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Abstract: From an early age, people are exposed to risk factors that can lead to musculoskeletal
disorders like low back pain, neck pain and scoliosis. Medical screenings at an early age might
minimize their incidence. The study intends to improve a software that processes images of patients,
using specific anatomical sites to obtain risk indicators for possible musculoskeletal problems. This
project was divided into four phases. First, markers and body metrics were selected for the postural
assessment. Second, the software’s capacity to detect the markers and run optimization tests was
evaluated. Third, data were acquired from a population to validate the results using clinical software.
Fourth, the classifiers’ performance with the acquired data was analyzed. Green markers with
diameters of 20 mm were used to optimize the software. The postural assessment using different
types of cameras was conducted via the blob detection method. In the optimization tests, the angle
parameters were the most influenced parameters. The data acquired showed that the postural
analysis results were statistically equivalent. For the classifiers, the study population had 16 subjects
with no evidence of postural problems, 25 with mild evidence and 16 with moderate-to-severe
evidence. In general, using a binary classification with the train/test split validation method provided
better results.

Keywords: postural assessment; musculoskeletal disorders; anatomical metric analysis; machine
learning; computer vision

1. Introduction

The human being is, from an early age, exposed to high levels of stimulus and con-
strictions. Some can lead to musculoskeletal pain and disorders, such as neck and lower
back pain or scoliosis. Postural defects are a growing problem that is increasingly affecting
school-age children and adolescents [1]. A person’s posture changes throughout their life,
with the greatest changes occurring during the period of growth [1]. It is in this period that
a person’s bone structure develops, and sometimes the growth of the muscles and tendons
does not keep up with the rate of bone growth, leading to greater rigidity in the joints
which can lead to disorders and postural defects and cause orthopedic and rheumatologic
diseases [2,3]. Additionally, over the course of time, postural defects can lead to pain
complaints, which frequently limit daily physical activity [1].

Low back pain (LBP) and neck pain (NP) are pain and discomfort localized in the
lumbosacral region and cervical region, respectively [4–7]. LBP and NP are symptoms
frequently present in people of all ages and are increasingly common in school-aged
children. Considering low back pain (LBP), one of the most common and expensive health
care disorders in adulthood in industrialized countries [4,8–10], it frequently has its onset
in adolescence; adult rates are reached by the age of 22 years [4,5,11], with evidence of
implications for quality of life [4,9,12]. The prevalence of LBP in school-age children is
high [13], reaching from 21% to 42% of adolescents who report episodes of LBP [14]; its
rates rise until adulthood, with an estimated yearly prevalence of 20% and a lifetime
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prevalence of 70–80% [6,7,11,13,15,16]. Furthermore, studies show that musculoskeletal
pain, specifically NP and LBP, in childhood and adolescence is a significant risk factor
for experiencing such symptoms in adulthood and the possibly of the pain becoming
chronic [4,6,14–18].

In a European survey [19], the prevalence of chronic pain at different body sites was
assessed, and the results showed that the back in general had the highest prevalence, with
24% of the respondents reporting back pain without specifying the location, 18% reporting
lower back pain, 8% reporting neck pain and 5% reporting upper back pain. Additionally,
in a study by Dianat et al. [5], 59.6% of the population in the study (schoolchildren aged
12–14 years) reported neck, shoulder or low back pain during the month preceding the
study. Of this 59.6%, low back, neck and shoulder pain were reported by 33%, 35.3% and
26.1% of the students, respectively.

Scoliosis is one of the most common spinal disorders in children and adolescents
which also results in high costs to society; the causes can be idiopathic, related to joint
hypermobility or due to postural behavior, among others [1,20–23]. Scoliosis refers to a
three-dimensional structural deformation of the spine that involves a curvature in which a
lateral flexion (known as the Cobbs angle) of more than 10◦ is formed in the spinal rotation
in the frontal plane. The most common type of scoliosis is adolescent idiopathic scoliosis
(AIS), and its onset frequently occurs after the start of puberty [20–22,24–27]. According to
S. Bozkurt et al. [21], the prevalence of adolescent idiopathic scoliosis ranges from 1 to 3%
among children and adolescents aged 10 to 16 years.

This disorder is accompanied by several symptoms, such as back pain, a deformation
of the thoracic cage, a weakening of the respiratory muscles and a limited range of motion,
and it can also cause reduced control over balance and gait asymmetry, therefore subse-
quently resulting in a reduced quality of life [20,26,28]. Mahaudens et al. [29] revealed
that AIS patients need to perform 30% more physical effort than normal to ensure habitual
locomotion, which requires an increase in oxygen consumption.

In most cases, these symptoms are due to non-specific causes, but there may be some
risk factors that influence their onset [4,5,14,18,30], such as the experience of pain, being
female, increased age, the intensity and frequency of exercise activities, poor posture
adopted during the day, and the type of weight and the method of carrying the bag used in
school [1,3,13,17,31]. The identification of these risk factors can facilitate the application
of proper prophylactic actions to reduce pain and the limitation of physical and motor
capabilities [1,15].

One proposed cause for LBP is impaired motor control; more specifically, altered
postural control [32,33]. Correct postural control is important for performing daily activ-
ities [32–34], and includes a good development of dynamic balance and static postural
control [34] and allows for adaptation when altering one’s posture and maintaining balance
without running the risk of compromising performance or becoming injured [33–35]. The
development of postural control happens especially at the age of 6–10 years [34]. Addition-
ally, i people with LBP who have altered lumbosacral proprioceptive acuity and impaired
trunk muscle control have been noted [33]. Furthermore, altered motor control has been
proposed as a factor contributing to the persistence of pain; in addition, an association
between the intensity of pain and the magnitude of postural sway has been proposed [35].
Also, idiopathic scoliosis seems to be associated with balance dysfunction. The severity of
the postural imbalance may be associated with the progression and type of the curve, body
posture and spinal deformity [36–38].

