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Abstract: Background: We aim to study the association between spasticity and active range of
motion (ROM) during four repetitive functional tasks such as cone stacking (CS), fast flexion–
extension (FFE), fast ball squeezing (FBS), and slow ball squeezing (SBS), and predicted spastic-
ity models. Methods: An experimental study with control and stroke groups was conducted in
a Medical Center. A total of sixty-four participants, including healthy control (n = 22; average
age (years) = 54.68 ± 9.63; male/female = 12/10) and chronic stroke survivors (n = 42; average
age = 56.83 ± 11.74; male/female = 32/10) were recruited. We employed a previously developed
smart glove device mounted with multiple inertial measurement unit (IMU) sensors on the upper
limbs of healthy and chronic stroke individuals. The recorded ROMs were used to predict subjective
spasticity through generalized estimating equations (GEE) for the affected side. Results: The models
have significant (p ≤ 0.05 *) prediction of spasticity for the elbow, thumb, index, middle, ring, and
little fingers. Overall, during SBS and FFE activities, the maximum number of upper limb joints
attained the greater average ROMs. For large joints, the elbow during CS and the wrist during FFE
have the highest average ROMs, but smaller joints and the wrist have covered the highest average
ROMs during FFE, FBS, and SBS activities. Conclusions: Thus, it is concluded that CS can be used for
spasticity assessment of the elbow, FFE for the wrist, and SBS, FFE, and FBS activities for the thumb
and finger joints in chronic stroke survivors.

Keywords: range of motion; limitation; assessment; chronic stroke; upper limb

1. Introduction

Spasticity is generally present in the stroke population; upper limb spasticity is more
common than lower limb [1]. It impairs patients’ range of motion (ROM), defined as
a rotation around a joint, which is an important component of evaluation in a clinical
population [2], to the point where it prevents activities of daily living (ADL) and functional
recovery, which is detrimental to effective rehabilitation [3]. The ROM of the joint is affected
by spasticity due to the changes in the muscle–tendon length [4] in a shortened position
over time [5].

A study by Jeanette et al. [6] reported that after a stroke, early quantitative measure-
ments of hand spasticity may be able to forecast functional recovery and direct targeted
rehabilitation measures. The most widely used clinical tool is the modified Ashworth scale
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(MAS) because it is quite easy to employ [7]. Although it is conducive to utilizing the MAS,
it has some shortcomings. Firstly, it is a subjective tool and has low interrater reliability [8].
Secondly, it entails a clinician conducting an assessment upon a follow-up visit and cannot
be applied without an evaluator; therefore, an objective tool is required to assess spasticity.

For this purpose, different systems with inertial measurement units (IMUs) and surface
electromyography (sEMG) sensors are being developed. One proposed by Ang et al. [9]
used three IMUs to measure the upper limb joint angle, velocity, and acceleration during
upper limb activity. They predicted the velocity-dependent tonic stretch reflex threshold
and demonstrated a high correlation with the MAS score, which can be an indicator of
spasticity. Using inertial sensors, Kim et al. [10] utilized a machine-learning approach to
assessing spasticity during passive elbow stretch in stroke and spinal cord injury patients.
They classified the degree of spastic movement and reported that the method was compa-
rable to assigning a MAS score with 95.4% accuracy. Another study reported a satisfactory
performance of regression models in terms of low mean square error (MSE: 0.06, 0.14, and
0.47) in assessing the spasticity of stroke patients with passive elbow movements using
wearable sEMG and IMUs [11]. However, those studies assessed upper-limb spasticity
through passive movements, which could not reveal how spasticity affects the patient’s ac-
tivities. Therefore, some studies have assessed spasticity in stroke using active movements.
The study by Bai et al. [12] designed a system to record the upper limb’s ROM before and
after using botulinum; however, this study only focused on the quality of movement, not
the spasticity. Another study by Chen et al. [13] employed elbow flexion and extension
repetitive voluntary movements to assess elbow spasticity in stroke patients. They revealed
that the random forest machine learning technique using IMUs and sEMGs had the greatest
effect (F1-score = 0.95) compared with the sEMG signal (F1-score = 0.76) or motion signal
only (F1-score = 0.71). Lin el al. proposed a multi-sensor system with IMUs to assess
finger joint spasticity by performing cone stacking (CS), slow flexion–extension (SFE), fast
flexion–extension (FFE), slow ball squeezing (SBS), and fast ball squeezing (FBS) [14]. The
comparison with the previous studies is presented in Table 1.

