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Abstract: Human-machine interfaces hold promise in enhancing rehabilitation by predicting and
responding to subjects’ movement intent. In gait rehabilitation, neural network architectures utilize
lower-limb muscle and brain activity to predict continuous kinematics and kinetics during stepping
and walking. This systematic review, spanning five databases, assessed 16 papers meeting inclusion
criteria. Studies predicted lower-limb kinematics and kinetics using electroencephalograms (EEGs),
electromyograms (EMGs), or a combination with kinematic data and anthropological parameters.
Long short-term memory (LSTM) and convolutional neural network (CNN) tools demonstrated
highest accuracies. EEG focused on joint angles, while EMG predicted moments and torque joints.
Useful EEG electrode locations included C3, C4, Cz, P3, F4, and F8. Vastus Lateralis, Rectus Femoris,
and Gastrocnemius were the most commonly accessed muscles for kinematic and kinetic prediction
using EMGs. No studies combining EEGs and EMGs to predict lower-limb kinematics and kinetics
during stepping or walking were found, suggesting a potential avenue for future development in
this technology.

Keywords: prediction; gait analysis; electroencephalograms (EEGs); electromyograms (EMGs);
kinematics; kinetics; joint angles; joint moments; joint torque; neural network

1. Introduction

The activity of walking or stepping is complex, involving the simultaneous control
of multiple physiological systems. This whole-body motion is thus an adaptive strategy
that maintains postural control of the body’s centre of mass while executing volitional
movement [1]. The conservation of the body’s centre of mass and the execution of effec-
tive motor tasks requires the integration and modulation of sensory signals from visual,
somatosensory, and vestibular sources in the nervous system and the interconnectivity
between motor structures in the brain (e.g., motor, pre-motor, supplementary motor, and
associative cortices alongside the thalamus, basal ganglia, and cerebellum), to generate
appropriate, adaptive movements [2]. Neurological disorders impair the interconnection of
systems, making motor control movement more difficult, thus affecting the lower limbs
leading to reduced mobility and life quality [3]. Effective therapies to help retore functional
walking need to target the neurophysiological basis of gait [4].

Neurological rehabilitation, virtual-reality, gaming, and other paradigms employ-
ing human–machine interfaces (HMIs) are continually developing for movement restora-
tion [5,6]. Brain–computer interface (BCI) technology, a component of HMIs, refs. [7,8]
records, analyses, and converts brain signals into electrical commands for another device.
While different BCIs exist, they are normally used for defining the behaviour of an external
device, as is the focus in this study [9]. BCI technology has grown exponentially over the
last few decades in rehabilitation compared to other tools due to its capacity to induce
positive neuroplasticity and preserve and/or improve muscle strength [10,11]. It has been
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proposed that the BCIs can nourish damaged neurological connections between the brain
and muscle [12,13]. Different neurophysiological signals (electrocorticography (ECoG),
EEG, magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI),
among others) can be used. When a BCI employs only central neurophysiological signals,
this system is purely BCI. However, brain signals can be complemented with other physio-
logical data in systems called dependent BCIs [14]. Both systems have their pros and cons.
While dependent BCIs increase the percentage of noise fed to the system and the compu-
tational resources required, the multiple biosignal types can provide helpful information
from different biological systems, making them more robust to different movements and
situations. There is currently no clear evidence which system is superior; consequently,
both types of BCIs will be explored in this review with “BCI” used to denote both types
of systems.

Current BCI research and development is largely focused on the advancement of
upper-limb BCI technology where numerous studies report BCI efficacy when compared to
conventional therapies in affecting immediate and long-term improvements in upper-limb
motor function [3,12,15]. Lower-limb BCI lags behind where the focus remains on designing
BCIs to achieve the same efficiency and patient impact as upper-limb technology. More
directed scientific efforts are required, as lower-limb BCIs can involve differing movements
from simple (e.g., flexion and extension of joints), to more complex multi-joint activities
such as sit-to-stand, stepping forward, backwards, stepping up, climbing stairs, ramp
negotiation, walking overground, over treadmill, etc. Each activity and each platform
over which the activity is conducted generate different neurological and musculoskeletal
patterns. In this current review, we consider only walking and stepping activity as these
are an essential functional, complex movement [16,17].

BCI systems are composed of six key functional blocks [18]: (i) signal acquisition
representing the devices used to collect neural data, (ii) signal pre-processing defining
which mathematical tools will be applied to the neural signals to eliminate information that
is not relevant for the prediction, (iii) feature extraction defining how data will be described
and which variables will be fed to the prediction system, (iv) prediction where the input
data is translated into an output based on algorithms such as statistical models, regression
methods, tree algorithms, and neural networks. The translation process can be further
grouped based on the output type of discrete (limited to several labels) or continuous where
the output can have any value. This translation process can be further grouped based on
the output type of discrete (limited to several labels) or continuous (our focus) where the
output can have any value. The final functional blocks (v) control, and (vi) feedback use
output generated from the prediction block as additional input of the prediction block for
future operations. The main goal of these final blocks is to reduce system error over time.

This systematic review of the literature aims to provide a comprehensive knowledge
base of current state-of-the-art data that best predict continuous lower-limb kinematics
and kinetics during stepping/walking. Moreover, consolidating all published data will
highlight the existing scientific gaps and future work required to expand and improve BCI
technology in lower-limb rehabilitation. The objectives of this review are to answer the
following questions: which brain regions and lower-limb muscles are most commonly used,
and which are the most informative for accurately predicting lower-limb kinematics and
kinetics during gait or stepping activity in healthy individuals and in those with central
neurological disorders? Which tools are currently used to predict lower-limb kinematics
and kinetics when fed with EEGs and/or electromyograms (EMGs)? Which systems
provide the greatest accuracy?

2. Materials and Methods

This systematic review was conducted in line with best practice guidelines [19] adher-
ing to the following iterative steps: (i) definition of the research question informed by the
PICO acronym, (ii) identification of the electronic databases that will be searched and de-
velopment of a comprehensive wide-reaching search strategy, (iii) collation of the citations
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identified from each database into EndNote reference manager software, (iv) elimination of
duplicate papers and transfer of the remaining papers to Covidence software for all subse-
quent screening stages by two independent reviewers (CMD and NAEY), (v) title screening
of the remaining papers, (vi) independent abstract screening, (vii) full-text paper screening,
(viii) quality assessment of the papers selected for the review, again by independent review-
ers (CMD and NAEY), and (ix) data extraction. The procedure followed to accomplish this
systematic review have been published by PROSPERO, ID: CRD42021289711.

Research manuscripts reporting large datasets that are deposited in a publicly available
database should specify where the data have been deposited and provide the relevant
accession numbers. If the accession numbers have not yet been obtained at the time of
submission, please state that they will be provided during review. They must be provided
prior to publication.