In addition to the high prevalence rates of these conditions, they are also important
issues for national health services because they are some of the most expensive health
care disorders with constantly increasing costs, especially LBP [4,23]. Regarding these
musculoskeletal disorders, the indirect costs tend to be higher than the direct costs. In
these situations, the indirect costs include a loss of ability to function in daily life, a loss of
work productivity, sick leave and early retirement disability pensions. In adolescents, this
implies an increase in school absenteeism and physical inactivity [9,12,14,39].



Bioengineering 2023, 10, 1171 3 of 19

In 2019, 23.8% of the European Union’s population reported LBP or other chronic back
problems. Also, 16.9% of the European Union’s population reported NP or other chronic
neck problems [40]. In Portugal in 2020, around 123 thousand people had their work
lives affected due to bone, joint or muscle problems which mainly affected the back. Also,
around 94 thousand experienced bone, joint or muscle problems which mainly affected the
neck. These data were collected during the second term of 2020, which was a period of
lockdown [41].

Despite the rates of incidence of these pathologies, consultations are not very common.
According to Gunzburg et al. [42] and Watson et al. [15], approximately only one-quarter of
the school-aged children who reported LBP sought medical help.

The diagnosis of a musculoskeletal disorder is based on the use of medical imaging
methods, such as X-ray and MRI, or postural assessment methods [27,43,44]. Given that
most cases do not have an identified organic cause, postural analysis software and multi-
disciplinary pain treatment programs have been used increasingly [6,7,13,45]. However,
these methods are used for diagnosis and for research purposes and are usually limited to
health professionals in clinical environments with high associated costs [46,47].

Recently, mobile health apps (mHealth) became available for a small fee to the common
user who suffers from low back and neck pain. These apps allow the user to be an active
participant in maintaining or improving their health [48]. Nonetheless, they are generally
intended to be used only after the onset of musculoskeletal pain in patients as a means of
diagnosis or treatment.

It is important to prevent recurrent episodes of pain, chronicity and functional decline
in individuals who suffer from musculoskeletal disorders as a way of improving their
quality of life [12]. The early detection of musculoskeletal disorders during childhood
might decrease their probability in adulthood or their likelihood of progressing to a chronic
state as it allows children and adolescents to obtain help from a health professional.

The overall objective of this project was to modify and improve a preliminary version
of a software created in an academic environment to be operable via mobile phone which
processes images of a patient’s static posture and calculates various lengths and angles
between body segments to provide risk scores for low back pain, neck pain or scoliosis to
refer the child to a more specialized analysis conducted by a health professional. Based
on the software that already existed, we determined four small objectives: to determine
the best setup, anatomical markers and metrics necessary for the postural assessment
and to enable the analysis of images captured via different types of cameras and scales.
Subsequently, software optimization and the validation of the results were carried out
using a non-pathological population.

2. Materials and Methods

The methodology used in the project was divided into four major phases: the improve-
ment of a software already developed in an academic environment; the assessment of the
software’s performance; the acquisition of data from an experimental group; and the im-
plementation of classifiers. Each of these phases was also divided into several progressive
steps. This project was approved by the ethics committee of ESSCVP–Lisboa (No. 09/2021).

2.1. Software Improvement

The software generated uses specific anatomical sites that need to be identified via
markers to measure various anatomical parameters with the purpose of evaluating the
subject’s posture.

In the first phase, the anatomical sites where the markers are placed were selected
for all the different views (anterior, posterior and left and right lateral views), namely, the
jugular notch, the xiphoid appendix, the spinous processes of C7, the most prominent point
of thoracic kyphosis, the deepest point of lumbar lordosis, the acromion, the ASIS, the
PSIS, the greater trochanter of the femur, the lateral condyle of the femur, the popliteal
fossa, patella, tibial tuberosity, lateral malleolus, the posterior midpoint between the lateral
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and medial malleoli, the calcaneus and the fifth metatarsal. The last 12 anatomical sites
mentioned are bilateral. These anatomical sites are presented in Figure 1 and were chosen
in conjunction with physiotherapists and based on scientific articles about other postural
analysis software [45,49,50].
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Figure 1. Anatomical sites selected for placing the markers (in red) and examples of the angles
(in purple) and distances (in green) between body segments that the software will calculate in the
posterior, anterior and the right and left lateral views.

In the second phase, we improved the code of the previously created program. We
included the new marker positions selected and the anatomical parameters that the software
should measure, such as the angles and the lengths of the body segments. Based on these
values, the software produces scores of the risk indicators as an outcome. The software
determines a total of 38 features, 15 of which 15 bilateral. These parameters are described
in Table 1, and a list of their abbreviations is provided in the Abbreviation section. The
markers and some of the angles and distances that are calculated are also represented in
purple and green lines in Figure 1, respectively.

Table 1. Anatomical parameters calculated by the software and respective descriptions of the
anatomical points used.

