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Abstract: The respiratory rate (RR) is a significant indicator to evaluate a patient’s prognosis and
status; however, it requires specific instrumentation or estimates from other monitored signals. A
photoplethysmogram (PPG) is extensively used in clinical environments as well as in intensive care
units (ICUs) to primarily monitor peripheral circulation while capturing indirect information about
intrathoracic pressure changes. This study aims to apply and evaluate several deep learning models
using a PPG for the continuous and accurate estimation of the RRs of patients. The dataset was
collected twice for 2 min each in 100 patients aged 18 years and older from the surgical intensive care
unit of a tertiary referral hospital. The BIDMC and CapnoBase public datasets were also analyzed.
The collected dataset was preprocessed and split according to the 5-fold cross-validation. We used
seven deep learning models, including our own Dilated Residual Neural Network, to check how
accurately the RR estimates match the ground truth using the mean absolute error (MAE). As a result,
when validated using the collected dataset, our model showed the best results with a 1.2628 ± 0.2697
MAE on BIDMC and RespNet and with a 3.1268 ± 0.6363 MAE on our dataset, respectively. In
conclusion, RR estimation using PPG-derived models is still challenging and has many limitations.
However, if there is an equal amount of data from various breathing groups to train, we expect that
various models, including our Dilated ResNet model, which showed good results, can achieve better
results than the current ones.

Keywords: photoplethysmogram; respiratory rate; intensive care unit; surgery; signal; prediction;
deep learning; convolutional neural network; residual neural network

1. Introduction

The respiratory rate (RR) can be useful for critically ill patients as a significant indicator
to evaluate a patient’s prognosis and status, as it not only represents a clinical status
change in a patient’s respiratory system function but also participates in the respiratory
compensation mechanism for tissue hypoperfusion and systemic circulation dysfunction
such as shock [1,2]. The importance of the RR can also be seen in the various scoring
systems such as the Acute Physiology And Chronic Health Evaluation (APACHE) [3],
which assesses the prognosis of a patient’s disease in the intensive care unit (ICU); the
Sequential Organ Failure Assessment (SOFA, qSOFA) [4], which conventionally assesses
the level of organ failure and infection; and the Modified Early Warning Score (MEWS) [5],
which is used for the continuous surveillance of the patient’s condition. However, the
general RR measuring method that is currently conducted in clinical practice is a manual
counting method measured by nursing staff, which does not fit for continuous all-time
surveillance [6]. Although various RR estimation methods using physiological signals
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(etCO2, ECG, Impedance Pneumography signal, and Oral–Nasal Pressure) have been
developed to compensate for this shortcoming [7–9], a requirement of additional equipment
such as an impedance meter, ECG leads, the restriction of movement due to such equipment,
and the difficulty of always-on measurement come as its limitations. Eventually, this
limits the applicability of these methods as standard methods for continuous real-time RR
surveillance in critically ill patients.

A photoplethysmogram (PPG) is a physiological signal that implies the information of
blood volume changes in the microvascular bed of tissue detected using the pulse oximeter.
It is normally acquired from a subject’s peripheral site such as a fingertip, with a light-
emitting diode that illuminates a red or a near-infrared wavelength and detects its reflections
through the photodetector. At this point, the most affecting factor of the signal is the blood
volume, especially in the arteries, as the blood vessel constantly changes in response to
cardiac contraction, breathing, and the autonomic nervous system [10,11]. Therefore, the
morphological characteristics and time-dependent attributes of the PPG signal contain
various and significant clinical information that indirectly indicates a subject’s heart rate,
blood pressure, oxygen saturation, and respiratory rate [11,12].

Deep learning (DL), an Artificial Intelligence algorithm that is widely utilized in image
detection, time forecasting, natural language processing, etc., according to the architectural
design, can be trained to extract various features effectively from the physiological signal
(e.g., PPG) using a feature extractor [13] and to estimate another signal (e.g., RR). Herein, we
collected real-time PPG and RR data from patients admitted to the surgical intensive care
unit (SICU) of a tertiary referral hospital in Korea, and they were used in several previously
studied DL models for RR estimation. Moreover, we implemented a novel DL model
and compared its performance with others to verify the significance of a PPG-derived DL
model’s RR estimation.

2. Materials and Methods
2.1. PPG Measurement and Dataset Collection

Our dataset in the current study consisted of 100 patients aged 18 years and older.
Experiments were conducted in the SICU of our institution, which has been operated as a
closed ICU system by two critical care specialists who take care of all patients admitted to
the SICU. The diagnosis of a patient was made through a consultation with the specialists,
and the decision was made by considering the patient’s blood test, physical examination,
imaging test, and history. The dataset contained demographic information, PPG signals,
and exhalation timestamps for each de-identified subject. Two-minute PPGs were collected
for each subject twice, sampled at 125 Hz. A unique ID was generated for each collected
two-minute PPG. This ID served as an identifier for individual data and as a de-identifier
for the subject at the same time. Table 1 shows the participants’ characteristics and the
details extracted from our dataset.

Table 1. The demographic characteristics and disease profiles of enrolled participants.

