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Abstract: Pediatric brain tumors are the second most common type of cancer, accounting for one in
four childhood cancer types. Brain tumor resection surgery remains the most common treatment
option for brain cancer. While assessing tumor margins intraoperatively, surgeons must send tissue
samples for biopsy, which can be time-consuming and not always accurate or helpful. Snapshot hyper-
spectral imaging (sHSI) cameras can capture scenes beyond the human visual spectrum and provide
real-time guidance where we aim to segment healthy brain tissues from lesions on pediatric patients
undergoing brain tumor resection. With the institutional research board approval, Pro00011028,
139 red-green-blue (RGB), 279 visible, and 85 infrared sHSI data were collected from four subjects
with the system integrated into an operating microscope. A random forest classifier was used for data
analysis. The RGB, infrared sHSI, and visible sHSI models achieved average intersection of unions
(IoUs) of 0.76, 0.59, and 0.57, respectively, while the tumor segmentation achieved a specificity of
0.996, followed by the infrared HSI and visible HSI models at 0.93 and 0.91, respectively. Despite the
small dataset considering pediatric cases, our research leveraged sHSI technology and successfully
segmented healthy brain tissues from lesions with a high specificity during pediatric brain tumor
resection procedures.

Keywords: pediatric brain tumor; neurosurgery; snapshot hyperspectral imaging; random forest;
segmentation

1. Introduction

Brain tumors are the most common solid tumors in children and account for the
highest number of cancer-related deaths worldwide [1]. The main symptoms include
headaches, seizures, nausea, drowsiness, and microcephaly. When left untreated, they
can lead to coma or death. While developing a treatment plan, neurosurgeons need to
understand the tumor type, grade, category, and location. There are two types of tumors:
benign and malignant [2]. Benign tumors grow slowly and are non-cancerous, whereas
malignant tumors are extremely aggressive. The grade refers to the level of aggressiveness
of the tumor cells; a higher grade indicates more malignant tumors [2]. Considering that
tumors may transform into higher grades, early treatment is critical. Therefore, it is vital to
know their categories, which are primary and secondary (or metastatic). Primary tumors
originate in the brain, whereas metastatic tumors originate in other parts of the body and
move up to the brain [2]. Finally, the tumor location is determined by scanning the brain
(via CTs or MRIs) [3], which is important for assessing the type of surgery required for
removal or biopsy.
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The current intraoperative standard for surgeons to evaluate tumor margins is to
send small pieces of tissue for biopsy to the pathology department for testing, which is
time-consuming and increases the duration of surgery, as the tests do not provide real-time
results and are often not definitive. This usually requires the surgeon to make real-time
decisions based upon the appearance of the different tissues including what is likely a
tumor versus normal brain tissue. Often, tumors, especially low-grade tumors, appear
indistinguishable from normal brain tissue. Snapshot hyperspectral imaging (HSI) can
potentially identify tumor margins in real time and thus can be used to help or contribute
to a greater degree of tumor resection as well as minimize morbidity. In addition, this can
be used to teach less-experienced surgeons to identify tumors from normal brain tissue [4].

HSI is an imaging technique that captures and processes a wide spectrum of light
between visible and infrared wavelengths. Unlike the conventional RGB image, which uses
only three colors (red, green, and blue), HSI captures spectral data at each pixel of the image.
These data are then used to create a three-dimensional hyperspectral data cube containing
spatial and spectral information [5]. The wide range of spectral information allows HSI to
identify different materials and objects with unique high-resolution spectral properties [6,7].
Different materials exhibit different light reflection, absorption, and scattering responses [8].
Although HSI was originally developed for remote sensing [9,10], it is widely used in
medical imaging owing to its noninvasive imaging modality, which helps collect spatial
and spectral information from tissues [6].

Some of the common uses of HSI in medical imaging include identifying different
types of tissues and cancers [11–13], monitoring treatment responses, and providing [6]
surgical guidance [14]. This is possible because HSI provides detailed information on tissue
properties and biochemical processes that cannot be visualized using traditional imaging
or visible wavelengths. More specifically, in cancer cases, HSI can detect biochemical and
morphological changes in tissues, which aids in diagnosis [14]. Additionally, HSI spectral
signatures help extract and differentiate cancerous and normal tissues [13].