Parameter Description of Anatomical Landmarks Used

1. Acromions Horizontal Alignment (AHAA) Angle between the two acromions and a horizontal line

2. Acromions–Sternum Angle (ASA) Angle between the jugular notch and the xiphoid appendix and the
two acromions’ line

3. ASISs Horizontal Alignment (ASISHA) Angle between the two ASISs and a horizontal line

4. ASISs–Leg Angle (ASISLAL; ASISLAR) Angle between the trochanter and patella and the line of the two
ASIS’s line

5. Knee Lateral Angle (AKLAL; AKLAR) Angle between the line of the trochanter and the patella and the line
of the tibial tuberosity and the lateral malleolus

6. Acromion–Jugular Notch Distance
(AJNDL; AJNDR) Distance between the jugular notch and each acromion

7. Acromion–ASIS Distance (AADL; AADR) Distance between the acromion and the ASIS of the same side

A
nt

er
io

r

8. Lower Limb Length (ALLLL; ALLLR) Distance between the trochanter and the lateral malleolus of the
same side
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Table 1. Cont.

Parameter Description of Anatomical Landmarks Used

9. Acromions Horizontal Alignment (AHAP) Angle between the two acromions and a horizontal line

10. Acromions-Vertebral Column Angle (AVA) Angle between the C7 and the most prominent point of thoracic
kyphosis and the line of the two acromions

11. Thoracic Kyphosis Lateral Angle (TKA) Angle between C7, the most prominent point of thoracic kyphosis
and the deepest point of lumbar lordosis

12. Lumbar Lordosis Lateral Angle (LLA) Angle between the most prominent point of thoracic kyphosis and
the deepest point of lumbar lordosis and the midpoint of the PSISs

13. PSISs Horizontal Alignment (PSISHA) Angle between the two PSISs and the horizontal line

14. PSISs-Leg Angle (PSISLAL; PSISLAR) Angle between the trochanter and popliteal fossa and the line of the
two PSISs

15. Knee Lateral Angle (PKLAL; PKLAR) Angle between the trochanter and the popliteal fossa and the
posterior midpoint between the lateral and medial malleolus

16. Ankle Lateral Angle (ALAL; ALAR) Angle between the popliteal fossa, the posterior midpoint between
the lateral and the medial malleoli and the calcaneus

17. Acromion-PSIS Distance (APDL; APDR) Distance between the acromion and the PSIS of the same side

Po
st

er
io

r

18. Lower Limb Length (PLLLL; PLLLR) Distance between the trochanter and the calcaneus of the same side

19. Thoracic Kyphosis Curvature
(TKCL; TKCR)

Angle between C7, the most prominent point of thoracic kyphosis
and the deepest point of lumbar lordosis

20. Lumbar Lordosis Curvature
(LLCL; LLCR)

Angle between the most prominent point of thoracic kyphosis, the
deepest point of lumbar lordosis and the PSIS

21. Pelvis–Leg Angle (PLAL; PLAR) Angle between the line of the ASIS and the PSIS and the line of the
trochanter and the lateral femoral condyle

22. Knee Angle (KAL; KAR) Angle between the trochanter, the lateral femoral condyle and the
lateral malleolus

La
te

ra
l

23. Leg–Foot Angle (LFAL; LFAR) Angle between the line of the trochanter and the lateral femoral
condyle and the line of the calcaneus and the fifth metatarsal

We also modified the code to allow the software to detect markers in images taken
using different types of cameras, using the blob detection method. One was the camera of
a mobile phone, an iPhone 8, and the second was a photographic camera, a Canon EOS
40D. These camera models were the same throughout all phases of this project.

The blob detection method consists of detecting regions in digital images that contain
connected pixels that share the same light properties and are brighter or darker than the
surrounding region; these regions are called blobs [51,52]. In this project, the color property
of the pixels was also considered, and before applying this method, a threshold was applied
to isolate the regions with colors of interest in the image. This method uses the properties of
light for the detection of blobs and can also filter the identification of these regions through
additional parameters such as area, circularity, convexity and the ratio of inertia. For each
one of these, it is possible to define maximum and minimum values which are different
from those defined by default in order to reduce the number of possible regions to be
identified by the method [53].

The area parameter allows one to select the minimum and maximum area values that
the detected region may have, making it possible to ignore regions that, despite having
the desired color property, do not have an area within the desired range. Regarding the
circularity parameter, it varies between 0 and 1 by default. The convex hull of a shape is
the minimum convex set that contains all the points of that shape, and in turn, the convex
set is a region in which all points on a line segment lie entirely within that region [54,55].
The ratio of inertia, which also varies between 0 and 1, defines how elongated the blob is.
When this value is 1, it means that the region is a circle; however, as it approaches to 0, the
region is shaped like an ellipse until it reaches the shape of a line that corresponds to the
value 0 [53].

To obtain the scale of the image, we decided to use a rectangle with a known length
which is placed on the left side of the image during image acquisition. In addition, to
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identify the line vertical to the floor, we used a string attached to the wall with a weight at
its bottom end, as will be seen in the results.

2.2. Software Optimization

After selecting the set of markers, we understood which were the best marker char-
acteristics that allowed the software to detect the markers better. Using a mobile phone
camera, we obtained images of four subjects with different heights and volumes using
different color combinations of clothes (white, brown, red, blue, green, yellow and gray)
while using markers of different colors and sizes. To assess the size of the markers, we used
white ping-pong balls with diameters of 40 mm and white Styrofoam balls with diameters
of 20 mm. The 40 mm markers were the ones used in the previous version of the software.
After selecting the best size, we assessed the best marker colors, using 20 mm Styrofoam
balls 20 mm in the colors white, yellow, orange, red, blue and green. Each participant used
all the 29 markers previously selected, and we obtained images of the anterior, posterior
and left and right lateral views of the subject with and without flash. In this step, we also
defined the colors of the rectangle and the string with a weight at the bottom.