Interventionary studies involving animals or humans, and other studies that require
ethical approval, must list the authority that provided approval and the corresponding
ethical approval code.

2.1. Inclusion and Exclusion Criteria

Inclusion criteria comprise any scientific paper providing participant data that predict
lower-limb kinematics and/or kinetics (joint moment and torque) during flat overground
gait or stepping performance using recordings of brain activity (EEG signals) and lower-
limb muscle activity (EMG signals); studies examining adult participants (over 18 years
old) who are reported as healthy or as having central, named neurological pathology.

Studies that report data from animals, human participants younger than 18 years of
age, participants with a diagnosed pathology other than a central neurological condition
including amputations, or studies that did not include 3D kinematic data co-registered with
either EEG signals and/or EMG signals were excluded. Studies where the walking activity
was performed on a treadmill, where electrical or magnetic stimulation or medication was
provided during or preceding the walking or stepping activity, where participants were
required to complete a cognitive task during the activity, or where perturbations were
applied during walking were excluded from this review because of potential activation
of different brain regions and/or lower-limb muscles in comparison to the default state
of human walking or stepping [20–22]. Studies recording only kinetic data related to the
stepping activity were excluded, with the exception of those reporting angular velocities,
accelerations, and torques. These were included as they provide information about the
movement of the limb(s) in space and are directly correlated with kinematic data. Other
kinetic data, such as ground force (GRF), were excluded [23]. Studies reporting prediction
systems that are not continuous were also excluded as the participant is not actively
engaged during movement, an aspect of high importance for rehabilitation [4].

2.2. Study Design

Five electronic databases were searched for relevant materials: PubMed and Em-
base, oriented to biomedical sciences, CINHAL focused on biomedicine and healthcare
from a biological perspective, and Scopus and Web of Science for engineering studies
related to biomedicine. The key search terms applied across all databases were EMG,
EEG, brain–machine interface/brain–computer interface, locomotion, stepping, kinematics,
ERD/ERS/ERSP, and MTP. The eight search strings were combined using Boolean operator
as follows (1 OR 2 OR 3 OR 4) AND (5) AND (6 OR 7 OR 8) taking consideration of the
inclusion and exclusion criteria. The Boolean operators, controlled vocabulary terms (e.g.,
MESH in PubMed), and punctuations were modified to the unique search rules for each
database. The rationale for structuring the key terms and employing Boolean operations
in this investigation lies in the aim of identifying studies that utilized the subsequent
data sources: Electroencephalography (EEG), Electromyography (EMG), derived variables
such as Event-Related Synchronization/Desynchronization (ERS/ERD/ERSP), which are
outcomes of computations performed on EEG data, gathered during stepping, or employed
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Brain–Computer Interface (BCI) devices during stepping. Furthermore, these studies must
have assessed kinematic parameters, or alternatively, forecasted, or scrutinized motion.
We deliberately maintained a broader search string than the specific research inquiry to
mitigate the risk of overlooking potentially relevant publications within the context of this
systematic review. Variations and synonyms of these keywords formulated individual
search strings based on the PubMed search rules, included as an example in Table 1. In the
context of this study, the notation ‘#’ denotes “sentence number” whereas the symbol ‘*’
has been incorporated into the search process to identify derivatives of root words. For
example, it is employed to find derivatives of terms like “electroencephalog*” yielding
results such as “encephalography” and “encephalograms”.

Table 1. Synonym of the keywords used in the databases search.

Keyword Synonyms

#1 EEG
(electroencephalog* OR EEG OR “brain activity” OR “brain electric? Activity” OR “brain wave*” OR
“brainwave*” OR “e.e.g” OR “electr* encephalogram*” OR cEEG OR “EEG-based BCI” OR “EEG-BCI”

OR “EEG-based brain-computer interface” OR “EEG-brain computer interface”)

#2 EMG (electromyogra* OR EMG OR sEMG OR “e.m.g” OR “electr* myogram”)

#3 BCI

(“brain-machine interfac*” OR “brain machine interfac*” OR “brain-computer interfac*” OR “brain
computer interface” OR “brain computing interface*” OR “mind-machine interface” OR “mind

machine interface” OR “cerebral-computer interfac*” OR “cerebellum-machine interfac*” OR “direct
neural interface*” OR BCI OR BCIs OR “neural interface system*” OR “neural-interface system” OR

“BCI-controlled neuroprosthetic” OR “human machine interface” OR “human-machine interface” OR
HMI OR HMIs OT HCI OR HCIs OR “robotic walking device*” OR “restorative robotic device*”)

#4 ERS/ERD/ERSP

(“ERD/S” OR “ERD/ERS” OR ERD OR “event-related desynchroni$ation” OR “event-related
synchroni$ation” OR ERS OR ERSP OR “event-related spectral perturbation” OR “event-related

spectral power” OR “event-related slow potential” OR “event related spectral perturbation” OR “event
related spectral power” OR “event related slow potential” OR “corticomuscular coherence” OR CMC
OR “evoked action potential” OR “evoked discharge” OR “evoked nerve action potential” OR “evoked
nerve response” OR “evoked potential” OR “evoked potentials” OR “cortical synchroni$ation*” OR

“cortical phase synchroni$ation” OR “cortical desynchroni$ation*” OR “cortical phase
desynchroni$ation” OR “cortical phase desynchroni$ation*” OR “phase desynchronization*” OR

“event related potential*” OR “event-related potential”)

#5 Stepping (step* OR walk* OR gait* OR stride OR ambulat* OR stance OR swing OR “toe-off” OR “heel-strike”
OR mobili$at*)

#6 Kinematics
(kinematic* OR biomechanic* OR dynamic* OR “motion analys*” OR “movement analys*” OR “

kinesiology” OR “motion tracking system” OR “motion-tracking biomechanical function analysis
system” OR “biomechanical phenomena”)

#7 MTP (“motion trajectory prediction” OR “motion analysis system” OR “motion analysis device” OR
“motion capture system” OR “monitor capture device”)

#8 Locomotion (locomot* OR “motor behavior” OR “motor behaviour”)

The resulting scientific papers identified in each database were exported to EndNote,
where duplicate studies were identified and eliminated. The remaining scientific papers
were first screened by title to eliminate those which were clearly not related to the question
at hand, the remaining papers were then screened independently by the two reviewers
(NAEY and CMD) by abstract and finally by reading the full texts, identifying which studies
met the inclusion criteria and eliminating those with clear exclusion criteria. Disagreements
between reviewers were addressed through discussion, re-examination of the aims and
inclusion criteria and with a third party (OL), where required, to reach consensus.

