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Abstract: Biomaterial templates play a critical role in establishing and bioinstructing three-dimensional
cellular growth, proliferation and spatial morphogenetic processes that culminate in the development
of physiologically relevant in vitro liver models. Various natural and synthetic polymeric biomateri-
als are currently available to construct biomimetic cell culture environments to investigate hepatic
cell–matrix interactions, drug response assessment, toxicity, and disease mechanisms. One specific
class of natural biomaterials consists of the decellularized liver extracellular matrix (dECM) derived
from xenogeneic or allogeneic sources, which is rich in bioconstituents essential for the ultrastructural
stability, function, repair, and regeneration of tissues/organs. Considering the significance of the key
design blueprints of organ-specific acellular substrates for physiologically active graft reconstruction,
herein we showcased the latest updates in the field of liver decellularization–recellularization tech-
nologies. Overall, this review highlights the potential of acellular matrix as a promising biomaterial
in light of recent advances in the preparation of liver-specific whole organ scaffolds. The review
concludes with a discussion of the challenges and future prospects of liver-specific decellularized
materials in the direction of translational research.

Keywords: liver; decellularization; scaffolds; recellularization; tissue and organoids

1. Introduction

Liver diseases are a major concern as they account for millions of deaths annually,
and the incidence of hepatic disease is still increasing worldwide [1–3]. The liver is the
only solid organ in the human body that uses its regenerative capacity to maintain a stable
100% liver-to-body weight ratio at all times, which is necessary to maintain homeostasis
throughout the body. Despite its powerful self-regenerative capabilities, liver-linked disor-
ders affect a major population across the globe and represent a significant healthcare and
economic burden [2–6]. Liver transplantation is the only live-saving option for patients
with end-stage liver disease. Globally, the demand for organs far outstrips the supply.
The harsh reality of this disparity in organ need vs adequate availability is that millions
of potential patients die on the waiting list [7–9]. According to the Organ Procurement
and Transplantation Network, in the United States alone, one in four patients seeking a
liver transplant either die while waiting (12%), or become too unwell to undergo a liver
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transplantation operation (13%) [10–13]. Life-long global pharmacological immunosup-
pression has greatly reduced episodes of acute graft rejection, leading to considerable
success in short-term allograft outcomes. However, their off-target effects can contribute to
significant morbidity and mortality [14,15]. Due to the increase in end-stage liver failure
and organ supply and demand issues, scientists are exploring alternative treatment options
to generate bioengineered 3D tissue grafts and miniaturized versions of organs (organoids)
for experimental research and transplant applications.

Generally, traditional laboratory models used in liver research investigations are based
on either hepatoma cell lines or primary human hepatocytes grown in two-dimensional
monolayer, or whole liver explants. However, these methods lack true in vivo physiological
relevance [16,17]. On the other hand, animal models have also been highly instructive in
assessing the preclinical safety and effectiveness of new drug candidates. Still, the clinical
relevance, ethical issues, and regulatory acceptance of the 3R testing approaches have led
the research community toward the development of in vitro methods or alternatives to ani-
mal studies [18]. To overcome the weaknesses of 2D monolayer cultures and experimental
challenges associated with live animals and humans, the integrated area of cell biology,
tissue engineering, and biomaterials science has recently become a research hotspot for
the biofabrication of 3D liver tissue/organ-like constructs in vitro [19–27]. As outlined
by Langer et al. [28], a wide range of tissue engineering methodologies exist, usually
combining cell suspensions, supporting scaffolds, and bioactive molecules. Cell sources,
extracellular matrix substrate comparable to those of biological tissues (mimicking bio-
logical, structural, compositional and organizational properties), and growth-stimulating
signals are generally referred to as the tissue engineering triad. Normal cells in biologi-
cal tissues/organs are anchorage-dependent residing in a 3D microenvironment (absent
in 2D cell culture systems). In tissue engineering process, artificially prepared scaffolds
and hydrogel microenvironments serve as temporary structural frameworks and provide
unique opportunities for applied cells to attach, proliferate, differentiate, and migrate in
biomimetic 3D microenvironments during various growth, development, and maturation
stages [26,28–31].