Afterwards, we also evaluated the ability of the software to detect markers of colors
different from the background with and without flash. We evaluated the colors white,
brown, green, red, black, gray and blue as backgrounds. In this step, we placed the markers
on a dress form. We also analyzed the ability of the software to detect the rectangle and
the string with a weight at the bottom when using these backgrounds. For this step, we
used the mobile phone and the photographic camera to assess the influence of the type of
camera on the software’s perception of the image’s color.

In the next step, we analyzed the influence on the calculation of the angles and the
distances between markers of varying the camera’s height, the camera’s distance to the
wall, the use or lack of use of flash and the use of two types of cameras. In this step, we
also placed a dress form with the markers in the same positions in front of the wall. We
obtained pictures with the camera at different distances from the wall (250 cm). For each
distance, we obtained pictures with the camera at different heights (90 cm and 110 cm),
with and without flash and using the two types of cameras. The distances from the wall
and the camera height were measured considering the center of the camera lens as the
reference point. The dress form was used to guarantee that the markers were always in the
same position in all the photos.

2.3. Data Acquisition

After completing the software optimization phase, we acquired image data to be
assessed via our software and software Templo® in the system Contemplas, version 13.1.654,
in order to validate the results calculated using our software via a statistical analysis.

We prospectively collected data in the ESSCVP-Lisba laboratory facilities from a
population composed of students from ESSCVP-Lisboa to obtain an initial database for
the next phase of testing. The phase of data acquisition followed the Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE) guidelines.

Although the objective was to apply this software to the diagnosis of children and
adolescents, we tested the adult students of ESSCVP-Lisboa as a first population. We chose
these students because they were all adults, thus avoiding the operationally heavy process
of obtaining consent from children’s parents. The data acquisition was performed during
COVID-19 restrictions and confinement measures, which caused the process of collecting
images and data from the participants to take longer than expected and did not allow us to
consider the use of an experimental population composed of more participants.

2.3.1. Description of Participants

The experimental group included a total of 60 participants who were only considered
eligible patients if they were over the age of 18 years and were university students at
ESSCVP-Lisboa. Being a student at ESSCVP-Lisboa was necessary due to logistics since the
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data acquisition was performed during COVID-19 restrictions and confinement measures.
However, we only selected 57 students due to errors in the acquisition of images from three
of the participants.

The participants were asked about their age, biological gender, height and weight;
if they had pain in at least one of the cervical, dorsal and lumbar regions; if they went
to a health professional regarding musculoskeletal pain and if they had previously been
diagnosed with some type of musculoskeletal disorder.

After the data acquisition, each participant was divided into the following groups:
without evidence of postural problems; with mild evidence; and with moderate-to-severe
evidence.

2.3.2. Materials and Experimental Setup

Each subject stood in front of a wall, with a 20 cm blue rectangle on the left side of
the image aligned with the subject and a red wire with a weight on its end placed on the
wall on the right side of the image. For each subject, four pictures of each view (anterior,
posterior and lateral left and right) were taken, with green Styrofoam markers placed on
the previously mentioned anatomical sites using double-sided tape.

2.3.3. Technical Validation

After the phase of image acquisition, the images were analyzed using our software
and the Contemplas software (which is a clinical software used for posture, motion and
gait analyses). The Contemplas software was used to calculate the same parameters that
our software calculates, using the markers at the same anatomical sites, for a posterior
comparison and validation of the data calculated. The Contemplas software also provided a
posture evaluation the posture. We used this software as a comparison since it was already
used for postural assessments at the ESSCVP–Lisboa.

The Contemplas, an example of a PAS, is a computer software intended for use by
professionals in a clinical environment. This software analyzes posture, movement or gait
through images or video. Regarding the postural analysis, the software allows one to obtain
a 2D or 3D assessment of static posture in which it measures the body axes, angles and
measurements. In a 2D analysis, the software analyzes images from the posterior and side
views. In a 3D analysis, an evaluation of an image from the anterior view is added and
requires a minimum of 17 markers, though it is possible to use more markers to obtain
additional metrics [56].

To compare the values obtained, we tested the difference in the significance between
the means for each parameter calculated using both software programs. All the statistical
hypothesis tests mentioned were carried out with significance level thresholds of 0.05
and 0.1.

Firstly, we separately analyzed the normality of the data representing each feature
of each software to understand whether we should use a parametric or non-parametric
statistical test to compare the means. To evaluate the normality of the data we used the
Shapiro–Wilk test [57].

Next, we proceeded to compare the means for each pair of features. We applied the
paired t-test if the feature data from both software programs were parametric; otherwise, we
applied the Wilcoxon signed-rank test [58]. If a pair of features was significantly different
for significance levels of both 0.1 and 0.05, we removed the outlier differences for those
features and repeated the analysis.

Since these statistical hypothesis tests only allow us to know whether we can reject
the null hypothesis or not but not whether we can accept it, we also applied an equivalence
test for each pair of data [59,60]. The equivalence statistical test allows us to accept the
alternative hypothesis that two data samples are similar to each other if the mean of the
differences lies between two predefined boundaries. We first used the values 0.01 and
0.01 as lower and upper boundaries. If the test result was to not accept the alternative
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hypothesis, we increased the boundaries of the values, first to 0.05 and 0.05 and then to
0.06 and 0.06.

Afterwards, we presented the images to physiotherapy specialists at ESSCVP-Lisboa
to evaluate the posture of the participants without the specialists knowing whether any
of the patients had previously been diagnosed with a musculoskeletal disorder. The
specialists also did not have previous access to the results obtained via our software or
the Contemplas software. The assessment was compared with the Contemplas results to
classify the postures in the images that were ambiguous and difficult to classify assertively.
Considering the variables that our software analyzed, the participants’ postures were
labelled as follows: without evidence of postural problems; with mild evidence of postural
problems; and with moderate-to-severe evidence of postural problems.