Variables Total (n = 100) Male (n = 56) Female (n = 44) p-Value

Age, years, mean ± SD * (range) 67.5 ± 14.2 (23–89) 66.7 ± 12.3 (23–89) 69.8 ± 16.9 (25–85) 0.680
SOFA score, mean ± SD (range) 2.5 ± 1.4 (0–6) 2.4 ± 1.4 (0–5) 2.6 ± 1.5 (0–6) 0.610

Underlying disease, n (%)
Hypertension 27 (27) 14 (25) 13 (29.5) 0.828

Diabetes mellitus 25 (25) 14 (25) 11 (25) 1.000
COPD/asthma 7 (7) 4 (7.1) 3 (6.8) 1.000

Diagnosis, n (%)
Malignancy 54 (54) 30 (53.6) 24 (54.5) 1.000

Non-cancerous lesion 28 (28) 16 (28.6) 12 (27.3) 1.000
Trauma 10 (10) 5 (8.9) 5 (11.4) 0.798

Miscellaneous 8 (8) 5 (8.9) 3 (6.8) 0.891

* SD = Standard Deviation.
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The PPG signal collector is a respiratory counter web application, and its signal
collecting process is represented in Figure 1. A router was linked with a laptop to connect
the network between the browser and the patient monitor. In this study, for our research,
data were collected from patients through a pulse oximeter connected to the patient’s
monitor. All patient measurements were taken while they were lying in the supine position.
The subject’s demographic information must be entered into the PPG signal collector to
acquire the data. When the collection started, the PPG signal was continuously recorded
during the time limit, and the RR was recorded manually by medical staff pressing the
spacebar at the exhalation time. To ensure the collection of 2 min of data, the measurement
time was set to 2 min and 10 s. When the time ended, the data were recorded and stored in
the database. Medical staff supported our data collection using the PPG signal collector.
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Figure 1. Picture of PPG collecting process.

The details of the collection procedure are as follows:

1. Move into the local monitoring page through the browser installed on the laptop.
2. Set up the measuring time.
3. Register the subject’s demographic information including gender, age, and diagnosis

to start recording.
4. When a window pops up, click the start button to record the PPG.
5. Press the spacebar when the subject exhales.
6. When the time is up, the window will close, and the data will be stored automatically.

The PPG signal collector receives medical data from the Philips IntelliVue MX450,
referring to the interlocking specification provided by Philips [14]. We used a MacOS Big
Sur v11.4 laptop with a 1.3 GHz dual-core Intel Core 7 processor CPU and 8 GB 1600 MHz
DDR3 memory for our research and used Safari v14.11 for the browser. The application
was developed in NestJS v8.0.0 and Vue v3.2.31 based on Javascript 2017 (ES8), and the
database was configured with MongoDB v5.0.9. The overall structure of the PPG signal
collector is shown in Figure 2. All research protocols followed were in accordance with
the ethical standards of the responsible committee on human experimentation and with
the Helsinki Declaration of 1975, as revised in 2000. All data used in this study were
anonymized, deidentified, and aggregated before analysis. Informed consent was obtained
from all participants or caregivers. This study was approved by the Institutional Review
Board of the Ethics Committee of Seoul St. Mary’s Hospital (IRB No. KC21ONSI0839).
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2.2. Additional Dataset

In addition to the above datasets, we used additional datasets for the training and
validation of DL models. The datasets are described below.

2.2.1. BIDMC

BIDMC [15,16] is 53 samples of 8 min duration signals collected from ICU of Beth Israel
Deaconess Medical Center. Two annotators labeled the RR using each subject’s impedance
respiratory signal. However, we excluded samples with IDs 13, 15, and 19, which had
missing values for RR, so a total of 50 samples were used in the study. The dataset consists
of impedance respiratory, electrocardiogram, and PPG sampled in 125 Hz. It also includes
demographics and 1 Hz signals such as heart rate, respiratory rate, O2 saturation, and
pulse. This dataset provides various formats, including csv, for countless research and
benchmark tests, and it is a public dataset. In this study, we used the PPG signal and RR
provided by the dataset to validate the model.

2.2.2. CapnoBase

The IEEE TBME Respiratory Rate Benchmark dataset [17] is a dataset designed for
developing and testing RR estimation. The dataset contains 8 min electrocardiogram,
capnography, and PPG signals acquired from 42 patients during elective surgery and
routine anesthesia. Labels from an annotator are available for peaks from PPG and breaths
from CO2. The data were obtained from 29 children and 13 adults. The dataset was used
for validation purposes, and only 13 adult patients were used in this study, given that the
study was conducted on adult patients.

2.3. Preprocessing

When measuring the PPG signal using a pulse oximeter, various low- and high-
frequency noises that become biases in model training are generated because of motion
artifacts, probe–tissue interface disturbance, powerline interference due to the instrumen-
tation amplifiers, and changes in physiological parameters such as cardiac impulse [11].
Therefore, removing such noises lurking in the signal using signal filtering is a mandatory
process, and it can improve the estimation accuracy of DL models effectively. We filtered
the signal using a Hamming window and applied Finite Impulse Response (FIR) band-pass
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filter (BPF) with a cut-off frequency ranging from 0.1 to 0.4 Hz [18–21]. This is a frequency
band that corresponds to respiration, and several studies have suggested an arbitrary
cut-off between 0.05 and 0.4 Hz for estimating the RR [16,20,22,23]. Then, the filtered signal,
in turn, was sliced into data samples of constant intervals for a fitted size to train the DL
model. An interval of 60 s with 1 s shifting was set to slice the signal, as the RR, which we
were trying to estimate, is conventionally counted per minute. Through the process above,
we generated 6508, 21,050, and 5473 samples of 1 min PPG and RR values (brpm) from our
self-collected dataset, BIDMC, and CapnoBase, respectively. Additionally, to enhance the
efficiency of model calculation, a signal of 125 Hz was resampled into 30 Hz using linear
interpolation [24,25]. The described preprocessing method applies to all of the datasets
introduced above.