2.3. Quality Assessment Tool

The quality of the included research papers was assessed by two independent review-
ers using the Effective Public Health Practice Project (EPHPP) tool to identify biases in
the reported research that may affect review conclusions. The EPHPP tool was chosen
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as it demonstrates acceptable inter-rater reliability, the objectivity of their template ques-
tionnaire and its versatility across multiple research methodologies [24]. In this study,
each paper underwent assessment from eight distinct perspectives employing EPHPP
tool. Each assessment was evaluated as weak, moderate, or high quality. All studies in-
cluded in this systematic review have been classified as “cross-sectional studies”—meaning
“Confounders”, “Blinding”, and “Withdrawal sections” were rated as not applicable. Sub-
sequently, an overall quality rating was assigned to each study following the EPHPP
methodology. These eight perspectives pertain to:

1. Selection bias: Examining potential biases in the selection process of the study participants.
2. Study design: Evaluating the robustness and appropriateness of the chosen research

design.
3. Confounders: Analysing potential variables that may impact the study’s conclusions.
4. Blindings: Evaluating whether subjects are aware of the study design in a manner

that could influence the data they contribute.
5. Data collection method: Scrutinizing the accuracy and appropriateness of the instru-

ments employed during data collection for the study.

Additionally, the assessment encompassed an evaluation of withdrawals and drop-
outs, specifically addressing any challenges or issues faced by researchers during the course
of the study.

2.4. Data Extraction Strategy

A proforma was developed to aid uniformity during data extraction by two in-
dependent reviewers. Information was extracted from each included paper under the
following headings.

• Participants characteristics (sex, age, healthy subject, or with a central neurological
disorder, weight, height)

• Test protocol
• Data collected (input and output)
• Pre-processing pipeline applied to input and output signals
• Prediction tool utilised
• Accuracy of prediction

Firstly, a description of participants and protocols was collated to obtain an overview
of the physiological characteristics of the participants and protocols applied for walking or
stepping activity (with or without speed control). Secondly, registration of the data collected
to feed the prediction system was collated, and the associated pre-processing performed
was extracted. Thirdly, a compendium of prediction systems and their performance was
developed and classified into four groups as guided by Caldas et al. [25] as: neural networks,
regression methods, statistical models, and tree algorithms.

Results were reported narratively for the number and description of included studies
and participants involved. A detailed description of the protocol, analysis, and conclusions
drawn from each study was then collated, categorized as studies which performed kine-
matic or kinetic predictions using only brain activity (EEGs), only lower-limb muscle(s)
activity (EMGs) and studies that performed kinematic or kinetic prediction with a combina-
tion of lower-limb muscle activity and/or other parameters. For EEG-based BCIs, the most
informative brain zone(s) related to the lower-limb kinematics and kinetics was considered,
while for EMGs and combined data types, the lower-limb muscles which were commonly
utilised across studies and those related to the highest prediction accuracy were extracted.

3. Results

As identified in the flow diagram (Figure 1), a total number of 16 studies were included
in the review following all screening stages. Only 15 studies are discussed in detail in
the results as one study [26] did not provide sufficient detail, for example in relation to
their protocol, participant characteristics, pre-processing procedures. Multiple attempts to
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contact the authors for further information failed. The two main reasons for the exclusion
of studies related to the absence of 3D kinematic data or where gait was recorded during
treadmill walking (detailed in Figure 1). With no limitation applied in the search strategy
related to date of publication, the papers included ranged from 2003 up to 2021 (Figure 2),
with the median publishing median date 2018. Across all included studies, participants
comprised a total of 121 healthy subjects and six individuals with hemiparesis in the chronic
phase post-stroke. Prediction of lower-limb kinematics and kinetics in the included studies
utilised models deploying EEG data (N = 2), EMG data (N = 8) and EMG and additional
kinematic data (N = 5). No study identified combined EEG and EMG biosignals.
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Of the 15 studies reported in this review, 14 were considered to be of weak quality,
when rated by the EPHPP tool. Only one study [27] was rated by reviewers to be higher
(moderate quality). The primary risks of bias identified in the included studies related
to the absence of a targeted procedure for participant recruitment and the cross-sectional
nature of many of the studies, as summarised in Figure 3.

Studies were classified into three categories based on input fed to the prediction
systems: (i) studies that employed only EEG to predict lower-limb kinematics and kinetics,
(ii) studies that employed only EMG to predict lower-limb kinematics and kinematics, and
(iii) studies that employed EMG and other variables to predict lower-limb kinematics and
kinetics. From each category, a series of conclusions after the analysis of paper is displayed
in Table 2. A detailed description of the studies can be found in the following subsections.
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Table 2. Summary of conclusions gathered from the analysis of results.

EEGs EMGs EMGs + Data

COMMENTS

• There are relevant data on
the time domain of EEGs for
the prediction of hip and
knee torques during gait in
healthy young adults.

• There are relevant data in
the frequency domain of
EEGs for prediction of hip,
knee, and ankle angles
during robotic stepping in
adult stroke subjects.

• To date, electrodes yielding
most information for the
prediction of torque
kinematics from healthy
subjects are centrally located
in the brain.

• The tools identified which best
predicted kinematics/kinetics
were fed with data from only one
lower-limb side.

• Lower-limb EMG data most used
in kinematic/kinetic prediction
was derived from thigh muscles
(RF and VL) acting on the knee
joint.

• The parameter most predicted
across studies was the knee angle.

• The prediction tools most
employed and moreover identified
to have the highest accuracies
were neural networks: CNN
and/or LSTM.

• The statistical tools most used
across studies to evaluate neural
networks performance were
RMSE and CC.

• Lower-limb EMG activity most
utilised in combined kinematic and
kinetic predictions was derived from
calf muscles (GT and TA) working
around the ankle joint.

• Muscles that make the strongest
contribution to kinetic and kinematic
prediction cannot be currently defined
due to the heterogeneity in outputs
reported and statistical tools utilised.

• Ankle and knee kinematics and
kinetics are equally predicted.

• No conclusion about which prediction
tools are most used or useful can be
drawn due to also the heterogeneity of
prediction and statistical tools
reported across studies.

• No study using EMGs with additional
data predicted lower-limb kinematics
in subjects using an exoskeleton.
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3.1. Lower-Limb, Kinematic, and Kinetic Prediction with EEGs

Two of the included studies used only EEG data for kinematic and kinetic prediction,
summarised in Table 3. Mercado et al. [28] predicted hip and knee torques offline in
20 healthy subjects when stepping forward and stepping up using a multi-layer perceptron
(MLP) neural network. This MLP was fed with EEGs in the time-domain from central and
peripheral zones of the brain using 19 electrode sites (FP1, FP2, F7, F8, F3, F4, T3, T4, C3,
C4, T5, T6, P3, P4, O1, O2, FZ, CZ, and PZ). Joint torques were calculated based on the
Denavit–Hartenberg notation and the Euler–Lagrange approach, where the joint angles
were computed by processing video recordings of subjects during the movements. This
study established that stepping kinetics (hip, knee torques) can be decoded offline from
time domain EEGs. The performance of the decoder, evaluated using the coefficient of
determination, correlation coefficient, and signal-to-noise ratio, found greatest accuracy in
predicting hip torque (right hip outperforming left hip). The prediction of a step forward
preformed best during the first test session, where C3 and C4 electrodes contributed
relevant information.