2.4. Classification

After validating the results obtained via our software, we implemented classifiers
which used the anatomical parameters calculated to indicate the existence or absence of
evidence of postural problems.

First, we performed a feature selection to reduce and select the best features to apply
in the classifiers to, using the Orange toolbox. To select the best set of features, we ranked
the features using the Information Gain method, the Chi-squared method and the Relief
method.

Second, we implemented two different widely used algorithms to train the classifier:
a Linear Discriminant Analysis (LDA) and k-Nearest Neighbors (kNN) [61]. For each
classification model, we used two validation methods to test the dataset: 10-fold cross-
validation and a train/test split with 70% training and 30% testing [62,63].

We started by considering a three-class multiclass classifier, labeling the 57 participants
as follows: no evidence of postural problems, mild evidence of postural problems and
moderate-to-severe evidence of postural problems. Then we considered a two-level binary
classification to understand whether the results obtained would be better. The first level
classified 57 subjects between no evidence and evidence of postural problems. The second
level divided the 41 subjects with evidence into the following categories: subjects with mild
evidence and subjects with moderate-to-severe evidence. The two-level binary classification
is exemplified in the diagram in Figure 2.
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When applying the kNN model, we first obtained the error rate values corresponding
to each value of k. We chose the five values of k with which we obtained the lowest error
rates. We then tested the kNN model for each of the five chosen values of k and compared
the results obtained with these models and with the LDA model.

3. Results
3.1. Software Optimization

In the analysis for the best marker characteristics, we first compared a white ping-pong
ball marker with a diameter of 40 mm and a white Styrofoam marker with a diameter of
20 mm. We accessed the rate of the detection of the markers by the software; this was the
number of markers detected by the software, which is shown in Table 2.
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Table 2. Detection rate while using markers with 40 mm and 20 mm diameters.

Marker Size Detection Rate

40 mm—Ping-Pong Ball 75.2%
20 mm—Styrofoam Ball 64.8%

After, we considered a Styrofoam marker with a diameter of 20 mm, and we compared
the use of markers of different colors. For this, we considered a success rate, which was the
number of real markers with approximately 100% of their areas detected. The results of the
success rate for each colored marker are shown in Table 3.

Table 3. Success rate while using markers of different colors.

Marker Color Success Rate

White 64.8%
Yellow 89.9%
Orange 95.4%

Red 93.9%
Blue 94.2%

Green 96.7%

In the last step of the software optimization, we observed the influence of the use
or not of flash, the camera’s distance to the wall, the camera’s height and the use of two
different types of cameras on the results of calculating the anatomical parameters.

To better understand the results, for each anatomical parameter, we created a graphic
comparing the 95% confidence interval for the mean of each of the three distances to the
wall, each of the three camera heights and of the use or not of flash while using a phone
camera. Another similar graphic was created for the use of the photographic camera for
the same anatomical parameters. In Figure 3, we show an example of this pair of graphics
for an anatomical parameter that is an angle (AHAA). An example pair of these graphics
for an anatomical parameter that is a distance (AJNDR) is shown in Figure 4.
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using the mobile phone camera (a) and when using the photographic camera (b). The values in the
horizontal axis are angles in degrees.
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3.2. Comparison with the Contemplas Software

We used the images acquired with the study population to validate the results from
our software and compare them with the Contemplas software. The demographic charac-
teristics of the study population are shown in Table 4.

Table 4. Demographic characteristics of the experimental population.

Age Biological Gender
(F/M) Height (cm) Weight (kg)

20.9 ± 4.5 39/18 166.4 ± 9.3 69.4 ± 16.3

In addition to the previous demographic variables, we also determined that of the
57 subjects, 30 claimed to have pain in at least one of the cervical, dorsal and lumbar
regions. Of these thirty people, only eight visited a health professional, four of which were
diagnosed with a pathology prior to the study.

To validate our data, we first compared the difference between the means with signif-
icance levels equal to 0.05 and 0.1. Most of the pairs of anatomical parameters were not
statistically significant. Only the pairs of parameters ALLLL and PSISHA were statistically
significant, at least when α = 0.1. After removing the outliers of these two pairs, the result
was not statistically significant for either significance level used. The results obtained
during the statistical analysis of these two pairs of parameters are presented in Table 5,
which shows the mean, standard deviation and extreme values of the data, as well the
p-value analysis.

After, since we wanted to better demonstrate that the data calculated with both
software programs were similar, we also performed an equivalence test for all the pairs of
parameters. We considered ±0.01 and ±0.05 as boundaries and the significance levels of
0.05 and 0.1. All pairs had a statistically significant equivalence when the boundaries were
±0.01; however most of them were equivalent with the boundaries of ±0.05. Only the pair
of anatomical parameters ALLLL and PSISHA required that the boundaries be increased to
±0.06 to be significantly equivalent when the significance level was 0.05, as demonstrated
in Table 6.
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Table 5. Results of the mean, standard deviation and extreme values before and after removing the
outliers from the parameters ALLLL and PSISHA acquired via the Contemplas software and via our
software, in addition to the result of the p-value obtained in the statistical analysis to evaluate the
difference in the means of a pair composed of the same parameters acquired via the two software
programs.