2.4. Deep Learning Models

For the next step, our patient’s preprocessed dataset was exploited to train the DL
models, which we introduce below: Residual Neural Network, U-Net, Long Short-Term
Memory, and Dilated Residual Neural Network. Each model has been utilized in many
studies, using PPG to estimate the RR or its reference signal [25–27]. Except for the Dilated
Residual Neural Network we are proposing, the remaining six models were implemented
directly by referring to the architecture and parameters of each of the introduced papers, and
the related code can be found at the following link: https://github.com/Noritheyellow/
Project-RRpo-2ndStudy (accessed on 12 October 2023.).

2.4.1. Residual Neural Network (ResNet)

ResNet, as a DL model introduced to overcome the vanishing gradient problem that
occurs as the layers of backpropagation-based models become substantially deeper, takes
the idea of summing the input and output values of the layer [28]. This is because the
gradient, which has an important effect on the learning of weights in error propagation-
based models, converges to zero as the layer becomes deeper, resulting in sluggish learning.
To overcome this problem, ResNet simply sums the input and output values of an arbitrary
layer. With ResNet, you can prevent learning by gradually losing the original shape and
features of the PPGs due to the feature extraction process of data using PPGs and the pooling
process that reduces the size of the data. As in the case of Bian [25], we implemented a
ResNet block that reduces the size of the PPG using a convolutional layer and extracts
features by accumulating them, and we implemented the model by applying it five times
and used it to predict the RR value. CapnoBase, BIDMC, and synthetic datasets were used
as the datasets, and the MAE was about 3.8 ± 0.5 when only real-world data were trained,
and the result was about 2.5 ± 0.6 when synthetic data were mixed. In this paper, we
implemented the model according to its description, and used a CapnoBase, BIDMC, and
tertiary referral hospital data with it.

2.4.2. U-Net

U-Net is a DL model designed to solve the pixel-wise labeling of images in biomedical
image segmentation [29]. To prevent the loss of characteristics in the whole image context,
the model extracts the features from each downsampling step and concatenates them
to other extracted features, i.e., upsampled features. U-Net performs the above process
through a set of layers called the contracting path. At this time, the features of each
stage extracted from the contracting path are concatenated with the feature map of the
symmetrical expanding path. The features are then upsampled using convolution to
convert them to a higher resolution and then propagated to the next layer so that they
can be combined with the features of the contracting path. The architecture of this overall
model is U-shaped, hence the name.

Ravinchandran [26] proposed a model called RespNet, which is based on U-Net and
uses a Dilated Residual Inception Block internally. The model trains the PPG to predict
RR reference signals such as Capnometry, Impedance Pneumography, and the Oral–Nasal

https://github.com/Noritheyellow/Project-RRpo-2ndStudy
https://github.com/Noritheyellow/Project-RRpo-2ndStudy
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Pressure signal of a subject and uses Capnobase and Vortal datasets for this purpose. The
prediction performance of the model is 0.262, and there is a 0.145 MSE for each dataset,
as shown in the paper, but the cost burden and difficulty in securing patients may be a
limitation because respiratory signals rather than RRs must be collected as a reference.
Note that it is the RR value, and not the RR reference signal, that we wanted to estimate in
this study, so we used a dense layer to change its output for that purpose.

2.4.3. Long Short-Term Memory (LSTM)

LSTM, as a DL model designed to address the problem of forgetting the extracted
features from the sequential data, i.e., the vanishing gradient problem that traditional
recurrent neural network (RNN) models challenge, involves a computational process that
selectively keeps only the necessary features over time [30]. Because of these properties,
LSTMs are often used as linguistic models, but they have also shown significant results for
one-dimensional data such as signals. Since such a feature of LSTM is useful for sequential
data estimation, various models were implemented upon it.

Convolutional-LSTM [31] combines an LSTM that extracts temporal features from the
incoming sequence data with a convolutional layer that extracts spatial features to provide
a more holistic view of the data. Bidirectional LSTM [32] introduces an additional LSTM
that trains in the backward direction and uses sequence data is the input, as opposed to the
traditional LSTM that trains only in the forward direction. This approach is expected to
yield better results because it obtains information from both the forward and backward
flows of time and uses it for prediction. Attention [33], which mimics the cognitive action
of attending to specific features, has been shown to significantly improve the prediction
performance of sequential data, such as linguistic sentences, and is often used for signals
that are also sequential data. Models that use attention mechanisms identify their own
contextual relationships and utilize them for prediction. In addition to the most basic dot
product attention, Bahdanau attention, entangled attention, and quantum attention [34–36]
are used to measure the similarity between these data.

Kumar [27] tried to predict the RR by training vital signs from Capnobase, BIDMC, and
sEMG datasets with various LSTM models such as LSTM, bidirectional LSTM (Bi-LSTM),
Attention-based Bi-LSTM, CNN-LSTM, etc. However, the paper had limitations in terms
of practicality because it used signals such as ECG and sEMG to predict the RR instead
of using PPG alone. In this study, we implemented all models from the bottom and set
parameters according to the paper described. The units of the models, specifically Vanilla
LSTM, CNN LSTM, Bi-LSTM, and Attention-based Bi-LSTM, were modified into 256, 256,
128, and 64.