Furthermore, HSI can be used intraoperatively for real-time guidance in identifying
tumor margins and achieving more accurate and complete tumor removal [13]. Significant
advances have been made in machine learning-based tumor diagnosis. In a study by
Shokouhifar et al. [15], they used a three-stage deep learning ensemble model embedded
in a camera scanning tool to measure the volume of the arm of patients with lymphedema.
The model was very successful, allowing for patients to be measured in an inexpensive and
noninvasive manner. Another used of machine learning for tumor detection is classification.
Veeraiah et al. [16] used the mayfly optimization with a generative adversarial network to
classify different types of leukemia from blood smear images. Other innovations in machine
learning-based tumor segmentation have also been achieved [17,18], including brain tumor
segmentation using machine learning [19–22]. Kalaivani et al. [23] used machine learning to
segment brain tumors based on MRI images. The collected MRI images were pre-processed
through denoising to remove irrelevant information and improve image quality. Features
were extracted, and three machine learning classifiers, i.e., Fuzzy C-Mean Clustering (FCM),
K-nearest neighbor (KNN), and K-means, were implemented to classify the areas of the
MRI images as tumor or nontumor regions. The classifiers were highly successful with
segmentation accuracies of 98.97%, 89.96%, and 79.95% for FCM, KNN, and K-means,
respectively. Combining both segmentation and classification, Eder at al. were able to
use segmented MRI images of patients with brain tumors to predict if the patient would
survive [24].

By combining HSI and machine learning classifiers, Ruiz et al. [25] classified the re-
gions of the HSI images of four patients with glioblastoma grade IV brain tumors. This
classification was performed using random forest and support vector machine (SVM), and
the goal was to train the models to classify the regions of the image into five classes: healthy
tissue, tumor, venous blood vessel, arterial blood vessel, and dura mater. Two experiments
were conducted: the first experiment considered 80% of the images of each patient for
training and the remaining 20% for testing, and the second experiment considered three
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patients for training and one for testing. In the first experiment, random forest slightly out-
performed SVM with almost-perfect accuracy scores. However, in the second experiment,
SVM exhibited significantly better accuracy.

In another study, Ma et al. [26] used a hyperspectral microscopic imaging system to
detect head and neck cancer nuclei on histological slides. The HSI and co-registered RGB
images were trained using a convolutional neural network (CNN) for nuclear classification.
Compared with the RGB CNN, which had a test accuracy of 0.74, the HSI CNN produced
significantly better results, with a test accuracy of 0.89 because the RGB CNN uses spatial
information, whereas the HSI CNN uses spatial and spectral information.

Similar to earlier studies, we introduce a new snapshot hyperspectral camera with
a random forest classifier. Snapshot HSI helps capture hyperspectral images in a single
exposure. Although this technique is extensively used in astronomy [27], it is rarely used
in the medical domain. The snapshot HSI sensor is ideal for medical imaging because it is
noninvasive and nonionizing; however, it acquires large datasets in real time. Currently,
there is an unmet need to examine anatomical structures beyond the visible human spec-
trum, specifically in a manner that is unobtrusive to the surgical workflow. Although brain
tumors have clear margins and are easily excised, others are diffused or located in critical
brain structures. Using our HSI device, we can differentiate tissue types by observing their
characteristic spectra and training a deep learning classifier, such as a random forest, to
perform pixel-level segmentation.

Key Achievements:

• We developed a compact sHSI camera designed for seamless integration with an
existing surgical microscope, enabling remote control for the simultaneous acquisition
of both color and hyperspectral data.

• Our study harnessed sHSI technology to capture real-time images extending beyond
the visible spectrum, effectively distinguishing healthy brain tissues from lesions in
surgical scenarios.

• We conducted machine learning model training by utilizing data from pediatric pa-
tients and assessed the resulting performance outcomes.