ALLLL PSISHA

Before
removing the outliers

Mean ± Standard
Deviation

Our Software 68.65 ± 5.25 0.58 ± 2.72
Contemplas 68.62 ± 5.25 0.55 ± 2.70

Values Range Our Software [58.35; 80.05] [−9.90; 5.04]
Contemplas [58.5; 80.0] [−9.8; 5.1]

p-Value 0.058 0.047
Statistically Significant α = 0.05/α = 0.1 No/Yes Yes/Yes

After
removing the outliers

Mean ± Standard
Deviation

Our Software 68.64 ± 5.3 -0.58 ± 2.76
Contemplas 68.62 ± 5.3 -0.56 ± 2.74

Values Range Our Software [58.35; 80.05] [−9.9; 5.04]
Contemplas [58.5; 80.0] [−9.8; 5.1]

p-Value 0.01 0.02
Statistically Significant

α = 0.05/α = 0.1 No/No No/No

Table 6. Results of the p-values obtained when applying the equivalence test to evaluate the equiva-
lence between the means of the features acquired via the two software programs for the pair ALLLL

and the pair PSISHA.

ALLLL PSISHA

∆L = −0.01
∆U = 0.01

p-Value 0.89 0.91
Statistically Significant

α = 0.05/α = 0.1 No/No No/No

∆L = −0.05
∆U = 0.05

p-Value 0.05 0.07
Statistically Significant

α = 0.05/α = 0.1 No/Yes No/Yes

∆L = −0.06
∆U = 0.06

p-Value 0.01 0.02
Statistically Significant

α = 0.05/α = 0.1 Yes/Yes Yes/Yes

3.3. Classification

After comparing the results obtained via both software programs, the posture of each
participant was assessed by physiotherapy specialists using the acquired images. With
the specialist assessment and the Contemplas software evaluation, we considered that the
study population had 16 subjects without any evidence of posture problems and 41 who
presented evidence of posture problems. Of these 41 people, 25 presented mild evidence of
posture problems and 16 presented moderate-to-severe evidence of posture problems.

3.3.1. Feature Selection

We first performed a feature selection considering a multiclass classifier which selected
the following set: ASA, AJNDL, AADL, AADR, PSISHA, PSISLAR, APDL, APDR and LLCL.

Afterwards, we also selected the best set of features to implement both levels of the
binary classifier. The set selected for the first level was AHAA, ASA, AADL, TKA, LLA,
PKLAL, PKLAR, APDL, APDR, PLLLR, TKCL and LLCL. For the second level, we selected
the set ASISLAR, AKLAR, AADL, AADR, APDL, APDR and LLCL.

3.3.2. Classification Performance

The performance of the classifiers was assessed using the accuracy and f1 scores of
each class. Table 7 summarizes the accuracy and f1-score results obtained when using the
LDA and the kNN models with both the 10-fold cross-validation and the train/test split
validation methods in the multiclass classification and level 1 and level 2 of the binary
classification.
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Table 7. Results of the accuracy and f1-score values of each class, obtained via an analysis of the classifier’s performance.

Train/Test Split Validation (70%Train/30%Test) 10-Fold Cross-Validation

Multiclass

LDA k = 3 k = 4 k = 5 k = 6 k = 9 LDA k = 4 k = 5 k = 6 k = 8 k = 12

Accuracy 50% 55.56% 55.56% 55.56% 55.56% 61.11% 56.14% 59.65% 59.65% 57.89% 59.65% 56.14%
F1-Score

“Without Evidence” 36.36% 53.33% 53.33% 53.33% 53.33% 66.67% 43.75% 58.82% 57.89% 57.89% 57.89% 58.82%

F1-Score
“Mild Evidence” 57.14% 76.92% 76.92% 76.92% 76.92% 70.59% 65.38% 65.38% 64% 62.75% 66.67% 63.33%

F1-Score “Moderate/
Severe Evidence” 54.55% 25% 25% 25% 25% 28.57% 53.33% 50% 53.85% 48% 48% 30%

Binary—Level 1

LDA k = 9 k = 13 k = 14 k = 15 k = 17 LDA k = 8 k = 9 k = 10 k = 17 k = 21

Accuracy 72.22% 77.78% 77.78% 77.78% 83.33% 77.78% 63.16% 77.19% 77.19% 77.19% 77.19% 77.19%
F1-Score

“With Evidence” 80% 84.62% 84.62% 83.33% 88.89% 85.71% 74.07% 83.12% 83.54% 83.12% 85.39% 86.02%

F1-Score
“Without Evidence” 54.55% 60% 60% 66.67% 66.67% 50% 36.36% 64.86% 62.86% 64.86% 48% 38.1%

Binary—Level 2

LDA k = 6 k = 7 k = 9 k = 10 k = 11 LDA k = 3 k = 4 k = 5 k = 6 k = 9

Accuracy 76.92% 92.31% 92.31% 84.62% 84.62% 84.62% 60.98% 70.73% 70.73% 70.73% 73.17% 73.17%
F1-Score

“Mild Evidence” 84.21% 94.74% 94.74% 90% 90% 90% 69.23% 76.92% 79.31% 78.57% 81.36% 81.36%

F1-Score “Moderate/
Severe Evidence” 57.14% 85.71% 85.71% 66.67% 66.67% 66.67% 46.67% 60% 50% 53.85% 52.17% 52.17%

Note: All columns with an indication of a k-value refer to kNN classifiers. All the values in this table are percentages (%).
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Only the results related to the five kNN models selected in each analysis are presented
and compared with the other results.

4. Discussion
4.1. Software Optimization

The analysis of the two different marker sizes showed that the 40 mm marker had a
slightly higher detection rate. However, one-quarter of the 40 mm markers had only part of
their area detected due to shadows created by the other markers. Considering the success
rate to be the number of real markers with approximately 100% of their areas detected, we
obtained a higher success rate using the 20 mm markers.

