diffuse Large B-cell
Lymphoma 44 27435 20×

ESCA Esophageal carcinoma 158 119497 20×

GBM Glioblastoma multiforme 860 518580 20×

HNSC Head and Neck squamous cell carcinoma 468 326319 20×

KICH Kidney Chromophobe 121 107381 20×

KIRC Kidney renal clear cell carcinoma 519 454207 20×

KIRP Kidney renal papillary cell carcinoma 297 226632 20×
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Table A1. Cont.

Study Abbreviation Study Name WSI # of Patches Magnification

LGG Brain Lower Grade Glioma 843 549297 20×

LIHC Liver hepatocellular carcinoma 372 320796 20×

LUAD Lung adenocarcinoma 531 397341 20×

LUSC Lung squamous cell carcinoma 512 394099 20×

MESO Mesothelioma 79 52186 20×

OV Ovarian serous cystadenocarcinoma 107 98306 20×

PAAD Pancreatic adenocarcinoma 209 170715 20×

PCPG Pheochromocytoma and Paraganglioma 194 182398 20×

PRAD Prostate adenocarcinoma 450 365360 20×

READ Rectum adenocarcinoma 157 67092 20×

SARC Sarcoma 726 661662 20×

SKCM Skin Cutaneous Melanoma 476 396349 20×

STAD Stomach adenocarcinoma 400 297018 20×

TGCT Testicular Germ Cell Tumors 211 207681 20×

THCA Thyroid carcinoma 518 445611 20×

THYM Thymoma 180 173342 20×

UCEC Uterine Corpus Endometrial Carcinoma 545 585862 20×

UCS Uterine Carcinosarcoma 87 94565 20×

UVM Uveal Melanoma 80 44387 20×
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