During the second session C3, CZ, and P3 electrodes provided the most meaningful
information. When stepping up, the best predictive performance was during the later (third
and fourth) test sessions where F4, C4 and F4, and F8 electrodes contributed the highest
relevant information to the decoder.

In the second EEG-based prediction study, Contreras-Vidal et al. [27] predicted hip,
knee, and ankle angle joints offline in five individuals in the chronic phase of stroke during
walking with powered exoskeleton assistance. One of the participants could not finish the
experiment. A 10th order unscented Kalmar decoder fed with delta band frequencies (0.1
to 3 Hz) from 48 EEG channels organised on the 10–20 standard system was employed.
Interventionary studies involving animals or humans and other studies requiring ethical
approval must list the authority that provided approval and the corresponding ethical
approval code. Unlike the previously EEG-based study, which used a neural network as a
prediction tool, Contreral-Vidal et al. [27] used a statistical model. Peripheral EEG channels
(FP1, FP2, AF7, AF8, F7, F8, FT7, FT8, FT10, T7, T8, TP7, TP8, TP10, PO9, PO10) were
excluded due to their susceptibility to recording muscle activity [29,30]. Root mean squared
error (RMSE) for prediction accuracy of hip, knee, and ankle joint angles, measured by the
H2 exoskeleton, were calculated demonstrating decoding from frequency domain EEG
following stroke is feasible. However, the decoder performance accuracy was dependent
on the gait parameters (total steps, steps per minute, and walking speed) of the individual
and improved with multiple gait sessions.

Figure 4 represents the electrode positions used by EEG studies to predict lower-limb
kinematic and kinetic data. Orange circles represent the location of the electrodes commonly
used by Mercado et al. [28] and Contreras-Vidal et al. [27] for the EEG acquisition, yellow
circles refer to the location of the electrodes included only in the Contreras-Vidal et al.
study, while the red triangles mark the electrodes that have been defined as valuable
for a good accuracy prediction by the Mercado study. While Contreras-Vidal et al. [27]
did not evaluate the contribution of each electrode to the overall prediction accuracy, the
six electrodes identified by Mercado et al. [28] as having the highest relevance for good
accuracy prediction of lower-limb torques had central locations (C3, C4, Cz, P3, F4, F8).

Even though the major differences between these two EEG-based studies exist with
respect to pre-processing pipelines, the mathematical prediction tools and performance
metrics are as summarized in Table 3.
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Table 3. Descriptive characteristics of subjects, protocol, signal processing, and output of studies with only EEG input.

Authors Participants Protocol Data Pre-Processing Prediction Accuracy

Input Output Input Output

Contreras-Vidal
et al., 2018 [27]

1F/5M Chronic
poststroke

hemiparesis (H:
160–192 cm, A:
40–68 yrs, W:

62–99 kg)

Walking with
exoskeleton

Natural speed

EEGs
(64 channels,

10–20 system)

Hip, knee, and
ankle angles

Artificial
subspace

reconstruction
Peripheral

channel removal
Detrendation

Common
average

referencing
Down-sampling

to 100 Hz
Butterworth

band-pass filter
(0.1–3 Hz, 4th)

Standardization

Low-pass filter
(3 Hz)

10th order
unscented

Kalman filter
RMSE 1

Mercado et al.,
2021 [28]

8F/12M Healthy
subjects (A:

21–23)

Step forward,
up, and back

Natural speed

EEG
(19 channels,

10–20 system)

Hip and knee
torques

Notch filter at
60 Hz

SOBI-RO
K-nearest

neighbours

Conversion of
RGB video

to BW

Multi-layer
perceptron

RMSE (◦):
Right hip
Left hip

Right knee
Left knee

0.0023
0.0018
0.0095
0.0051

1 RMSE values were summarised in plots. For further details, consult Contrerass-Vidal et al.’s study [22].
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Figure 4. Conjunction and disjunction of EEG sites used in EEG-based kinematic and kinetic predic-
tion studies [22,23].

3.2. Lower-Limb, Kinematic, and Kinetic Prediction with EMGs

As detailed in Table 4, eight studies included in this review predicted lower-limb
kinematic data using muscle activity as input to their prediction systems [31–38]. All
studies involved healthy subjects with detailed demographic information provided in six
studies and minimal information provided in three [31,34,38]. Where identified, 39 male
participants and 6 female participants, with an average age of 30 years (no subject >50 years)
and with weight ranging from 60 to 80 kg were included across all studies.

All protocols instructed participants to walk overground without assistance. Two stud-
ies included additional activities such as stair descent/ascent, ramp descent/ascent [31],
and sitting and standing [34]. Only one study [32] controlled participants’ gait speed.
Five papers predicted knee angle joints using unilaterally muscle activity [34–38], four of
which measured the left limb [34,35,37,38]. One study, by Li et al. [36], did not identify
measurement laterality. One study predicted knee and ankle joint angles [31], and two
studies predicted hip, knee, and ankle joint angles from only one limb [32,33] using the
right and left limb.

Different prediction tools were used across studies: an unscented Kalman filter [31],
backpropagation (BP) neural network [32], dynamic recurrent neural network (DRNN) [33],
random forest (RF) [36], long-short term memory (LSTM), and convolutional neural net-
work (CNN) [34,35,37].

The majority (four out of six) of prediction tools reported in these EMG-based studies
were neural networks (BP, DRNN, CNN, and LSTM), with no consistency in the neural
network(s) utilised apparent. No regression prediction models defining the relationship
between output and input by a linear regression model was identified using EMG data.

To evaluate predictive performance, two studies used root mean square error (RMSE)
and Pearson’s correlation coefficient (CC) as their evaluation metrics [35,38], four studies
used only RMSE [32,35–37]. One study [31] employed only CC and one final study [34]
evaluated the performance of the prediction system by MAE.
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Table 4. Descriptive characteristics of subjects, protocol, signal processing, and output of studies with only an EMG input.

Authors Participants Protocol Data Pre-Processing Prediction Accuracy

Input Output Input Output

Brantley
et al.,

2017 [31]

1F/5M Healthy
subjects

Walking, stair
descent/ascent,

ramp
descent/ascent
Natural speed

EMG of VL, RF,
BF, SEM

Ankle and knee
angles

Normalization
Butterworth band-pass filter

(30–350 Hz, 4th)
Rectification

Butterworth low-pass
filter (6 Hz, 4th)

Butterworth
low-pass filter

(6 Hz, 4th)

Unscented
Kalman filter Pearson’s correlation coefficient: 0.643

Chen
et al.,

2017 [32]

0F/6M Healthy
subjects (H:

170.6 ± 3.6, A:
26 ± 2.2 yrs, W:
62.6 ± 3.7 kg)

Walking
Controlled

speed

EMG right limb
of BF, SEM, VM,
VL, RF, SR, MG,

LG, TA, SOL

Hip, knee and
ankle angles

Notch filter 50 Hz
Zero-lag fourth-order recursive
Butterworth filter with 20 Hz

Full-wave rectification
Sub-sampling at 100 Hz

Butterworth low-pass filter (4 Hz)

BP Neural
network with:
DBN and PCA.