Table 1. Comparison with the previous studies.

Our Study Lin et al. [14] Park et al. [15] Zhang et al. [11] Kim et al. [10] Chen et al. [13]

Type of tasks V V P P P V

Assessment scale MAS MAS MAS MAS MAS MAS

Included joints E, W, T, F E, W, T, F E E E E

Analysis of right/
left-affected side Yes No No No No No

Analysis of each
finger joint Yes No No No No No

Correlation (r) N/A

E: 0.93
W: 0.94
T: 0.92
F: 0.92

0.83 0.93 N/A N/A

p-value <0.05 * <0.05 * N/A <0.05 * N/A <0.05 *

V: voluntary, P: passive, E: elbow, W: wrist, T: thumb, F: fingers, *: represents the significant p-value.

Although the relations between spasticity and voluntary movements have been dis-
cussed in the above studies, they require lots of feature engineering on the raw data to build
a model for spasticity, which is a time-consuming process. Furthermore, it is difficult for the
therapists to know the relationship between voluntary movements and spasticity because
the sensor data are not easily understood. Owing to the spasticity effect on ROM, the ROM
of the stroke patients’ upper limb joint while performing voluntary movements should be
used to determine the spasticity level instead of using sensor data. Moreover, most of the re-
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search has built the models with the data from both the left- and right-affected sides, which
might have different motion characteristics. Haaland et al. [16] reported that righthanded
patients with left-hemisphere lesions showed notable deficits in movement speed, while
right-hemisphere lesions displayed significant final position errors [17]. Such ipsilesional
abnormalities have been linked to significantly worse performance on functional measures,
such as simulated ADL [18–20].

Hence, to test our hypothesis for the AROM and MAS score correlation for the affected
upper limb joints, and to solve the aforementioned limitation of using sensor data to
assess spasticity in chronic stroke, we used a laboratory-developed wearable system and
performed four voluntary tasks to record the AROM and to assess the spasticity level of
the upper limb joints in stroke survivors, by wearing a smart-glove device on both upper
limbs. We used generalized estimating equation (GEE) models to avoid time-consuming
processes like dimension reduction and feature selection techniques on sensor data. Hence,
the main goal of our study was to predict the spasticity using AROM following the four
specified tasks in stroke survivors and computed models for both the right and left sides.
Despite the limitations of the MAS scale, in our current study, we used this scale to obtain
the subjective MAS grades and recorded the AROM during four voluntary tasks. Through
this research, we aimed to highlight a robust and convenient method for the evaluation of
spasticity and the limitation of AROM in the clinical population.

2. Materials and Methods
2.1. Wearable System and Joint Angle Measurement

The data were collected through an upper limb motion capture device (UMCD) com-
prised of a sensory glove and motion tracking device for the upper arm (MTD-UA), in
which a total of 19 IMUs were mounted. The hardware and software design with the device
calibration procedure and sensitivity were presented in previous studies [14,21]. The data
from the UMCD were used to calculate the joint angle of 16 upper limb joints, including
the elbow, wrist, thumb (first metacarpophalangeal, MP1; and interphalangeal, IP), finger 2
(index metacarpophalangeal, MP2; index proximal interphalangeal, PIP2; and index distal
interphalangeal, DIP2), finger 3 (middle finger: MP3, PIP3, and DIP3), finger 4 (ring finger:
MP4, PIP4, and DIP4), and finger 5 (little finger: MP5, PIP5, and DIP5), respectively. The
C# programming software converted the data received from the UMCD into acceleration,
angular velocity, and magnetic field strength. The sensor fusion algorithm proposed by
Madgwick et al. [22] used the quaternion of the attitude at the current time for every two
adjacent IMUs to calculate the joint angle between the two adjacent IMUs [10,11] (Figure 1).
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2.2. Data Acquisition Protocol

The study recruited 22 healthy and 42 stroke participants through convenience sam-
pling (Figure 2) and was conducted in the Medical Center of a hospital. The study pro-
cedures followed the Declaration of Helsinki: Ethical Principles for Medical Research
Involving Human Subjects (version October 2013) and were approved by the Institutional
Review Board (IRB) (code: 11002-007). The participants were included if they were (1) aged
20–80 years and (2) were able to sit on a chair for about 40 min; they were excluded if they
had (1) symptoms of unilateral neglect or attention deficit, (2) cognitive or language deteri-
oration and not be able to comprehend and execute the individual tasks, (3) upper-limb
disability due to musculoskeletal or peripheral nervous system lesions before the onset of
stroke, or (4) diagnosed with dementia or depression assessed by a rehabilitation doctor
and a physical therapist. Each participant signed a written consent form explained by the
experienced researcher.
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Figure 2. Subject recruitment and four specified activities.