After selecting 20 mm as the marker size the markers, we evaluated the best marker
color the marker. While using the white and yellow colors, the software confused the
marker’s color with the background and did not detect some of the markers. The use of
orange and red caused the detection of false markers on the skin of the subjects. We obtain
the highest success rate with green, which was selected as the marker color.

None of the colors used achieved a 100% success rate since some markers were not
detected because they were partially or completely covered by body parts or folds of
clothing.

One hypothesis to study in the future is the consideration of multi-color markers with
a specific arrangement to reduce confusion with the background and the subject’s clothes.
With more than one color in the marker, we could identify the color of the background
and only threshold the other colors in the multi-color marker. In this way, we could detect
the marker even if a portion of the marker has the same color as the background or the
subject’s clothes.

Regarding the size of the markers, in this study, we first used the 40 mm markers since
this was the size previously considered. We also decided to test the 20 mm markers to try
to reduce the diameter; this allowed us to reduce it by half while still maintaining the ease
at which the software detected the markers. For future studies, we should reduce the size
of the markers to obtain more precise and useful data.

We also opted to use blue for the rectangle used to obtain the image scale and red
for the string with a weight at its end to know what is the vertical to the floor. We choose
different colors for the three objects to ensure that the software would not confuse them.

The assessment of the software’s ability to detect these three objects using different
backgrounds colors showed that the markers and the rectangle were correctly detected
against all backgrounds. The red string was not detected only when the red background
was used.

In the last step of the software optimization, we observed that the variable that least
influenced the results was the use or not of flash.

The variation in the camera’s distance to the wall resulted in the intervals with the
smallest amplitudes; however, their mean values had the greatest distances between them.
That is, for the same distance, the values calculated were similar, but the mean value
obtained at different distances was the most different. Furthermore, the increase in the
camera’s distance from the wall showed a slight decrease in the angle parameter values
and an increase in the distance between the marker parameters.

Regarding the camera-height variable, the results showed the greatest interval ampli-
tude of all the variables. This variable had more influence on the angle parameters.

When comparing the types of cameras used, we verified that when using the photo-
graphic camera, the results showed greater variation than when a cell phone camera was
used.

These variations might be due to the rectangle and the string not being exactly in the
same plane as the markers, leading to parallax errors. Another possible reason is that the
camera lens was not positioned completely parallel to the dress form. A possible solution
is to obtain the vanishing point of the image, allowing these objects to be placed in different
planes. Another possibility is to know the size of the camera sensor through the image
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specifications, allowing one to obtain more exact results which are similar between different
types of cameras.

4.2. Comparison with the Contemplas Software

In order to validate the results from our software, we compared them with the results
obtained using the Contemplas software. We conducted a statistical analysis to compare
the difference between means, which showed that most of the pairs of the same parameter
were not significantly different for both significance levels tested. Two pairs of features
(ALLLL and PSISHA) had low p-values; thus, we removed the outliers. Removing the
outliers resulted in p-values that were higher than both significance levels, meaning they
were not significantly different. However, not being significantly different does not mean
that we could accept the null hypothesis, so we also performed an equivalence of means
hypothesis test to evaluate whether the difference between means fell inside two pre-
selected boundaries. Neither of the pairs was significantly equivalent between ∆L = −0.01
and ∆U = 0.01; however, most of the pairs of features were significantly equivalent between
∆L = −0.05 and ∆U = 0.05 at both significance levels. Two pairs of features (ALLLL and
PSISHA) were only significantly equivalent at a 5% significance level when the boundaries
were ∆L = −0.06 and ∆U = 0.06. Therefore, at this point, we could consider that each pair
of features was significantly equivalent.

During the image analyses, we noticed that some markers were not fully colored green
or were partially covered by body parts, especially in the back area in the lateral-view
images. Therefore, we had to manually draw green circles on these markers with the same
dimensions and approximate location. For future postural assessments, we need to correct
this problem, possibly by moving the markers away at the same distance from the body
while maintaining the angles between them. This solution would mainly be applied to the
markers located on the back.

We could also test a more simplified setup, using a set square with a weight on one of
the edges, replacing the blue rectangle and the red string by having just one object with
both functions.

The demographic data regarding postural problems were initially collected in order to
attain an idea of the existence of evidence or the diagnosis of postural problems in the study
population. We would use this last type of information to classify the subjects’ posture.
However, few subjects answered that they had visited a health professional because of
these disorders, and there was not enough data to be used for this purpose. On the other
hand, these values also show that less than 30% of the study population who suffered
from back pain sought medical help. In comparison with the value of approximately only
one-quarter of school-aged children who reported LBP and sought medical help [15,42],
we can observe an increase of 5%. This difference in the values could be possible explained
due to our population being composed of adults who are possibly already more aware of
musculoskeletal problems and their consequences.

4.3. Classification

We implemented the LDA and the kNN classifiers, each using the validation methods
of a 10-fold cross-validation and a train/test split with 70% training and 30% testing. First,
we considered a multiclass classification with classes; then, we considered two binary
classifications.

In the results of the multiclass classification, we observed that the highest accuracy
value (61.11%) was obtained when we used the kNN algorithm with k = 9, and the lowest
accuracy value (50%) was obtained when we used the LDA model, both while using the
train/test split validation method. Regarding the f1-score values, the values of the “mild
evidence” class had the highest values of the three classes with both validation methods.
The LDA models were the models with the lowest differences between the f1-score values.
The results of the f1-score values also showed lower differences between the classes when
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using the 10-fold cross-validation method than when using the train/test split validation
method.