RMSE(◦) 1:

DBN PCA
Hip 3.58 ± 0.67 6.22 ± 1.67

Knee 3.96 ± 0.69 8.11 ± 2.02
Ankle 2.45 ± 0.57 4.65 ± 1.32

Cheron
et al.,

2003 [33]

5F/4M Healthy
subjects (A:
35 + 6 yrs)

Walking
Natural speed

EMG left limb of
RF, VL, BF, TA,

GL, SOL

Hip, knee and
ankle angles,

angular velocity
and angular
acceleration

Band-pass filter (5–2000 Hz)
Full-wave rectification

Smoothing with a third-order
averaging filter

DRNN Consult reference

Gautam
et al.,

2020 [34]

0F/11M Healthy
subjects

Walking, sitting
and standing
Natural speed

EMG left limb of
VM, SEM, BF,

RF
Knee angle Band-pass filter (20–460 Hz)

Empirical Mode
Iterative

Algorithm (EIA)
CNN + LSTM MAE ± SDMAE (%): 8.1 ± 1.2

Jia et al.,
2021 [35]

0F/4M Healthy
subjects (H:

172.1 ± 5.8 cm, A:
23.6 ± 1.4 yrs, W:

65.2 ± 7.5 kg)

Walking
Natural speed

EMG left limb of
RF, VL, GM Knee angle

Full-wave rectification
Butterworth low-pass filter

(30 Hz, 6th)

Traditional
LSTM

Traditional RNN
Adopted LSTM

RMSE ± RMSE (◦) employing:
Traditional LSTM 1.5 ± 0.098

Traditional RNN 2.523 ± 0.373
Adopted LSTM 0.464 ± 0.096

Correlation Coefficient 1:
Traditional LSTM 0.984 ± 0.00219
Traditional RNN 0.963 ± 0.01223
Adopted LSTM 0.999 ± 0.00001

Li et al.,
2019 [36]

0F/6M Healthy
subjects (H:

181 ± 3.8 cm, A:
24.2 ± 1.6 yrs,

W: 72.5 ± 6.9 kg)

Walking
Natural speed

Unilateral EMG
of VL, RF, VM,

GM, GL
Knee angle

Butterworth band-pass filter
(10–500 Hz, 4th)

Rectification
Low-pass filter (6 Hz, 2nd)

Resample 100 Hz

Principal
Component

with: Backprop-
agation Random

Forest

RMSE (◦):
Backpropagation 13

Random Forest 5



Bioengineering 2023, 10, 1162 12 of 23

Table 4. Cont.

Authors Participants Protocol Data Pre-Processing Prediction Accuracy

Input Output Input Output

Liu et al.,
2019 [37]

0F/3M Healthy
subjects

(H: 177.6 ± 2.5 cm,
A: 22 ± 1 yrs,

W: 70.6 ± 1.9 kg,
BMI:

22.5 ± 0.4 kg/cm)

Walking
Natural speed

EMG left limb of
VL, RF, VM, BF,

SEM, MG
Knee angle

Butterworth band-pass filter
(20–460 Hz)

Butterworth notch filter at 50 Hz
Full-wave rectification

Normalization

Butterworth
low-pass filter

(6 Hz, 4th)

BPNN
Original

data-based
CNN

Feature-based
CNN

RMSE (◦):
BPNN 9.15

Original data-based CNN 10.57
Feature data-based CNN 5.88

Coefficient of correlation:
BPNN 0.96

Original data-based CNN 0.93
Feature data-based CNN 0.98

Wang
et al.,

2015 [38]

5 Subjects
(H: 173 cm, A:

21 yrs, W: 67 kg)

Walking
Natural speed

EMG left limb of
VL, TA, GM Knee angle GA-GRNN RMSE ± MPE 2(◦): 0.6406 ± 0.9331

Coefficient of correlation: 0.9983

1 Performance averaged along the different speeds.; 2 MPE stands for Maximum Permissible Error.



Bioengineering 2023, 10, 1162 13 of 23

Figure 5 depicts the muscle groups generating the EMG data used to feed the pre-
diction systems and the continuous outcomes generated from included studies. In this
figure, each circle represents number of papers, while the radiating lines from the center
denote different muscles. Each data point signifies how many papers have incorporated
each respective muscle in their research. The lower-limb muscles where the EMG was most
recorded across studies were Rectus Femoris (RF, N = 6), and Vastus Femoris (VF, N = 6),
followed by Biceps Femoris (BF, N = 5) and the Gastrocnemius muscle (GT, N = 5). Notably,
the most commonly used muscles to predict knee angle were GT (N = 3), Vastus Lateralis
(VL, N = 3), and RF (N = 3). The predictions with the highest identified accuracies were by
Gautam et al. [34] and Jia et al. [35] with a mean absolute error (MAE) of 8.1% and RMSE of
0.464◦ reported, respectively. Both studies predicted only knee angles using left lower-limb
muscle activity from Vastus Medialis (VM), Semitendinosus (SEM), BF, and RF muscles fed
to CNN and LSTM [34] and RF, VL, and GT activity fed to LSTM-only [35] neural networks.
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Five out of the eight studies drew conclusions in relation to kinematic/kinetic pre-
diction that warrant future exploration. Chen et al. [32] predicted hip, knee, and ankle
joints employing back propagation and principal component analysis (PCA) evaluated
with RMSE. The results showed the BP neural network outperformed the PCA method
in extracting optimal feature vectors for multichannel surface EMG to capture the shape
of the angle curve. This resulted in lower errors of angle estimation for each joint by the
DBN method compared to PCA, while cross-correlation coefficients were higher. Cheron
et al. [33] predicted thigh, shank, and foot elevation angles, their angular velocity and accel-
eration employing DRNN. Evaluation using RMSE identified DRNN is best at predicting
angular velocity in comparison to angles and acceleration due to its low error rate, rapid
converge, and avoidance of bifurcation.