2.4.4. Dilated Residual Neural Network (Our Proposed Model)

In this study, we did not only estimate the RR using the PPG-derived DL models that
we introduced above, but we also used the model that we implemented, a Dilated Residual
Neural Network (Dilated ResNet). The implemented model was layered using a dilated
convolutional layer [37,38] additionally, and the inputs and outputs of each layer group
were summed to overcome the vanishing gradient problem. First, the input PPG signal
was passed through each of the 3 horizontally organized dilated convolutional layers. This
allowed the model to characterize the signal’s relationships between data that are not only
adjacent but also temporally spaced apart, facilitating the capture of the morphological
features of the overall PPG. In addition, we tried to extract more characteristic information
from the existing signal by adding another vertically identical layer. At this point, all
features extracted from the layer group and feature-wise average values of input data
were summed and used as the output. This process works inside a single unit block, the
RespBlock, where the feature extraction of the RespBlock is followed by downsampling
on its result. This process of the DL model that we considered compresses the existing
extracted features densely and reduces the required computational resources for learning,
so it continuously repeats the feature extraction and compression. Our study processed
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feature extraction and compression three times for each sample and doubled the output
feature size for each iteration. Then, we applied the average pooling layer and fully
connected layer on the output to estimate the final RR value.

For the proposed DL model to show good results, it is important to find the optimal
hyperparameters. In the Dilated ResNet model, the hyperparameters are the number of
RespBlocks (Nblk), kernel size of the convolutional layer inside the RespBlock (kernelblk),
dilation rate of the convolutional layer inside the RespBlock (Dblk), kernel_size of 1D
convolutional layer for downsample (kerneldwn), number of filters multiplied by the power
of two ( f iltersc), stride size of average pooling (Sc), and units of first dense layer (nden), and
we tried to estimate the RR accurately by adjusting these parameters. To select the optimal
hyperparameters, we used the Bayesian optimization algorithm [39], which has been used
in studies of various models. Table 2 summarizes each of these hyperparameters and their
experimental values, and the final selected parameters and model structure can be seen in
Figure 3.

Table 2. Hyperparameters for Bayesian optimization.

Hyperparameters Range of Values Selected Value

Number of RespBlocks (Nblk) 1~5 4
Kernel size of conv layer inside the RespBlock (kernelblk) 2~5 2
Dilation rate of conv layer inside the RespBlock (Dblk) 1~5 3
Kernel size of conv layer for downsample (kerneldwn) 2~4 3

Number of filters multiplied by power of two ( f iltersc) 4~10 8
Stride size of average pooling (Sc) 2~4 2

Units of first dense layer (nden) 20~100 86
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2.5. Experiments

In this study, we trained and validated the models using only our datasets to under-
stand the performance of each model introduced above when trained on datasets collected
from real-world clinics. To evaluate the generalization performance of the trained models,
we extracted some unseen data from the self-collected datasets and added the BIDMC and
CapnoBase datasets to form a test dataset. Additionally, BIDMC was utilized as a training
and validation dataset to compare the RR estimation performance of various models, in-
cluding the model proposed in this study. All trained models were evaluated using the
authors’ dataset, CapnoBase, and BIDMC pre-segmented test datasets. Lastly, since the
purpose of this study was to estimate the RRs of critically ill patients, we further tested
and evaluated the robustness of the model to motion artifacts. Therefore, we extracted
signals from random patients from the BIDMC test dataset and added artificial baseline
wanderings created by varying the amplitude and frequency to those signals to produce
signals with signal-to-noise ratios (SNRs) of 20 db, 15 db, and 10 db, respectively. These
signals were intended to reflect motion artifacts, such as high-intensity accelerations, which
affect PPG signals [40].

2.5.1. Training and Validation method

Two datasets were used to train and validate the model: the authors’ own dataset and
BIDMC. In order to perform independent training and validation of the model, we tried
to completely distinguish the training and validation datasets according to the patient ID,
so we performed randomly shuffled 5-fold cross-validation based on patient ID. All PPG
signals and ground truth RR values were configured with a batch size of 256. The starting
learning rate was set to 0.001 and optimized using Adam optimization [41]. Training was
performed over 1000 epochs. In addition, if the loss value for the validation dataset formed
a plateau with no change for a certain number of epochs when the model was learning,
the learning rate was increased by a factor of 0.1 for more precise learning, and an early
stopping technique was applied at the learning stage to prevent overfitting. All the models
introduced here were implemented with Tensorflow version 2.0.

2.5.2. Evaluation Method

To evaluate the models for each experiment, the test datasets were organized into four
different groups: slow breathing group (<12 rpm), normal breathing group (12 to 20 rpm),
rapid breathing group (>20 rpm), and all. The reason for this classification is that the RR
is a significant vital sign that is associated with various diseases, and the PPG signal can
vary accordingly (Figure 4), affecting the performance of models that estimate RR [42]. The
performance of the model was evaluated using the mean absolute error (MAE), which
calculates the error between the true and estimated values, for training, validation, and
testing across all experiments conducted for each dataset.

MAE =
1
N

N

∑
i=1

∣∣∣RRi
true − RRi

est

∣∣∣ (1)

In the above formula, RRi
true and RRi

est represent the i-th actual RR and its correspond-
ing estimated RR. n represents the size of the dataset. To evaluate and compare each result,
we applied Min–Max normalization to all data, which replaces all values with values
between 0 and 1.
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Figure 4. Examples of BIDMC patients’ 1 min PPG signals according to the breathing group. (A) Rapid
breathing (>20 rpm), (B) normal breathing (12 to 20 rpm), (C) slow breathing (<12 rpm). Each exam-
ple’s baseline wandering, amplitude modulation, and frequency modulation are related to their RRs.
Thus, while subject (A) shows a dynamic signal movement, (B,C) show relatively constant movement.