2. Materials and Methods
2.1. Data Collection

Herein, we constructed a camera comprising a single housing unit with visible and
infrared sensors linked via a beam splitter. A Bayer-like array with 16 visible (482, 493,
469, 462, 570, 581, 555, 543, 615, 622, 603, 592, 530, 540, 516, 503) and 25 infrared (613, 621,
605, 601, 685, 813, 825, 801, 789, 698, 764, 776, 750, 737, 712, 652, 660, 643, 635, 677, 865,
869, 854, 843, 668) wavelength (unit: nm) filters arranged in grid patterns was placed in
front of each sensor. Images were collected from pediatric patients undergoing open brain
surgery at the Children’s National Medical Center (IRB protocol number Pro00011028).
Herein, subjects who were diagnosed with epilepsy or malignant neoplasm and planned
to undergo surgical resection of pathological tissue were considered; moreover, they were
required to be under the age of 18 and to provide consent for participation. The subjects
were recruited from the physician’s pool of patients, and when they participated, a sHSI
camera (BaySPec OCI™-D-2000 Ultra-Compact Hyperspectral Images) was attached to the
operative microscope before the surgery (Figure 1A). During surgery, the staff captured
periodic HSI and RGB images of the pathological brain matter (Figure 1B), which other
study staff might classify. The images were then uploaded to a computer for processing.

In all of the cases, there was generally no interference in the circulatory conditions of
the patients. We collected data from four patients: in three cases, a visible HSI camera was
used; in two cases, RGB images were collected; and only in one case was an infrared HSI
camera used during operation.
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Figure 1. Surgical setup: (A) hyperspectral camera attached to operative (Zeiss surgical microscope)
microscope; (B) HSI image visible on the screen during surgery.

2.2. Data Preprocessing

The images were collected using an RGB camera and two types of hyperspectral
cameras: one in the visible spectrum and the other in the infrared spectrum; 136 RGB
images, 279 visible hyperspectral images, and 85 infrared hyperspectral images were used.
By eliminating images without the brain tissue, we obtained 60 RGB images, 234 visible
HSI images, and 60 infrared HSI images. Visible HSI images were used to create a fourth
dataset, which included only images with tumors (47 images).

Using MATLAB (MATLAB 2023a, MathWorks NY USA), all hyperspectral images
were separated based on wavelength, resulting in 16 images for each hyperspectral image
in the visible spectrum and 25 for the infrared spectrum. This was performed to simplify
the ground-truth segmentation and create a more detailed training dataset.

Finally, using the ImageSegmenter tool in MATLAB, the ground truth segmentation
was manually created by delineating and separating the healthy tissue from the background
in the case of the first three datasets, as depicted in Figure 2. For the fourth dataset, the
tumor and background were separated.
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Figure 2. Preprocessing steps: original HSI image split based on wavelength and segmented.

2.3. Machine Learning

Random forest is a machine learning model commonly used for classification and
regression problems. It comprises multiple decision trees, which are used to obtain a single
output. A decision tree is a type of machine learning algorithm that comprises nodes and
branches, the nodes being decision points and the branches being possible outcomes. At
each node, a decision is made to determine the branch to follow. The goal of a decision tree
is to classify inputs into distinct categories. However, decision trees are prone to bias and
overfitting. To avoid this issue, an ensemble of decision trees is used in the random forest
algorithm [28].
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We used random forest for the segmentation problem, as illustrated in Figure 3. This
was performed by treating each pixel as a data point and assigning a label (0 for background
and 1 for tissue). Random forest extracts features from an image via edge detection, pixel
intensity evaluation, or texture analysis. Using these features and ground-truth labels,
the random forest was trained by creating an ensemble of decision trees on a subset of
randomly selected features. Once trained, each decision tree assigned a label to each pixel
using majority voting, and a single label was generated for each pixel in the image. We
selected random forest because of its superior capacity to handle large datasets, speed,
and robustness to noise and outliers [29], which set it apart from other machine learning
algorithms.
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Figure 3. Random forest block diagram. Pixel variables can be divided into 0 (Gray circle) or
1 (Yellow circle).

Random forest with ten estimators was used to train our datasets. This was determined
after comparing the average accuracy of the visible sHSI model for tissue segmentation at
2, 5, 10, and 15 estimators. The model was trained with each input column representing
one of the wavelengths. For each model, the data were split in the ratio of 70:30 for training
and testing, respectively.

2.4. Evaluation

To evaluate the model performance, we calculated the average intersection over union
(IoU) and standard deviation.

IoU =
area of overlap
area of union

.

Sensitivity and specificity were considered to evaluate the model’s performance.