Jia et al. [35] studied the performance of traditional LSTM, their adopted LSTM
model, and traditional RNN for predicting knee joint trajectory. The results revealed that
adopted LSTM (where angle joints were not fed to the same LSTM block as the activity
muscles to extract more discriminative features) more closely predicted the actual trajectory
than traditional LSTM, and demonstrated better smoothing capability than RNN. Thus,
LSTM neural networks with feature-level fusion (i) can accurately learn various motion
characteristic data of lower limbs, which is promising for modelling gait, (ii) the average
value of the correlation coefficient generated is larger than the LSTM or RNN models,
indicating better regression performance, and (iii) has good adaptability and universality
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for different subjects. Liu et al. [37] examined estimated knee joint angle using three models:
data-based CNN, feature-based CNN, and BPNN, where errors between the experimental
angle and model estimated angle were larger in data points near the second peak knee
flexion (data-based CNN > BPNN > feature-based CNN), while errors in the other data
points were similar. Li et al. [36], in comparing knee angle prediction performance between
random forest (RF) and back propagation (BP) employing PCA, identified RFPCA as closer
and more robust to the experimental measurements (EMs) than BPPCA. However, as the
sample size increased the estimations of BPPCA and RFPCA became closer to the EM,
although FRPCA was deemed less time-consuming.

3.3. Lower-Limb, Kinematic, and Kinetic Prediction with EMG and Additional Data

As detailed in Table 5, five studies included in this paper predicted lower-limb kine-
matic and kinetic data by using muscle activity and joint(s) angle as input to the prediction
system [39–43]. All studies involved healthy subjects (N = 51, 28 males; 23 females; mean
age 30 years, mean height 170 cm, and weight ranging between 60 kg and 80 kg). All
participants were instructed to walk overground without assistance or exoskeleton use.
Two studies requested participants to walk at their natural speed [42,43], two studies [40,41]
requested gait at natural speed and at different speeds. One study [39] controlled partici-
pants’ speed during the experimental protocol. All studies measured activity in lower-limb
muscles bilaterally, with one exception [40]. Data inputted to predict kinematic and kinetic
variables were composed of two types: muscle activity and other physiological information
such as demographics, anthropometrics, joints angles, among others, as detailed in Table 5.

Different combinations of muscle activity were used in the studies to predict move-
ment. Figure 6 depicts the most used muscles across these studies were GT and TA.
Conclusions about which muscles were relevant for each type of output prediction can-
not be drawn currently, due to the low number of papers. Two papers predicted ankle
torque [39,40], two papers predicted joint moments [42,43]; Hahn et al. [42] predicted hip,
knee, and ankle moments and Zhu et al. [43] predicted only knee moment. Chong et al. [41]
predicted knee and hip angle.
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Table 5. Descriptive characteristics of subjects, protocol, signal processing, and output of studies with EMG input and additional input data.

Authors Participants Protocol Data Pre-Processing Prediction Accuracy

Input Output Input Output

Zhang
et al.,

2021 [40]

4F/6M Healthy
subjects

(H: 175.06 ± 8.45 cm,
A: 26 ± 2.86 yrs, W:

70.36 ± 11.49 kg)

Walking
Natural and

controlled speed

EMG right limb of SOL,
TA, GM

Ankle joint
Ankle torque

EMG:
Band-pass filter

(20–500 Hz)
Rectification

Low-pass filter (6 Hz)
Normalisation

Butterworth
low-pass filter

(6 Hz, 4th order)
GRF:

Low-pass filter

EMG-driven
NMS model
ANN model

RMSE (Nm/Kg):
Fast walking speed 0.06 ± 0.03
Slow walking speed 0.01 ± 0.01

Self-selected walking speed
0.08 ± 0.06

Chong
et al.,

2017 [41]

0F/4M Healthy
subjects

(H: 177.9 ± 3.18 cm,
A: 26.75 ± 4.32 yrs,
W: 81.5 ± 8.44 kg)

Walking
Natural and

controlled speed

EMG of RF, VM, TA, GM,
BF, GT, SOL

ACC
FSR

Knee and hip angles Boltzmann
machine (RBM)

MSE ± STD(MSE) (◦):
Right knee 0.1768 ± 0.3736
Right hip 0.1444 ± 0.3628
Left knee 0.1680 ± 0.3592
Left hip 0.1756 ± 0.4040

Hahn
et al.,

2008 [42]

12F/7M Healthy
subjects

(H: 173 ± 0.08 cm, A:
22.3 ± 1.6 yrs, W:

72 ± 13.3 kg)

Walking
Natural speed

EMG of GMAX, GMED,
BF, RF, VL, TA, MG

Demographics
Anthropometrics

Joints angles,
acceleration, and angular

velocity

Hip, knee and ankle
moments

EMG:
Bandwidth filter

(10–1000 Hz)
Full-wave rectification
Envelopment with a

low-pass filter (5 Hz, 4th)
Magnitude-normalisation
to the maximum value of

the trial
Joints coordinates:

Woltring filter

Three-layer
feedforward

ANN structure

Coefficient of determination:
Hip 0.95

Knee 0.94
Ankle 0.99

Moreira
et al.,

2021 [39]

7F/6M Healthy
subjects

(H: 168 + 1.2, A:
24.2 + 1.85 yrs, W:

65.2 + 10.3 kg)

Walking
Controlled

speed

EMG of TA, GAL
Ankle angle

Angular velocities
Angular accelerations

Walking speed
Body mass, and height
Foot and shank length

Gender
Age

Ankle torque

EMG:
Butterworth band-pass

filter (20–450 Hz)
Enveloping with Root

Mean Square
Kinematics: Low-pass filter

(6 Hz)

LSTM
CNN

NRMSE:
LSTM 0.48
CNN 0.72

Coefficient of correlation:
LSTM 0.73
CNN 0.92

Zhu et al.,
2019 [43]

0F/5M Healthy
subjects

(H: 173 ± 0.05, A:
24 ± 1.5 yrs, W:
60.5 ± 4.6 kg)

Walking
Natural speed

EMG of BF, VL, GA, SE
Thigh angle and

shank angle
Knee joint moment

Butterworth band-pass
filter (8–500 Hz, 4th)
Notch filter 50 Hz

Wave rectifier

Elman neural
network

NRMSE: 0.116
Coefficient of correlation: 0.979



Bioengineering 2023, 10, 1162 16 of 23

Prediction tools again varied, although all could be classified as neural networks;
two papers used an artificial neural network (ANN) [40,42], one employed restricted
Boltzmann machine (RBM) [41], one combined CNN and LSTM [39], and the final one [43]
implemented an Elman neural network. The mechanisms evaluating the performance of
the prediction tools were again heterogeneous, limiting direct comparison between studies.
While EMG data alone were used to predicted joint angles, EMG combined with additional
data were used to predict torques, moments, and/or joint angles. Two papers [39,42] used
EMG, angular velocity, and anthropometrics as input to calculate joint moments. Two
papers [40,43] used EMG and angle joints as input to calculate torque and moment joints.
One paper [41] used EMG, acceleration, and force sensing resistors (FSRs) as an input to
calculate joint angles, where the prediction system is seen to perform better than in the
previous studies [39,40,42,43], as can be shown in Table 5.