2.6. Statistical Analysis

All statistical analyses were performed using the Numpy and Scipy libraries supported
by Python and visualized using Matplotlib [43–45]. Before proceeding with preprocessing
and model training using in-hospital data, we statistically tested whether the collected
PPG data had any differences according to gender and existence of the disease, and finally
set the data that were suitable for model training. To test whether the collected signal
data grouped by gender were equal to its variances and averages, the Bartlett test and
independent two-sample t-test were performed. After the models were trained, each
of them derived estimated RRs corresponding to the actual RRs using a PPG from the
validation dataset. Using a difference between these two values, our study evaluated its
error and standard deviation, and then expressed it as MAE ± SD (brpm) to compare their
performances. A box plot was used to evaluate each model’s estimation tendency, estimated
RR distribution, and the number of outliers. Furthermore, linear regression analysis was
applied to assess each model’s correlation between the actual and estimated values, and
to be more specific, Pearson’s correlation coefficient (R) was also utilized to indicate the
quantitative correlation between both observations. In addition, a Bland–Altman plot [46]
analysis was exploited to confirm the agreement between them. Our study considered a
level of significance for comparative analysis and testing as p < 0.05.

3. Results

From June 2022 to July 2022, a total of 100 patients admitted to the SICU of our
institution were subjected to PPG and RR data collection and outcome analysis, including
56 males and 44 females. The mean age was 67.5 years, and the mean SOFA score on
the day of admission to the SICU was 2.5 (range 0–6). A respiratory history of COPD or
asthma was observed in seven patients (7%), and the most common diagnosis at admission
was malignancy (54 patients; 54%), followed by non-cancerous lesions including ulcer
perforation, pan-peritonitis, and bowel obstruction (28 patients; 28%). There were no
differences in the baseline characteristics and disease profiles between the genders. (Table 1)
As a result of the comparative analysis of the PPG data by gender, it was determined that
the signal data of the two groups showed equal variance and consistency in the model
training as the data did not show significant differences.

The data used in the study were first split into training data and testing data. The
testing data were extracted in proportion to the three breathing groups, which were slow
breathing (five subjects), normal breathing (five subjects), and rapid breathing (five subjects)
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for our own dataset, and one subject, three subjects, and three subjects for BIDMC, respec-
tively. The reason why only one slow breathing subject was selected as the testing data in
BIDMC was that there were only two slow breathing subjects in the entire BIDMC data, so
we wanted to use the data of at least one subject for training. The training data were then
split into a training dataset and validation dataset according to the 5-fold cross-validation
method. Table 3 summarizes the number of samples for each dataset.

Table 3. Number of samples (subjects) for each dataset.

Datasets
Training and Validation Test

Slow Normal Rapid Total Slow Normal Rapid Total

Our
Dataset 695 3314 1603 5612 (85) 190 466 240 896 (15)

BIDMC 421 15,575 2107 18,103 (43) 238 2201 508 2947 (7)
CapnoBase – – – – 3226 1978 269 5473 (13)

Based on the above data, we ran the experiments described in the Experiments subsec-
tion and obtained the following results. Figure 5 shows the RR of the BIDMC validation
dataset subject (bidmc_17), which was estimated using the Dilated ResNet model.
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3.1. Training Model Using Self-Collected Dataset

All seven models introduced above were trained on our dataset, and the performances
of the trained models were evaluated using the validation dataset. Table 4 summarizes
these results. Next, an unseen dataset of each respiratory group was input to each model,
and the results are shown in Table 5.

Table 4. Validation results of models trained using our dataset.

Models MAE * ± SD ** (Our Dataset) MAE * ± SD ** (BIDMC)

ResNet [25] 3.5316 ± 0.9043 1.2708 ± 0.3157
RespNet [26] 3.1268 ± 0.6363 1.2712 ± 0.3160

LSTM [27] 4.2924 ± 0.3952 1.6817 ± 0.2884
CNNLSTM [27] 4.2341 ± 0.4326 1.6908 ± 0.2837

BiLSTM [27] 4.2652 ± 0.4251 1.6882 ± 0.2933
Attention-based BiLSTM [27] 3.3355 ± 0.6971 1.6786 ± 0.2959

Dilated ResNet (Proposed) 3.3462 ± 0.6406 1.2628 ± 0.2697
* MAE = Mean Absolute Error; ** SD = Standard Deviation.
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Table 5. Test results of models trained using our dataset.

Models
Our Dataset BIDMC CapnoBase

Slow Normal Rapid Total Slow Normal Rapid Total Slow Normal Rapid Total

ResNet [25] 9.9752 ±
1.5697

2.6454 ±
2.0624

4.9341 ±
3.2360

4.7612 ±
3.5064

8.8698 ±
1.0238

2.7396 ±
1.5286

1.8436 ±
0.8517

2.7878 ±
1.8114

13.5344
± 1.5362

6.9389 ±
2.1891

5.0811 ±
2.0314

9.8733 ±
3.0953

RespNet
[26]

3.5736 ±
2.0598

1.0024 ±
0.8990

4.5054 ±
2.9862

4.9710 ±
3.2987

6.6429 ±
3.1177

9.1253 ±
3.9763

7.6840 ±
3.4102

8.9610 ±
4.1444

10.3029
± 2.8448

9.0569 ±
1.4897

4.0897 ±
2.7380

11.5029
± 3.8307

LSTM [27] 8.4881 ±
1.7116

3.0996 ±
1.6859

7.6986 ±
2.6673

5.4811 ±
3.1962

7.5067 ±
0.8415

1.4029 ±
1.0809

4.5474 ±
1.3353

1.9855 ±
1.8139

8.4744 ±
1.3914

3.1285 ±
1.9427

9.4211 ±
2.2129

6.5935 ±
3.0963

CNNLSTM
[27]