An experienced physical therapist performed the baseline evaluation of the partici-
pants, and spasticity was assessed using a 6-point MAS scale with the following scores,
0 = no increase in muscle tone; 1 = slight increase in muscle tone, manifested by a catch and
release or by minimal resistance at the end of the range of motion when the affected part is
moved in flexion or extension; 1+ = slight increase in muscle tone, manifested by a catch,
followed by minimal resistance throughout the remainder (less than half) of the ROM;
2 = more marked increase in muscle tone through most of the ROM, but the affected part
easily moved; 3 = considerable increase in muscle tone, passive movement difficult; and
4 = affected part rigid in flexion or extension [7] for the affected-side elbow, wrist, MPs of
the thumb, index, middle, ring, and little fingers. The MPs of the index, middle, ring, and
little fingers were evaluated together to give only one spasticity level. Since the experiments
required the patients to perform the specified tasks with their hands voluntarily, only the
patients with a MAS of 0 to 2 were recruited in this study. The stroke patients’ spasticity
was categorized according to the MAS into three subclasses: healthy/no = 0, mild = 1,
and moderate = +1 and 2, respectively. One researcher applied the UMCD on the subject’s
upper limb and confirmed the correct alignment of the IMUs on the fingers, hand, and
upper arm. The researcher then demonstrated to the healthy and stroke participants how to
perform four tasks, including (1) CS, (2) FFE, (3) FBS, and (4) SBS, using both upper limbs.
The four tasks were chosen because they are the most frequently used in occupational
therapy and most stroke patients get familiar with them to perform more readily [14].
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Each participant performed the task at their preferred speed with a resting period
between each task; however, the FFE and FBS tasks were performed at higher speeds than
the preferred pace. The participants put the test hand on a table that was 75–80 cm high
before each task. The table’s legs were secured to the floor and its height was adjusted
according to the participant’s height to avoid any unforeseen movement. For the CS task,
two cone bases were arranged 20 cm from the edge of the table. Before the task, ten cones
were placed near the side opposite to the participant’s test side, that is, if the left side were
to be tested, the ten cones were placed on the cone base on the right side and vice versa.
The participants transferred the ten cones from one cone base to the other as rapidly as they
could after getting the signal to begin the test. The participants were not allowed to lean
their trunks to any side during the test. After moving all the cones, the participant returned
the test hand to the initial position. They performed 50 rapid flexions and extensions for
the FFE and squeezed a ball rapidly and slowly 50 times for the FBS and SBS tasks. The
voluntary tasks are explained in more detail in this study [14].

2.3. Model for Spasticity Assessment

The time series data of each joint collected with a sampling rate of 50 Hz [21] was
processed as an average of 10 repetitions for CS and 20 repetitions for FFE, FBS, and SBS in
Matlab (R2021a, MathWorks, Inc., Natick, MA, USA). A total of 20 variables were processed
for the GEE models: 16 for the AROMs of the upper limb joints as independent variables
and 4 for the MAS spasticity for the elbow, wrist, thumb, and finger as dependent variables,
respectively.

A statistical package for social sciences (SPSS) was used for further analysis and model
prediction. The normality of the data was checked through a bell-shaped histogram, which
represented a normal distribution. A GEE [23] method was used to predict spasticity by
utilizing a backward deletion approach for the repeated measured data of four activities’
AROMs. The GEE expands the generalized linear models [24,25], which comprise simple
linear regression [23,26].