2.5. Bench Top Testing

To assess the segmentation potential of random forest with an HSI camera, we initially
tested it on a 24-colormap card; 43 images of the 24-colormap card were captured using
the same HSI camera. The images were captured at different angles under various lighting
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conditions, and images with other objects next to or partially on top of the card were
captured as well. By applying the same steps, the images were preprocessed and trained
using random forest. Training was performed twice: initially on 30 random images (test 1)
and then on 40 images (test 2); the remaining 13 and 3 images were used for testing. The
average IoU value was considered to evaluate the model performance.

Furthermore, we compared random forest with another machine learning classifier,
SVM. This was performed by calculating the average accuracy of each model trained on
test 2.

3. Results

As summarized in Table 1, the average IoU values of the colormap card images ranged
between 0.71 and 0.54 for tests 2 and 1, respectively, and the standard deviations were 0.1
and 0.01 for tests 1 and 2, respectively. Additional training data significantly improved the
model’s performance (by approximately 20%). This case was considered while training the
brain images.

Table 1. Segmentation performance for the bench top test.

Average IoU Standard Deviation

Test 1 0.54 0.1

Test 2 0.71 0.01

Figure 4 shows the 24-colormap images in black and white overlaid with segmentation
resulting from random forest. As shown in the images, almost every small box was
segmented, the lines between the boxes were always clearly black, and no background
areas were segmented. Therefore, although some boxes were not entirely segmented, the
model could distinguish the background from the region of interest.
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Figure 4. The 24-colormap captured using the hyperspectral camera. The three images on the top
represent the 24-colormap at different angles where RGB images are false-colored for better visibility.
The bottom three images represent the original hyperspectral black and white images overlayed with
the segmentation results in red.

As one can see in Table 2, comparing random forest with SVM, the average accu-
racy of the random forest model was higher by 0.07. Furthermore, random forest is less
computationally expensive and less likely to overfit due to noise. Since sHSI images are
low-resolution images, random forest is the better choice.
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Table 2. Average accuracy result of different machine learning classifiers.

Average Accuracy

Random forest 0.84

SVM 0.77

Table 3 shows that the average accuracy of the model increased by 0.01 between 2, 5,
and 10 estimators. This value peaked at 10 estimators with an average accuracy of 0.854.
Between 10 and 15 estimators, the average accuracy stayed stagnant. However, it was more
computationally expensive and time consuming to train on 15 estimators. This is why the
segmentation models were trained on 10 estimators.

Table 3. Average accuracy score of visible HSI model trained with different numbers of estimators.

Number of Estimators Average Accuracy

2 0.834

5 0.844

10 0.854

15 0.854

Table 4 lists the average IoU achieved for each of the four datasets. The highest average
IoU (0.76) was achieved when the tissue was segmented using RGB images, followed by
tissue segmentation using infrared HSI (0.59) and visible HSI (0.57). Finally, the lowest
average IoU was achieved (0.10) when the tumor was segmented using visible HSI. The
performance results of the visible and infrared HSI were compared; however, the visible
HSI used images of three patients as opposed to one for the infrared image, which indicated
that despite visible HSI producing slightly lower values, the segmentation was more robust.
Furthermore, contrary to our initial predictions, RGB segmentation outperformed the
other models.

Table 4. Segmentation performance of the four datasets using IoU.

Average IoU Standard Deviation

Tissue—RGB images 0.76 0.10

Tissue—Visible HSI 0.57 0.16

Tissue—Infrared HSI 0.59 0.20

Tumor—Visible HSI 0.10 0.09

Table 5 lists the average specificity and sensitivity values obtained by testing the
models. The RGB model produced the highest sensitivity score (0.81). The second-highest
sensitivity score was 0.50 for the visible HIS, followed by infrared HSI (0.45) and tumor
segmentation (0.09). However, the opposite trend was observed for specificity. Tumor
segmentation exhibited the highest specificity (0.996), followed by infrared HSI (0.93) and
visible HSI (0.91). The lowest score was 0.72 for the RGB images. All the models exhibited
high specificity values, which was not the case for sensitivity, specifically in the case of
tumor segmentation. This is most likely due to the small region of interest that the tumor
occupies compared to healthy brain tissue.
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Table 5. Average specificity and sensitivity of each dataset.