8.0270 ±
1.7053

2.9366 ±
1.6073

8.0196 ±
2.6785

5.4094 ±
3.2448

7.1984 ±
0.8437

1.4271 ±
0.9911

4.9163 ±
1.3366

2.0367 ±
1.7949

8.2459 ±
1.3921

3.0204 ±
1.8485

9.6652 ±
2.2235

6.4369 ±
3.0591

BiLSTM
[27]

8.4308 ±
1.7452

3.0698 ±
1.6718

7.7657 ±
2.6872

5.4867 ±
3.1987

7.4542 ±
0.8477

1.4032 ±
1.0747

4.6366 ±
1.3353

1.9872 ±
1.8121

8.4888 ±
1.3929

3.1096 ±
1.9285

10.0251
± 2.2301

6.5795 ±
3.0941

Attention-
based

BiLSTM
[27]

10.2409
± 3.8196

4.4942 ±
3.0273

5.0869 ±
3.6495

7.1307 ±
3.9726

9.7364 ±
1.8992

4.4007 ±
1.7957

2.0115 ±
1.4983

4.2134 ±
2.4242

11.6212
± 1.5833

6.4968 ±
2.2511

9.9008 ±
2.3863

9.7832 ±
3.3481

Dilated
ResNet

(Proposed)
8.1238 ±

2.1597
2.6191 ±

1.7300
5.1061 ±

2.5550
9.7765 ±

5.2752
8.4836 ±

1.6618
13.1615
± 4.9493

2.1325 ±
1.3682

13.1983
± 5.2574

14.9673
± 2.5736

11.0462
± 2.5060

3.3288 ±
1.7036

14.0638
± 4.4238

The results of evaluating the performance of the model trained with the self-collected
dataset and the validation dataset are shown in Table 4. In Table 5, which shows the
evaluation of RespNet’s unseen data, we can see that RespNet has the best performance
on the same dataset as the trained data (in bold). We can also see that overall, most of the
models have the best estimation performance for the normal breathing group within the
dataset (in bold). The difference in the MAE between our dataset and CapnoBase within
the same model is a maximum of 10.5005 and a minimum of 2.5712.

3.2. Training Model Using BIDMC Dataset

The performances of the seven models trained on BIDMC were evaluated on the
validation dataset and are shown in Table 4. The models were also trained on the unseen
dataset of each breathing group, and the results are shown in Table 6.

The performance evaluation on the BIDMC validation dataset in Table 4 shows that
Bian’s ResNet, Ravichandran’s RespNet, and our proposed Dilated ResNet model perform
well compared to the LSTM-based models. The MAE of these three models is around 1.27,
while the MAE of the LSTM-based models is around 1.68. This behavior is also evident in
Table 6, which shows the respiration rate estimation results of the models using the unseen
dataset from various datasets. In this table, we again see that the three models perform
best in alternating groups of datasets (in bold). We also see that when we drill down into
each dataset by group, the best performing group is generally the normal breathing group.
This is true across all seven models.

We wanted to check the results of the three most prominent models using the BIDMC
validation dataset and the boxplot in Figure 6. The y-axis of the figure shows the absolute
error (rpm), and the lowest error among the three models is obtained by RespNet, which
is close to zero. The model with the lowest median is BianResNet, with a value of 0.5843.
On the other hand, the model with the highest median is Dilated ResNet, with a value of
0.6503. Among the three models, Dilated ResNet has the fewest outliers for respiration
rate estimation, with 454 outliers (13.48%) out of 3368 total data samples. Conversely,
the model with the most outliers is BianResNet, with 531 outliers (15.77%). Furthermore,
this paper calculated the Pearson correlation coefficient (PCC) between the estimated RR
and the actual RR of each of the three models using the BIDMC validation dataset. As a
result, BianResNet does not show a correlation between the estimated RR and actual RR at
−0.0519 (p < 0.01). For RespNet, there is a weak negative correlation between the estimated
and actual values at −0.3211 (p < 0.01). On the other hand, for Dilated ResNet, there is a
weak positive correlation between the estimated and actual values at 0.5069 (p < 0.01).
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model (left) approximately shows 0.0004, 0.2362, 0.5843, 1.1879, and 2.6125 for each. RespNet (center)
approximately shows 0, 0.2770, 0.865, 0.6393, 1.2240, and 2.6418 for each. Dilated ResNet (right)
approximately shows 0.0009, 0.2823, 0.6503, 1.6312, and 3.6290 for each.

Table 6. Test results of models trained using BIDMC dataset.