Two types of models were computed, namely, the model for the right-dominant
right-affected side and the right-dominant left-affected side. Each activity’s ROM was
correlated with each joint MAS score in the GEE model to predict the spasticity. The
working correlation matrix chosen was first-order autoregressive (AR1), which means
repeated measurements have a first-order autoregressive relationship in which immediately
preceding values are used to predict the value at the present time (Figure 3).
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The GEE models were evaluated through the estimate (β), standard error (SE), 95%
confidence interval (CI), and p-value [27]. A valid measure has a smaller 95% CI, whereas a
larger 95% CI means a less accurate model [28]. The GEE model fit was examined through
quasi-likelihood under the independence model criteria (QIC), which denotes that the
lower the QIC, the better the model fit [29]. The level of significance was set to p ≤ 0.05 *,
p ≤ 0.001 **, and p ≤ 0.0001 ***. The AROMs of four tasks for healthy control, unaffected
and affected sides in stroke survivors are presented through box and bar plots.

3. Results

The main characteristics of the participants showed that 12 out of 22 were males and
the rest were females in the healthy group, while in the stroke group, 32 were male and
10 were female participants. The average age for both groups ranged from 54–57 years.
Most of the participants were right-handed in both groups. Among the stroke participants,
19 were right-side affected, 22 were left-side affected, and 1 with both sides affected, as
presented in Table 2.

Table 2. Study demographics (n = 64).

Healthy Control
(n = 22)

Stroke
(n = 42)

Gender (male/female) 12/10 32/10

Age (years) 54.68 ± 9.63 56.83 ± 11.74

Dominant side (right/left) 21/1 37/5

Affected side (right/left/both) 19/22/1

Type of injury (hemorrhagic/ischemic) 11/31

Time since stroke (months) 38.52 ± 48.22

MAS elbow (healthy/mild/moderate) 7/15/20

MAS wrist (healthy/mild/moderate) 19/9/14

MAS thumb (healthy/mild/moderate) 23/16/3

MAS finger (healthy/mild/moderate) 20/13/9

3.1. GEE Models of Spasticity for the Affected Sides

Out of 42 stroke patients, 17 were right-dominant right-affected, 19 were right-
dominant left-affected, 2 were left-dominant right-affected, 3 were left-dominant left-
affected, and 1 had both sides affected. The GEE models were predicted only for the right-
dominant affected patients due to the small sample size for the left-dominant affected patients.

3.1.1. Right-Dominant Right-Affected Side Models (n = 17)

Table 3 shows that the GEE models significantly predicted spasticity for the right-
dominant right-affected upper limb joints except for the elbow, wrist, and thumb
(p = 0.001 **~0.0001 ***). For finger 2, finger 3, and finger 4, the ROMs of all joints pre-
dicted spasticity significantly during four tasks, and the QIC of the models were 22, 19, and
22, respectively. For finger 5, only the ROMs of PIP predicted spasticity significantly while
performing FBS and SBS, and the QIC was 12.
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Table 3. GEE models for spasticity (MAS) in stroke survivors (right-dominant right-affected side)
(n = 17/42).

Finger Variable Estimate (β) SE 95% CI
(Lower~Upper) p

Finger 2
(QIC = 22)

Intercept 12.76 0.44 11.89~13.63 0.0001 ***

CS_DIP2 −0.04 0.00 −0.05~−0.03 0.0001 ***

CS_PIP2 −0.02 0.00 −0.02~−0.01 0.0001 ***

CS_MP2 0.39 0.01 0.37~0.41 0.0001 ***

FFE_DIP2 −0.26 0.01 −0.27~−0.24 0.0001 ***

FFE_PIP2 0.01 0.00 0.01~0.02 0.002 *

FFE_MP2 −0.09 0.00 −0.09~−0.08 0.0001 ***

FBS_DIP2 −0.08 0.01 −0.09~−0.06 0.0001 ***

FBS_PIP2 −0.08 0.01 −0.10~−0.06 0.0001 ***

FBS_MP2 0.06 0.01 0.05~0.07 0.0001 ***

SBS_DIP2 0.20 0.01 0.19~0.22 0.0001 ***

SBS_PIP2 −0.03 0.01 −0.05~−0.01 0.001 **

SBS_MP2 −0.26 0.01 −0.28~−0.23 0.0001 ***

Finger 3
(QIC = 19)