Chong et al. [41] evaluated how much each sensor that measured acceleration (ACC),
FSR, and EMG contributed to the prediction of hip and knee angles during natural and
controlled speed gait. The results indicate that the least relevant information is ACC in the
y direction on the left GT. FSRs on the right and left heel were the most important sensors
for prediction. Zhang et al. [40] utilised two models to predict ankle joint torque during
natural and controlled gait speed, using an input of ankle angle and calf muscle activity: an
EMG-driven neuromusculoskeletal (NMS) model and an ANN. The findings attest that the
ANN model predicts torque significantly better (lower RMSE of torque prediction) than
NMS, notably during slow walking movement. Moreover, the NMS model and the ANN
agreed better with measured torque during gait than in isokinetic ankle movements.

The results indicate the 64 sensors employed to measure ACCs, FSRs, and EMGs could
be reduced to 19 sensors while maintaining good prediction performance of angle joints.
Hahn et al. [42] intended to predict hip, knee, and ankle moments during natural gait speed
using a three-layer forward ANN model. The performance and prediction accuracy of
moments were similar across all joints and had acceptable low error values in almost all
peak moment comparisons. However, EMGs did not impact the prediction accuracy, with
kinematic and demographic data as the input the model achieving accurate joint moment
patterns. Moreira et al. [39] predicted the ankle torque of subjects during controlled speed
gait with CNNs and LSTMs fed with 11 different variables (Table 5). The results indicate
that (i) CNN appears to better estimate ankle joint torque trajectories compared to LSTM,
(ii) prediction time using LSTM is higher than CNN by 4.18 ms, (iii) the performance of
CNN with or without the EMGs of TA and GT is statistically unchanged. Lastly, Zhu
et al. [43] predicted the ankle moment of five healthy subjects walking overground with
Elman neural network fed with EMG signals from BF, VL, GT, SEM, thigh angle, and
shank angle.

4. Discussion

Research to date on gait has focused on lower-limb muscle, brain activity, and kine-
matic movement as separate entities [44–46] examining different conditions or different
populations [20–22]. Results indicate that kinematics, EMGs, and EEGs are all susceptible to
subjects’ physiology and their environment. This systematic review focused on prediction
of gait (as measured by lower-limb kinematics and kinetics (joint moment and torque).

Our objective was to systematically gather all data relating to neurological signals
that can accurately predict lower-limb kinematics and kinetics for future BCI rehabilitation
purposes. We therefore excluded studies where subjects did not perform overground
walking in a straight line or used devices such as prostheses, canes, and experimental
set-ups that change the natural gait strategy, such as placing weights on the lower-limb
extremities or walking on treadmill [47,48]. Descriptive studies, as well as classification-
based BCI technologies detecting events related to movement volition [49] or recognizing
different movements from several options [50,51], were also excluded. This narrow lens
by which to study brain and lower-limb muscle activity that can predict overground step-
ping and walking resulted in 15 papers out of 6,455 potential papers identified excluding
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research examining and comparing EEGs, EMGs, and kinematics [52–54], applications
including pathology recognition [55,56], and identification of different gait phases [57,58].
Classification-based BCI models do not require active participation during the movement
execution, thereby limiting positive neuroplastic changes and may, in part, explain the
lack of proven long-term benefits associated with BCI interventions employed in rehabili-
tation [12], despite superior short-term performance to more conventional rehabilitation
treatments [59]. Little is known about the neural control of lower-limb movements [60],
nevertheless, studies have confirmed the feasibility of decoding linear and angular lower-
limb kinematics and kinetics [27,28,61,62] under different conditions. Currently, prediction
systems can accurately reconstruct the shape of kinematic signals but fail to estimate the
peak amplitudes in real time. These are important considerations to allow the safe im-
plementation of BCI applications and to facilitate, for example, positive neuroplasticity.
Reviews related to predicting lower-limb kinematics and/or kinetics to date have focused
on signal processing, feature extraction, prediction system employed, execution time, and
accuracy of prediction [23,25,63]. To our knowledge, this is the first research paper that
systematically gathers the available data in a way that addresses what is currently known
about the lower-limb muscle activity and/or brain zones that are most relevant for lower-
limb kinematic and kinetic prediction. This systematic review gives an early indication
of the EEG electrode locations and EMG targets that may have the most relevant for the
prediction of lower-limb kinematics and kinetics as well as the prediction systems most
employed and that give the highest accuracy. In the following sections, we discuss the
scientific gaps identified from the review and how our synthesized findings about EEGs,
EMGs, and prediction tools add to the current scientific literature.

4.1. Scientific Gaps

Two reviews [64,65] related to gait prediction reported that most identified studies
have used a combination of kinematics and lower-limb muscle activity, with limited studies
combining EMGs, EEGs, and kinematics such as Tortora et al.’s study [66]. The findings
from our current review are consistent with this, highlighting a lack of attention in the
literature to muti-source EEGs, EMGs, and kinematics combination in prediction systems,
as no study was identified. From the 15 papers identified that predict lower-limb kinemat-
ics/kinetics, only 2 papers utilised EEG data, 8 employed EMGs, and 5 used EMGs with
complementary data.

It is also worth noting that different studies [39,67] comparing kinematics and EMG
activity of lower-limb muscles during different walking speeds identified intra- and inter-
variability in lower-limb biomechanics across subjects.

While most studies included in this review allowed participants to walk at their
natural speed, as was reported in other reviews [51,68], in two studies individuals were
asked to walk at different speeds [32,39] and in two studies to walk at their natural speed
and at other controlled speeds [40,41]. Studies identified a clear decrease in accuracy
prediction when subjects walk at a slower speed [39,40,69], indicating that accuracy during
protocols employing the same prediction system but different speed gait should not be
compared [70].

A recent review focused on decoding the dynamic movement of level-ground walking,
stair ascending and descending, ramp ascending and descending in comparison to static
movement identified similar limitations in the contemporary literature [51]. The review did
not include stepping activity, as we did in the current review. Benefits of studying stepping
as an alternative to walking include artifact reduction in EEG and EMG signals [71,72], in
comparison to overground gait and a decrease in data acquisition volume. To date, little
has been studied in relation to stepping. This systematic review identified only one paper
examining stepping activity, implying further studies require focus on this movement.



Bioengineering 2023, 10, 1162 18 of 23

4.2. EEG

It is well established that the primary sensorimotor cortex in subjects with and without
neurological disorders contains information about lower-limb kinematics [62,73]. This
systematic review confirms EEG electrodes Cz, C3, and C4 contributed to the most accurate
predictions of linear and angular kinematics using central neural biosignals [62]. Results
from the papers included also show that activation of the brain region related to the
dominant lower limb achieves a better prediction performance than in the non-dominant
lower limb [28], an interesting observation that requires further research.