Models
Our Dataset BIDMC CapnoBase

Slow Normal Rapid Total Slow Normal Rapid Total Slow Normal Rapid Total

ResNet [25] 6.7551 ±
1.4659

2.3388 ±
1.5861

10.2008
± 3.7638

5.2620 ±
4.3497

5.1753 ±
0.9849

1.9299 ±
1.7501

8.1591 ±
1.3136

2.3000 ±
1.4898

3.9111 ±
1.4059

2.8848 ±
2.1277

9.2696 ±
2.0520

3.3907 ±
3.2020

RespNet
[26]

7.3596 ±
1.5644

1.9156 ±
1.4486

8.7616 ±
3.6743

4.4259 ±
3.7224

7.1553 ±
1.2752

2.1594 ±
1.1806

6.3923 ±
0.8528

3.0716 ±
1.8902

6.4438 ±
1.4510

2.1066 ±
1.2562

9.6627 ±
1.9590

5.2284 ±
2.9006

LSTM [27] 8.3830 ±
1.4564

2.5204 ±
1.7610

6.7114 ±
3.2051

4.5045 ±
3.2727

7.6302 ±
0.7488

2.4339 ±
1.6054

3.4213 ±
0.6928

3.0237 ±
2.0134

8.6937 ±
1.3914

3.2512 ±
2.0568

9.1971 ±
2.2106

6.7515 ±
3.1394

CNNLSTM
[27]

8.3352 ±
1.4555

2.5152 ±
1.7407

6.8162 ±
3.2058

4.5053 ±
3.2677

7.5736 ±
0.7489

2.4258 ±
1.5640

3.5066 ±
0.6838

3.0262 ±
1.9795

8.6084 ±
1.3961

3.2184 ±
2.0228

9.2106 ±
2.1942

6.7124 ±
3.1280

BiLSTM
[27]

8.3728 ±
1.4567

2.5197 ±
1.7594

6.7144 ±
3.2055

4.5045 ±
3.2725

7.6295 ±
0.7460

2.4334 ±
1.6034

3.4170 ±
0.6934

3.0237 ±
2.0119

8.6904 ±
1.3916

3.2534 ±
2.0568

9.2453 ±
2.2108

6.7539 ±
3.1393

Attention-
based

BiLSTM
[27]

8.5053 ±
1.4586

2.5759 ±
1.8162

6.5746 ±
3.2057

4.5154 ±
3.2677

7.7224 ±
0.7387

2.4917 ±
1.6578

3.2839 ±
0.7083

3.0555 ±
2.0589

8.8453 ±
1.3939

3.4019 ±
2.0630

9.1195 ±
2.2234

6.8935 ±
3.1338

Dilated
ResNet

(Proposed)
7.5543 ±

1.9206
1.9894 ±

1.2824
5.3631 ±

3.2921
4.3177 ±

3.3040
5.8661 ±

0.8277
2.3702 ±

2.1687
2.5696 ±

1.3980
2.6526 ±

2.2229
9.7006 ±

1.4092
4.1819 ±

2.1613
8.3740 ±

2.4213
7.6322 ±

3.1464

3.3. Testing Model’s Robustness in Different SNRs

To test the robustness of the three models in the above experiments, we input the
signals of different SNRs to compare and evaluate the results (Table 7).

Table 7. Test result of models in different SNRs.

Models Original 20 db 15 db 10 db

ResNet [25] 0.7203 ± 0.2655 0.7304 ± 0.2729 1.4932 ± 0.4728 2.2513 ± 0.4843
RespNet [26] 0.7122 ± 0.3290 0.7265 ± 0.3328 2.0491 ± 0.4456 2.5544 ± 0.3368

Dilated ResNet
(Proposed) 0.6303 ± 0.3197 0.6417 ± 0.3258 0.8123 ± 0.3744 4.1142 ± 0.4804
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According to the result, when the SNR is 10 db, BianResNet has the lowest error
among the three models with an MAE of 2.2513, while our proposed Dilated ResNet model
has the highest error with an MAE of 4.1142. However, in all other cases, we can see that
our proposed model performs the best as it obtained values of 0.6303, 0.6417, and 0.8123
(in bold). However, the overall RR estimation error consistently increased as the SNR
decreased in our experiment.

4. Discussion

In our study, we can see that RespNet and CNNLSTM perform better than the other
models in Table 5, and BianResNet, RespNet, and Dilated ResNet perform better in Table 6.
We believe this is because these models extract the spatial–spectral feature of the signal,
which is often used in various PPG analysis studies [19,47]. Models that focus on temporal
feature extraction, such as BiLSTM, also occasionally perform well using the temporal
features of the signal, but more consistently perform well when using convolution and
taking the shapes of previous signals and adding them together, such as ResNet.

In Tables 5 and 6, we can confirm that the normal breathing group has the best results
for all models in most cases. This is because of the group’s imbalance in the dataset that we
used to train the model. This also can be seen in Table 3, which shows that both datasets
have most of the data in the normal breathing group and have the least data in the slow
breathing group. In the case of BIDMC, about 85% of the dataset consisted of data from
the normal breathing group, which is a larger number than the other groups. The slow
breathing group data, on the other hand, is only 3% of the dataset. Understanding this
explains why the normal breathing group performs well in most cases. The reason for the
better performance of the model trained on the BIDMC dataset compared to our dataset in
Table 4 can be understood by expanding on the following: there are much more normal
breathing data to train on, and the validation data are dominated by data from the same
breathing class.

Using the BIDMC validation dataset, we compared each model’s estimates of RRs
to the actual RRs to see if they were correlated. If the models overestimated the normal
RR, i.e., if they had less error in estimating the actual RR, their estimates were positively
correlated with the actual RR. However, BianResNet and RespNet produced either a nega-
tive correlation or no correlation of −0.0519 (p < 0.01) and −0.3211 (p < 0.01), respectively.
This is likely due to the imbalance in the respiratory data, as discussed above. A negative
correlation means that the straight-line output based on the actual and estimated values
descends downward, and since BIDMC is almost dominated by normal breathing data, a
negative slope may occur when the model estimates data belonging to the slow breathing
group with higher estimated values than the actual values. On the other hand, in the case
of Dilated ResNet, we confirmed a weak positive correlation of 0.5069 (p < 0.01). This
means that the RR estimates, using the current signal data, are not highly correlated with
the actual values, which points to the limitations of the current preprocessing.