Intercept −1.97 1.73 −5.36~1.42 0.255

CS_DIP3 −0.09 0.01 −0.11~−0.06 0.0001 ***

CS_PIP3 0.04 0.01 0.02~0.06 0.0001 ***

FFE_PIP3 0.05 0.01 0.03~0.06 0.0001 ***

FFE_MP3 0.07 0.01 0.05~0.09 0.0001 ***

FBS_DIP3 −0.08 0.03 −0.14~−0.02 0.007 *

FBS_PIP3 -0.16 0.03 −0.21~−0.10 0.0001 ***

FBS_MP3 −0.09 0.01 −0.11~−0.08 0.0001 ***

SBS_DIP3 0.08 0.03 0.03~0.14 0.004 *

SBS_PIP3 0.18 0.03 0.12~0.23 0.0001 ***

Finger 4
(QIC = 22)

Intercept −1.59 0.41 −2.39~−0.80 0.0001 ***

CS_DIP4 −0.05 0.01 −0.06~−0.04 0.0001 ***

CS_PIP4 −0.02 0.00 −0.02~−0.01 0.0001 ***

CS_MP4 −0.02 0.01 −0.03~−0.00 0.026 *

FFE_DIP4 −0.02 0.00 −0.02~−0.01 0.0001 ***

FFE_PIP4 0.03 0.00 0.02~0.03 0.0001 ***

FFE_MP4 0.08 0.01 0.06~0.10 0.0001 ***

FBS_DIP4 −0.06 0.01 −0.07~−0.05 0.0001 ***

FBS_MP4 −0.11 0.01 −0.12~−0.09 0.0001 ***

SBS_DIP4 0.08 0.01 0.07~0.09 0.0001 ***

SBS_PIP4 0.03 0.01 0.02~0.04 0.0001 ***

SBS_MP4 0.05 0.01 0.03~0.06 0.0001 ***

Finger 5
(QIC = 12)

Intercept −0.40 0.49 −1.37~0.56 0.414

FBS_PIP5 −0.02 0.01 −0.03~−0.01 0.0001 ***

SBS_PIP5 0.04 0.01 0.02~0.06 0.0001 ***
QIC, quasi-likelihood under independence model Criterion; β, estimate coefficient; SE, standard error; CI, confi-
dence interval; CS, cone stacking; FFE, fast flexion–extension; FBS, fast ball squeezing; SBS, slow ball squeezing;
IP, interphalangeal joint; DIP, distal interphalangeal joint; PIP, proximal interphalangeal joint; MP, metacarpopha-
langeal joint. The level of significance was set to p ≤ 0.05 *, p ≤ 0.001 **, and p ≤ 0.0001 ***.
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3.1.2. Right-Dominant Left-Affected Side Models (n = 19)

Table 4 presents the significant models, except for wrist and finger 5 (p = 0.001 **~0.0001 ***).
The ROM of the elbow predicted spasticity significantly only during FBS, and the QIC of
the model was 9. The ROM of the IP on the thumb predicted spasticity significantly only
while performing FFE, and the QIC was 8. For finger 2, the ROMs of MP, PIP, and DIP on
finger 2 predicted models while performing CS, FFE, FBS, and SBS, and the QIC was 15.
For finger 3, the ROMs of PIP and DIP on finger 3 predicted spasticity while performing
CS, FFE, FBS, and SBS, and the QIC was 14. For finger 4, the ROMs of MP, PIP, and DIP on
finger 4 predicted spasticity significantly while performing FFE, FBS, and SBS, and the QIC
was 11.

Table 4. GEE models for spasticity (MAS) in stroke survivors (right-dominant left-affected side)
(n = 19/42).

Joint Variable Estimate (β) SE 95% CI
(Lower~Upper) p

Elbow
(QIC 9)

Intercept 0.26 0.30 −0.33~0.86 0.387

FBS 0.02 0.01 0.01~0.03 0.0001 ***

Thumb
(QIC 8)

Intercept −0.17 0.16 −0.49~0.14 0.284

FFE_IP 0.01 0.00 0.01~0.02 0.0001 ***

Finger 2
(QIC 15)

Intercept −1.65 0.42 −2.47~−0.83 0.0001 ***

CS_DIP2 −0.02 0.01 −0.03~−0.00 0.023 *

FFE_DIP2 0.01 0.03 0.01~0.02 0.0001 ***

FFE_MP2 0.05 0.01 0.04~0.06 0.0001 ***

FBS_MP2 −0.04 0.01 −0.05~−0.02 0.0001 ***

SBS_PIP2 0.02 0.01 0.00~0.03 0.030 *

SBS_MP2 0.03 0.01 0.01~0.05 0.016 *

Finger 3
(QIC 14)