4.3. EMG

Studies identified in this review that used EMG signals in neural networks primarily
predicted angle joints (69%), while 31% of studies predicted torque or moment joints. A
systematic review by Kolaghassi et al. [23], focussed on continuous variable prediction
only, identified a similar bias in the scientific literature where 72% of studies predicted
angle joints and only 28% predicted torque and moment joints. The majority of studies
employing EMG only to predict movement measured lower-limb muscle groups of RF
and VL, two muscles that are highly active during gait [74,75]. Both muscles extend the
knee joint.

Posterior calf muscles influencing ankle and foot movements were less utilised in
predictive systems despite also being active in the gait cycle. Further studies are needed to
identify if kinematic predictions without the use of posterior calf muscles as an input to the
prediction system are more efficient than using both thigh and calf muscles. On the other
hand, studies that fed future deep learning systems with EMG and included other demo-
graphic and/or physiological variables as input primarily used both anterior and posterior
calf muscle groups (GT and TA). The limited number of studies in this area, in addition to
heterogeneity across the papers, limits the conclusions to be drawn about which muscles
give the best prediction outcomes. However, what is clear from the findings in this review
is that the overall performance of prediction systems is improved when EMG data are sup-
plemented with additional data, although whether the non-EMG data are complimentary
or contain more relevant kinematic information requires further elucidation.

4.4. Prediction Tools

Predictive systems applied to gait have previously been categorised into four main
groups: neural networks, regression methods, statistical models, and decision tree algo-
rithms, with neural networks being the most predominant in the literature [25]. This
systematic review found neural networks to be the most used predictive system in lower-
limb kinematic prediction, further identifying LSTM, and CNN as the best neural networks
tools for systems fed only with EMG data. The best prediction tool across all studies and for
systems fed with EEGs or EMGs, or EMGs with other complementary data was not possible
to identify due to the reduced number of papers, and the diversity in the systems utilised.

Kalman filter, a statistical model, and Random Forest, a tree algorithm, were identified
as used in some of the included studies, while no regression methods were reported. It
is worth noting that the mathematical tools most used across all studies to evaluate the
performance of the prediction systems were RMSE and CC. However, these mathematical
tools give little information about how the neural network generated the relationship
between output and input (and if it is logical). In addition, neither tool provides insight
about the speed at which the models computed the output, or which information is cap-
tured in each layer of the neural networks. It is important to acknowledge that while
these methods are suitable to quickly evaluate which tools make the smallest error across
prediction systems such as carried out by Kumar [76], the need to design a protocol to
evaluate the speed, robustness, and the relevance of the information that neural networks
built in each of its layers is also required to aid in their potential feasibility in responsive
rehabilitative robotics.
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Another aspect warranting future consideration is the optimal information (e.g., the
number of electrodes) needed to feed an accurate prediction system. Neural networks can
be fed with a large amount of data that do not necessarily translate into high accuracy
as the neural network will absorb into its structure attributes of input signals that are
not necessarily related to the output. This makes the neural network more susceptible
to noise, and a phenomenon called overfitting [77]. When employing EMG, ACC, and
FSR input, Chong et al. [41] demonstrated that predictive performance did not increase
significantly after the 20th electrode. A similar conclusion was drawn when employing EEG
input [73] where temporal or frontal EEG electrodes were noted to make no contribution
to the reconstruction of lower-limb movement trajectory. The lower-limb muscle groups
and EEG electrodes spotlighted in this systematic review constitute only the starting point
towards the identification of a minimum number of electrodes required to predict shape
and amplitude of the lower-limb kinematics. More research is required.

It was interesting to note from this review that the predominant focus for both EMG
and EEG data was movement prediction. Predictive systems in BCI could utilise these data
with alternative roles whereby EEG and/or other physiological data could be used as the
predictive input and EMG used as an assessment tool that can define how much effort the
subject or the motor of the exoskeleton needs to perform to maintain the planned physical
activity during the movement task. This would help ensure that the planned movement
task is ultimately completed and allow exoskeleton assistance, for example, to be tailored
to provide only the minimal assistance required during rehabilitation.

4.5. Limitations

This study, identifying the lower-limb muscles and brain electrodes most employed in
neural networks and other predictive systems and the accuracy of their performance, must
be considered in light of a number of limitations. The narrow focus taken for overground
walking excluded a sizable body of scientific work in other gait contexts such as treadmill
training. However, the physiological basis for treadmill walking does differ to that of over-
ground walking and would introduce a confounding factor. In addition, studies employing
only kinetic variables such as GRF were excluded. While GRF was previously identified as
the variable most used in gait predictive systems [25], we excluded these studies as GRF
(i) has no direct correlation with lower-limb articulation, (ii) is associated with inherent
difficulty in measuring for long periods of time or across different environments, and
(iii) the presence of force plates required to measure GRF alters the floor underfoot and
potentially the walking pattern [65].

Overall, the quality of the scientific papers identified, when reviewed using a risk-
of- bias tool developed for quantitative, health-related studies, was of low quality. Only
one paper was rated as having moderate quality. As the literature in this area comes
predominantly from the field of engineering, it raises the need for researchers to target and
design clearer procedures for participant recruitment, in line with more clinically focused
research. A similar issue was reported in a previous review in robotics in stroke noting
that none of the papers reviewed provided a clear rationale for their selection of stroke
participants, and provided limited details on stroke pathology, stroke laterality, and stroke
severity levels were documented [51,78].

In the upper limb, a systematic review of EMG-based motor intention prediction of
continuous upper limb motion published in 2019 [79] demonstrated prediction of both
kinematics and kinetics is possible and precise using EMG data only. However, identified
studies were conducted offline with no knowledge of the predictive performance online.
Similar limitations in lower-limb prediction systems employing EEGs, or EMGs, are re-
flected in our systematic review where the evaluation of all prediction systems (primarily
EMGs) was performed offline.

Finally, the results identified in this systematic review may limit broad applicability.
The population reported across the included studies is limited to individuals under 50 years
old, mostly to healthy individuals and primarily from data captured without exoskeleton
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use. Conclusions drawn from the findings of this review lack biosignal information related
to human machine interaction and provide limited data related to central neurological
disorders, to whom BCI technology will be most applicable.

5. Conclusions

This systematic review highlights that the primary motor electrodes (Cz, C3, C4),
quadriceps femoris muscles and posterior calf muscles (RF, VL, GT, and TA), and neural
networks (CNN and LSTM) are the most commonly registered and used signals and tools
in lower-limb motion prediction and demonstrate the highest performance in the prediction
of lower-limb kinematics and kinetics based on the contemporary research in this filed.
Moreover, several gaps have been identified that are critical for furthering development
of prediction system technology. These include the absence of (i) predictions combining
EEGs and EMGs, (ii) standardized statistical tools to evaluate the prediction tools, and (iii)
targeted populations with central neurological disorders and those over 50 years of age.
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