Specificity Sensitivity

Tissue—RGB images 0.72 0.81

Tissue—Visible HSI 0.91 0.50

Tissue—Infrared HSI 0.93 0.45

Tumor—Visible HSI 0.996 0.09

Figure 5 shows each dataset, where the top image represents either the original RGB
image of the hyperspectral image that has been artificially colored, and the bottom images
represent the same images in black and white overlaid in red via segmentation. Image
A indicates the high performance of the RGB model. The tumor was extracted from the
unsegmented central area, and the surrounding tissue was healthy. The model correctly
segmented the area of interest, which could be explained by the high sensitivity and
specificity scores. Image B represents a visible HSI dataset of segmented healthy tissues.
As shown in the image, random forest successfully excluded the surgical tools and skull;
however, the margin of the healthy tissue was not clear. A similar observation can be
made for image C (infrared HSI); however, it was less apparent, and the healthy tissue was
more consistently segmented. Finally, in image D, which shows the visible HSI segmenting
the tumor, the segmented area represents the tumor only; however, not all tumors were
segmented. This was further demonstrated based on the high average specificity of 0.996.
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Figure 5. Pediatric brain images were captured using RGB, visible, and infrared HSI cameras. The
four images at the top are the original RGB and hyperspectral images that have been artificially
colored. The bottom four images are their respective segmentations overlayed in red. Images (A–C)
are collected from the RGB, visible HSI, and infrared HSI datasets, respectively, where the healthy
tissue is being segmented, and image (D) is obtained from the visible HSI dataset but for tumor
segmentation.

4. Discussion

The highest overall average IoU was achieved using the RGB images, with an average
IoU of 0.76, and the HSI tissue segmentation models performed at average IoUs of 0.59 and
0.57, respectively. These results were significantly higher than those of tumor segmentation,
which only achieved an average IoU of 0.10. However, the tumor segmentation achieved
the highest average specificity of 0.996; when analyzing this and the example image,
we can see that the model did not confuse the background information with the tumor;
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however, the lower sensitivity score indicates that the model had issues segmenting the
entire tumor. The specificity scores of the other models were also very high, ranging from
0.93 to 0.72, indicating that the models can distinguish the background; however, the
moderate sensitivity scores of the HSI models indicate that the overall tissue was not being
segmented, which is a problem, specifically around the margins. Finally, the RGB model
yielded a higher sensitivity score of 0.81. This model achieved significant results for all
the metrics.

Lean et al. [30] used a hyperspectral camera to collect images of patients with brain
tumors who underwent brain surgery. The HSI spectra were in the visible and infrared
regions, similar to those in our dataset. They segmented normal brain tissue and blood
vessels using these images and machine learning classifiers. They used unsupervised and
supervised machine learning algorithms, which were based on random forest. To train
the models, they used images of the visible and infrared spectra and the fusion of the two
images. Random forest achieved an accuracy of up to 93.10% and 82.93% for the infrared
and visible spectra, respectively.

Compared to our model’s performance, they were able to achieve significantly better
results [30]; however, we were unable to compare dataset sizes owing to limited information.
We assume that the difference in performance can be attributed to the aforementioned
scenario. This motivates us to study a larger dataset to achieve better results in the future.

5. Conclusions

In conclusion, our initial findings show great promise as we achieved an average IoU
of 0.76 for the RGB dataset and 0.59 or 0.57 for the HSI datasets in the segmentation of
healthy tissues. While the average IoU for tumor segmentation was lower at 0.10, however
the specificity score of 0.996 provides strong evidence that the background segmentation
remained accurate. Moreover, the high specificity observed in other models underscores
the consistent segmentation of the region of interest. Notably, our models encountered
challenges when segmenting tumor margins, an issue we aim to address through dataset
expansion. However, the limitation of training and testing on a limited number of patients
deserves consideration, as variations in tumor size and location across patients may impact
model performance. This emphasizes the critical need for robust data collection and
algorithm development. Additionally, the difficulty in visualizing non-surface brain tumors
presents an obstacle, which we plan to overcome by integrating our sHSI camera with a
laparoscope to capture multi-angle data. Future endeavors include developing a model
capable of distinguishing between different brain regions (healthy tissue, tumor, and skull)
and training a deep learning model with an expanded dataset.
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