Intercept −1.20 0.33 −1.84~−0.56 0.0001 ***

CS_DIP3 0.01 0.00 0.00~0.01 0.037 *

CS_PIP3 0.02 0.01 0.01~0.04 0.0001 ***

FFE_DIP3 0.01 0.00 0.00~0.02 0.004 *

FBS_DIP3 −0.01 0.0 −0.02~−0.00 0.002 *

FBS_PIP3 0.03 0.01 0.02~0.05 0.0001 ***

SBS_PIP3 −0.03 0.01 −0.04~−0.01 0.0001 ***

Finger 4
(QIC 11)

Intercept −1.25 0.34 −1.92~−0.59 0.0001 ***

FFE_PIP4 0.01 0.00 0.00~0.02 0.001 **

FFE_MP4 0.03 0.01 0.01~0.04 0.0001 ***

FBS_DIP4 0.02 0.05 0.01~0.02 0.002 *

FBS_MP4 −0.01 0.00 −0.02~−0.01 0.0001 ***

SBS_DIP4 −0.02 0.01 −0.03~−0.01 0.0001 ***

SBS_PIP4 0.01 0.00 0.01~0.01 0.0001 ***
QIC, quasi-likelihood under independence model Criterion; β, estimate coefficient; SE, standard error; CI, confi-
dence interval; CS, cone stacking; FFE, fast flexion–extension; FBS, fast ball squeezing; SBS, slow ball squeezing;
IP, interphalangeal joint; DIP, distal interphalangeal joint; PIP, proximal interphalangeal joint; MP, metacarpopha-
langeal joint. The level of significance was set to p ≤ 0.05 *, p ≤ 0.001 **, and p ≤ 0.0001 ***.

3.2. ROMs of Healthy Control and Stroke Survivors

The healthy participants in Figure 4a show that FBS covered the maximum range from
15 to 110 degrees. The medians for CS = 47 degrees, FFE = 65 degrees, FBS = 48 degrees,
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and SBS = 51 degrees, respectively. Regarding the stroke patients’ affected side, Figure 4b
shows that FBS covered the maximum range from 3 to 126 degrees, and medians for
CS = 36, FFE = 41, FBS, and SBS = 42, respectively. The unaffected side of stroke patients in
Figure 4c shows that FFE covered the maximum range from 3 to 159 degrees, and medians
for CS = 32, FFE = 47, FBS, and SBS = 43, respectively.
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3.3. Average AROMs of the Upper Limb Joints in Stroke Patients

The right-affected side had large average ROMs for the elbow during CS and FFE,
thumb during SBS, finger 2 during FFE, FBS, and SBS, finger 3 and finger 4 during FFE,
and finger 5 during FBS, respectively. The left affected side had greater average ROMs
for the elbow during SBS, wrist during all four activities, thumb during CS, FFE, and FBS,
finger 2 during CS, finger 3 and finger 4 during CS, FBS, and SBS, and finger 5 during CS,
and FFE, respectively (Figure 5). Tables 5 and 6 show the involvement of the upper limb
joints during the four voluntary tasks and a comparison between affected and unaffected
for different categories of spasticity in chronic stroke.

Table 5. The involvement of the upper limb joints during four activities in stroke patients (n = 36).

CS FFE FBS SBS

Elbow_R Elbow_R MP1_R IP_R

Wrist_L MP3_R PIP2_R MP2_R

MP1_L PIP3_R MP5_R DIP2_R

DIP3_L DIP3_R PIP5_R PIP3_R

PIP4_L MP4_R Wrist_L PIP4_R

MP5_L DIP4_R IP_L PIP5_R

DIP5_R PIP2_L Elbow_L

Wrist_L MP3_L Wrist_L

DIP2_L DIP4_L MP2_L

PIP5_L PIP2_L

DIP5_L PIP3_L

MP4_L
Out of 42 patients, 6 were not included because 2 had left-dominant right-affected side and 3 had left-dominant
left-affected side, while 1 had both sides affected. CS, cone stacking; FFE, fast flexion–extension; FBS, fast ball
squeezing; SBS, slow ball squeezing; IP, thumb interphalangeal joint; DIP 2~5, finger 2~5 distal interphalangeal
joint; PIP 2~5, finger 2~5 proximal interphalangeal joint; MP 1~5, finger 1~5 metacarpophalangeal joints; R, right-
affected side; L, left-affected side.
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Figure 5. The right- and left-affected side average ROMs of stroke survivors during four activities.