To further consider that motion artifacts from patients in clinical practice can affect
PPG-based RR estimation, we also confirmed the robustness of the three best-performing
models to input signals of different SNRs, as shown in Table 7. The results show that Dilated
ResNet has the highest estimation error at 10 db and the lowest errors are seen in the rest of
the models. However, while the other models illustrate a gradual increase in error as the
SNR decreases (i.e., as the shape of the input signal becomes more distorted), our model
shows a sharp increase in error. This suggests that our model is more sensitive to noise that
affects morphological features, as mentioned above. To improve this in future work, we
would like to introduce regularization techniques to prevent our model from overfitting
with the existing features. We would also like to use filters that are flexible to changes in
the signal, such as adaptive filters [48], in preprocessing to increase the robustness of the
overall model to various noises.

To estimate the RR, we filtered out only the 0.1–0.4 frequency band signals from the
PPG that are likely to be associated with it. Also, it was processed to obtain a low-frequency
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signal from the PPG that contains information about movement due to respiration. At the
same time, it was an attempt to exclude information such as the heartbeat. Many studies
suggested various frequency bands [16,20,22,23]. In addition, in this paper, we resampled
the input signal to reduce the computation of the model, in the same way as Bian [25].
Although this preprocessing allowed us to better focus on the data that we wanted to
study, it caused a loss of information and the deformation of a signal in the original data.
Such limitation has the potential of degrading the model’s performance and weakening
correlations. In our future research, we should be aware of these points to improve the
accuracy of RR estimation and more thoroughly investigate the appropriate frequency
bands to remove unnecessary noise and capture more information for the estimation.
Alternatively, it would be interesting to see and discuss the results of inputting such data
without any information-losing preprocessing, taking advantage of the DL model’s ability
to analyze the signal. This may be one way to improve the accuracy of RR estimation by
applying preprocessing layers of noise filtering and signal detrending to PPG to overcome
the existing manual de-modulation method, as an advantage of deep learning models is
that they can convolve various filters and signals into PPG, which is difficult for humans to
process. However, improving the reliability of these results remains a challenge. Although
there are various attempts at Explainable AI [49,50], this is also an area for future research
to improve the reliability of respiration rate estimation using PPG. It is possible to provide
some evidence for the reliability of the result if the convolution filters, frequency filters, or
detrending functions initialized in the DL process are adjusted to be more specific to RR
estimation and placed in layers. The variety of factors that are present in a patient is another
limitation that weakens the model’s performance. In our study, such components—diseases
(e.g., hypertension, atrial fibrillation, etc.), interventions (e.g., vasopressor, ventilation, etc.),
and other external influences—that modulate the PPG signal were not considered. Thus, in
future work, we would like to study these characteristics, categorize patients, and confirm
the model’s RR estimation performance for each factor.

Checking the box plot in Figure 6, we confirmed that Dilated ResNet has the highest
standard deviation and median in errors among the three models. This suggests that our
proposed model may be affected by various hyperparameters, as shown in Table 2, by
applying a convolutional layer. Thus, future research will not only reduce the error of
the proposed model but also clarify and study the causes of such deviations. To improve
our model, it is necessary to generalize the model by applying regularization techniques
such as L2 regularization, Dropout [51], replacing the RespBlock inner layer of the Dilated
ResNet model to reduce RR estimation bias, and collecting additional data to provide the
model with numerous signal patterns. A signal quality index (SQI) algorithm should also
be added to reduce RR estimation error. The SQI algorithm is a technique that is intended
to assess the signal and exclude signals with noise, which affect the training of the DL
model in the preprocessing stage. Various algorithms, such as the skewness-based method,
F1-score-based method, entropy-based method, machine learning-based method, etc., have
been proposed to assess the quality of the PPG [16,52–55]. If we improve the quality of the
PPG signal using an appropriate SQI algorithm that fits the PPG-derived DL model that
we implemented for RR estimation in the follow-up study, we expect to estimate a more
precise RR.

In Tables 5 and 6, the difference in RR estimation resulting from the breathing rate
group in the testing dataset is an obvious limitation that needs to be improved. To overcome
this, in future research, we will fully utilize public datasets, but at the same time, try to
configure our dataset to evenly test patients with different breathing rates and develop it
into a public dataset. To carry this out, we are planning to carefully organize the database
schema and data collection environment subject to a large data collection group and to
collect the data over a long period, including the subject’s demographic information (e.g.,
age, gender, weight, etc.), medical record (e.g., whether they underwent surgery, infusion
drug time, diagnosis, etc.), and various physiological signals (e.g., ECG, etCO2, etc.).
Furthermore, by improving the methodology of this study, which collected data using only
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fingertips, we will collect PPG data from various body sites such as the earlobe or foot of a
patient, analyze the measurements to compare the accuracy of the RR estimation between
sites, and analyze the validity and association of PPG-derived RR estimation AI models
according to the patient’s underlying disease and functional level. We expect to propose
detailed guidance that is capable of sophisticated application according to the patient’s
clinical status and measurement environment for the PPG-derived RR estimation AI model.

5. Conclusions

In conclusion, RR estimation using PPG-derived DL models is still challenging and has
many limitations. Larger datasets, a model structure design, and preprocessing specialized
in spatial–temporal feature extraction for the estimation are required. However, as the
validation results in Table 4 show, if there are equal amounts of data from various breathing
groups to train, we expect that the DL models, including our Dilated ResNet model, can
achieve better results than the current ones.
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