Observing the results of level 1 of the binary classification, we verified that the values
in the class “with evidence” were higher than the values of the “without evidence” class.
The kNN model which used k = 15 and the train/test split validation method showed the
best results of the three metrics analyzed in this step (accuracy = 83.33%, f1-score “without
evidence” = 66.67% and f1-score “with evidence” = 88.89%). Also, in this classification,
both LDA models had the lowest accuracy values.

In the results of level 2 of the binary classification, the “mild evidence” class had
higher f1-score values than the “moderate/severe evidence” class. Once again, the LDA
models had the lowest accuracy values for both validation methods, as well as the lowest
f1-score values of the two classes. The model with the highest results for the three metrics
was the kNN model when k = 6 and k = 7 and when using the train/test split validation
method.

In both levels of the binary classification, the overall results while using the train/test
split validation method were higher than when the 10-fold cross-validation method was
used. Although the use of the 10-fold cross-validation method usually makes the classifier
more robust, these results can be explained by the small size of the database since, with
57 participants, each fold is composed of approximately 6 participants, which can lead to
bias in the distribution of the data. In future projects, a larger study population should be
used so that each fold can be composed of a larger sample size to train the classifiers.

The overall results of the kNN method confirm that it helps decrease the false positive
rate, thus increasing the overall accuracy of the model [64].

When comparing the results obtained using the multiclass classification and with
both levels of the binary classification, we verified that the binary classification had, in
general, better values and less confusion between classes than the multiclass classification.
This result is in line with the statement that when dealing with a multi-class problem,
the decomposition of the original problem into a set of binary subproblems is an easy yet
accurate way to reduce complexity [65,66].

During the course of this study, some limitations were identified, as mentioned during
this discussion. In the future, it will be necessary to correct them, namely, to improve the
parallax errors inherent in image capture; to ensure that no marker is covered by body parts;
to increase the number of participants in the study population; and to test the software in a
population comprising children and adolescents, who are the target audience, in order to
generate a database that is better adapted to those ages.

Other steps to be taken are to finish developing the easy-to-use prototype kit that
contains an adjustable harness with the markers stitched on. We will also need to turn
the software, which is still in offline mode, into a mobile application that is associated
with a secure server to store and process the data. The final objective is to implement the
use of this kit in schools and youth sports associations, encouraging screening from an
early age and allowing for the referral of children to more specialized analyses by health
professionals.

5. Conclusions

Musculoskeletal pain and disorders, such as LBP, NP and scoliosis, are common in
adulthood. On a daily basis, these disturbances affect the quality of life of populations and
can have consequences on people’s professional lives. Their early detection during child-
hood and adolescence might reduce the likelihood of LBP, NP and scoliosis in adulthood or
of these disorders becoming chronic.

Despite some limitations, we have made some advances in the development of our
software. We made an automatic analysis of images from different cameras possible, and we
achieved an understanding of the best conditions for obtaining an image. We found the best
set of points and anatomical features for assessing the subjects’ posture. We validated the
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results obtained via our software with a study population, and we implemented classifiers
as parameter evaluators and not as final diagnostic classifiers.

This study made some advances in the development of this software. This work
will contribute to the screening of musculoskeletal pain and disorders, such as LBP and
scoliosis, in children and adolescents, and might allow for a decrease in the probability of
their appearance in adulthood or of their progression to a chronic state.
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Abbreviations
Anatomical Parameters Abbreviation

AADL Left Acromion–ASIS Distance
AADR Right Acromion–ASIS Distance
AHAA Acromions Horizontal Alignment in Anterior View
AHAP Acromions Horizontal Alignment in Posterior View
AJNDL Left Acromion–Jugular Notch Distance
AJNDR Right Acromion–Jugular Notch Distance
AKLAL Left Knee Lateral Angle in Anterior View
AKLAR Right Knee Lateral Angle in Anterior View
ALAL Left Ankle Lateral Angle
ALAR Right Ankle Lateral Angle
ALLLL Left Lower Limb Length in Anterior View
ALLLR Right Lower Limb Length in Anterior View
APDL Left Acromion–PSIS Distance
APDR Right Acromion–PSIS Distance
ASA Acromions–Sternum Angle
ASISHA ASISs Horizontal Alignment
ASISLAL ASISs–Left Leg Angle
ASISLAR ASISs–Right Leg Angle
AVA Acromions–Vertebral Column Angle
KAL Knee Angle in Left Lateral View
KAR Knee Angle in Right Lateral View
LFAL Leg–Foot Angle in Left Lateral View
LFAR Leg–Foot Angle in Right Lateral View
LLA Lumbar Lordosis Lateral Angle
LLCL Lumbar Lordosis Curvature in Left Lateral View
LLCR Lumbar Lordosis Curvature in Right Lateral View
PKLAL Left Knee Lateral Angle in Posterior View
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PKLAR Right Knee Lateral Angle in Posterior View
PLAL Pelvis–Leg Angle in Left Lateral View
PLAR Pelvis–Leg Angle in Right Lateral View
PLLLL Left Lower Limb Length in Posterior View
PLLLR Right Lower Limb Length in Posterior View
PSISHA PSISs Horizontal Alignment
PSISLAL PSISs–Left Leg Angle
PSISLAR PSISs–Right Leg Angle
TKA Thoracic Kyphosis Lateral Angle
TKCL Thoracic Kyphosis Curvature in Left Lateral View
TKCR Thoracic Kyphosis Curvature in Right Lateral View
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