Table 6. Comparison of the active range of motion (AROM) based on the spasticity levels in chronic
stroke survivors (n = 41).

Joints Spasticity
MAS_0 MAS_1 MAS_2

Mean (SD) p-Value Mean (SD) p-Value Mean (SD) p-Value

Elbow
Un_affected 45.74 (30.98)

0.450
43.32 (31.94)

0.915
54.53 (30.71)

0.738
Affected 31.93 (17.27) 44.36 (16.98) 51.26 (21.22)

Wrist
Un_affected 40.23 (25.13)

0.052
49.55 (29.26)

0.185
32.86 (9.51)

0.704
Affected 29.81 (12.29) 32.39 (15.11) 27.60 (10.71)

Thumb
Un_affected 35.53 (13.00)

0.235
36.09 (7.48)

0.330
34.88 (8.39)

0.241
Affected 37.88 (10.51) 39.20 (9.95) 61.73 (23.79)

Finger_2
Un_affected 46.44 (9.82)

0.126
50.16 (10.45)

0.294
41.79 (5.36)

0.032
Affected 42.09 (8.88) 46.87 (9.35) 48.12 (7.17)

Finger_3
Un_affected 50.29 (12.72)

0.079
56.41 (14.81)

0.270
46.00 (6.13)

0.237
Affected 44.89 (7.70) 50.74 (16.70) 49.34 (10.88)

Finger_4
Un_affected 48.49 (11.38)

0.087
57.32 (18.08)

0.245
48.42 (10.58)

0.663
Affected 43.48 (7.05) 49.60 (14.13) 50.92 (11.96)

Finger_5
Un_affected 43.40 (9.71)

0.909
51.76 (15.39)

0.416
43.04 (9.19)

0.389
Affected 43.11 (10.98) 47.45 (14.86) 46.15 (8.48)

MAS, modified Ashworth scale; MAS_0, no spasticity; MAS_1, mild spasticity; MAS_2, moderate spasticity;
pairwise t-test between unaffected and affected sides are used. Out of 42 participants, 1 was excluded because of
both affected sides.
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4. Discussion

This is the first study to explore the relationship between spasticity through MAS
score and AROM in chronic stroke survivors, and to classify three categories (healthy,
mild, and moderate) of ROM for stroke participants’ unaffected and affected sides. Two
different conditions, including the right-dominant right-affected and the right-dominant
left-affected-sides’ GEE models, were built. According to our results, the AROM of upper
limb joints can assist the subjective spasticity assessment (MAS) in stroke survivors. The
stiffness or weakening of the affected side’s muscles contributes to the development of
contractures, leading to increased muscle spasticity in stroke. In this way, the measured
ROM of the upper limb joints during four functional activities was related to the degree of
spasticity. As a result, this relationship between ROM and spasticity can help physicians
and physical therapists with an objective measure in the early diagnosis of the extent
of spasticity.

The GEE models for stroke survivors have good significance and prediction for finger 2,
finger 3, and finger 4, for both the right and left affected sides. Although most of the
participants were right-handed, the left-affected side models predicted spasticity with
more upper limb joints than the right-affected side. The reason could be that more stroke
survivors’ affected sides were left-based in our study. While both affected sides reached a
significant level, there was a lower QIC and narrower CI for the left-affected side (QIC, 8~15)
and (95% CI, 0.01~0.03) than the right-affected side (QIC, 4~22) and (95% CI, 0.07~0.10)
respectively, makes it more predictable [23,27,28] (Tables 3 and 4). A previous study
confirmed that five functional tasks of the upper limb in stroke participants could provide
a significant prediction of finger spasticity [14]. This is further confirmed in our current
study, and hence, we obtained the significant GEE models by correlating the spasticity
scores with the respective joints’ ROMs.

In comparison to the healthy control, stroke survivors on the affected side have a
lesser ROM when assessed with a higher MAS for the elbow (unaffected, 54.53 (30.71)
vs. affected, 51.26 (21.22), p = 0.738) and wrist (unaffected, 32.86 (9.51) vs. affected, 27.60
(10.71), p = 0.704) joints, but finger joints did not show this trend possibly due to the lack of
individual joint spasticity assessment (Table 6). Because of the presence of spasticity on
the affected side, the ROMs were limited, and the stroke survivors did not cover higher
degrees during the four functional tasks. The results can infer that more upper-limb joints
in left-affected stroke survivors’ have attained greater average ROMs than the right-affected
stroke. This depicts that the right-affected stroke has more limitations in the upper-limb
ROM as compared to left-affected stroke (Figure 4 and Table 5).

Based on the literature, it is difficult to state clearly that the GEE method can predict
significant models for only the left-affected side but not for the right-affected side. This
may be due to the smaller number of participants for the right-affected side, different
levels of spasticity, and varying degrees of activity limitations on each side. Several
studies [18,30] have demonstrated that deficits were more pronounced in left-hemisphere-
damaged patients [30]. However, we are the first to predict the significant models for
spasticity detection in chronic stroke using AROM activities for the right- and left-affected
stroke survivors.

All the previous studies [10,11,13,15] presented in Table 1 used machine learning
approaches to assess spasticity from elbow joint movements with a significant correlation
(r = 0.93), but Lin et al. [14] and our current study have utilized elbow, wrist, and fingers
voluntary ROM to assess spasticity in chronic stroke. In line with previously published
research [14], which found a significant (p < 0.05 *) correlation (r = 0.94), we have computed
significant GEE models (p < 0.05 *) for right- and left-affected sides for upper limb spasticity.
Another study predicted the severity of spasticity of the elbow joint using tonic stretch
reflex threshold (TSRT) from upper limb muscles’ EMG with a significant prediction
(p = 0.0002 **~0.0003 **) [9]. While in our study, the significant models were predicted
(p = 0.001 **~0.0001 ***) for upper limb joints. Hence, our study’s strength can be explained
twofold: (1) the prediction of significant spasticity models for the right and the left-affected
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sides of stroke survivors and (2) the utilization of a common type of activities for spasticity
assessment, which is the main component of the rehabilitation program in stroke survivors.

According to the definition of spasticity, the correlation between the limitation in the
AROM during these four voluntary tasks and the TSRT, sEMG, or speed of movement
is unclear. Even though we have tested slow and fast-speed tasks in stroke survivors
and found out that fast-speed tasks (FFE and FBS) utilized more upper limb joints as
compared to slow-speed tasks (CS and SBS) in Table 5, the CS and FFE involved the elbow
and wrist joints while the FBS and SBS involved the wrist and finger joints due to their
movement characteristics.

5. Conclusions

CS can be used for spasticity assessment of the elbow, FFE for the wrist, and SBS, FFE,
and FBS activities for thumb and finger joints in chronic stroke survivors.

5.1. Limitations

(1) Reproducibility and sensitivity of spasticity models for stroke and healthy people
were not tested; (2) spasticity models only computed for MAS grades 0–2 spasticity and
MAS grade 3 was not included; (3) the sample size of both groups did not balance and
control group has fewer participants than stroke group; (4) no muscle strength was recorded
for the stroke survivors; (5) spasticity was assessed only once, it should be reassessed after
four functional tasks; (6) did not include Brunnstrom recovery stage; and (7) did not collect
sEMG and TSRT during four functional tasks.

5.2. Future Directions

Future research with a balanced sample size of both groups, calculated through G-
power and randomized controlled design, should be conducted. The TSRT should be
measured in future studies, along with sEMG activation of the upper limb muscles in stroke
survivors. A future study will be required to test each task at different speeds for the exact
involvement of each upper limb joint and muscle in chronic stroke survivors. It will also
focus on explaining the fact that either left- or right-affected side models could be better to
predict spasticity, or only one side, and to predict individual models for the healthy/no,
mild, moderate, and severe spastic stroke survivors.

5.3. Contributions

Firstly, this study found a relationship between AROM and spasticity through MAS
scores with four voluntary activities, which had not been researched in previous studies. By
using AROM, therapists can easily know the relationship between the patients’ movements
and their spasticity level objectively in the early stage of stroke and design an appropriate
rehabilitation program. Secondly, we built the GEE models for the right- and left-affected
sides separately because the extent of spasticity is different for both affected sides and
ensues the varying limitations in AROMs of the upper limb joints; this has also not been
researched in previous studies.
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