Over the years, researchers have developed biocompatible materials to create scaffolds
and hydrogels comparable to the native microenvironment of target tissues and organs,
either through materials chemistry approaches or extraction/modification of naturally
occurring materials [32,33]. Biomaterials (e.g., synthetic, natural or bioconjugations of
both) applied in developing tissue-engineered liver constructs are primarily categorized
according to their geometrical configuration, chemical composition, physical or mechanical
integrity, biofunctionality and biodegradability. Structural integrity and biophysicochemi-
cal cues of the natural or synthetic polymeric scaffold matrices play important roles in con-
trolling cellular dynamics, polarity, cell–cell communication, and crosstalk events [34–38].
More importantly, artificial scaffolding materials biodegrade while serving as biomimicking
3D microenvironments for cellular growth, neo-tissue formation, and maturation. Using the
structural and functional insights gained from natural extracellular matrices as a blueprint,
a myriad of biomaterials has been developed. However, to date, there is no natural or
synthetic material that can fully reproduce all of the multidomain macromolecular dy-
namic properties of the liver-specific extracellular matrix in vitro [39–41]. Decellularization
is therefore a highly sought after technique for obtaining native acellular microenviron-
ments from xenogeneic or allogeneic tissue sources and is currently being used in both
basic and translational research to generate physiologically relevant 3D in vitro tissue con-
structs [42–49]. The unique architectural, topological and functional cues of organ-specific
scaffolds make them interesting for inducing desirable cell-specific responses and down-
stream applications such as high throughput screening, disease modeling and hepatoxicity
testing. This review sheds light on the versatility of decellularized materials derived from
the mammalian liver to develop whole liver scaffolds. Finally, we summarized the current
limitations of decellularized materials and future directions.
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2. Hepatic Extracellular Microenvironment and Its Key Functions

The liver extracellular matrix is a highly intricate three-dimensional meshwork of fibers
in which hepatic cells reside in an orderly fashion [50]. Essential components of the liver
ECM include a variety of macromolecules, including biopolymers, glycosaminoglycans,
proteoglycans, glycoproteins, numerous growth factors, cytokines and other matrix-bound
bioactive nanovesicles. Collagen types I, III, IV, V, VI, VII, and VIII, fibronectin, laminin
and elastin are broadly classified as the most essential structural and adhesive components
of the ECM [51]. However, since these biomolecules are not evenly distributed throughout
the organ, the structure of the ECM varies greatly from one specific region of the tissue
to another in terms of the proportion and arrangement of its components. In a healthy
normal liver, fibrillar types of collagen (Collagen I, III and V) are abundantly localized
in hepatic capsules, around portal stroma areas, the perisinusoidal space and fibroid
tissue [52,53]. Type IV collagen and laminin work in a tandem network to make up the
basement membrane of blood vessels and bile ducts. Type IV collagen, along with other
non-fibrillar proteins such as laminin, form a low-density basement membrane-like matrix
along the hepatic sinusoids, around the vessels of the portal tract and bile ducts [54–59].

The non-cellular components of the liver extracellular matrix have traditionally been
appreciated only as a dynamic and inert structural network that provides a supportive
scaffold for stable distribution and orientation of cells within the tissue/organ. However,
studies over the past decade have revealed that the physiological relevance of the liver
extracellular matrix extends beyond simple skeletal protection of cells and surrounding
tissues to several other fundamental biological and functional cues that regulate various
intra- and intercellular activities. Any unfavorable qualitative and quantitative disruption
in the extracellular matrix by various pathogenicity factors can directly affect the struc-
tural foundation, histology, anatomy, and physiology of the liver, paving the way for the
initiation and progression of liver diseases. Nevertheless, preserving the native hepatic
ECM structure is critical for inducing or controlling many cellular processes essential for
tissue regeneration through inherent physical, chemical, and biological cues. Because ECM
operates as a communication liaison between cells in the tissue/organ, it is significantly
important to accurately reconstitute the multifactorial biophysicochemical properties of
the native liver’s extracellular matrix when creating implantable tissue engineered con-
structs [60–65]. Schematic representations of the ECM composition and its biochemical or
mechanical properties are shown in Figure 1.
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3. Development of Liver Specific Decellularized Biomaterials for Liver Tissue Engineering

The significance of the extracellular matrix and its biophysicochemical role in so many
fundamental biological processes has stimulated substantial interest in the formulation
of next generation biomaterials. Native liver-derived acellular materials are considered
the most biomimetic, reliable and instructive substrates for unlocking the inherent regen-
erative potential of locally damaged liver tissue compared to other natural and synthetic
materials [67–72]. Key features of native extracellular matrix, such as high biocompatibil-
ity, low immunogenicity, and excellent biodegradability are extremely difficult to mimic
with synthetic materials [73–89]. Acellular materials of biological origin are usually ob-
tained through decellularization, which ideally refers to the complete removal of cellular
components and genetic materials (DNA and RNA) using various agents. Various decellu-
larization methodologies (physical, chemical, enzymatic) have been developed to isolate
all cellular and immunogenic components from whole liver/tissue slices in order to obtain
liver tissue-specific bioactive materials that replicate the maximum dynamic scaffolding in-
tegrity and biomolecular compositions provided by the native extracellular matrix proteins
in vivo [90–115]. The importance of the bioactivity of dECMs in liver tissue/organ bioengi-
neering has been highlighted in many studies [116,117]. Although experimental strategies
for decellularization of liver tissue/entire liver have improved significantly and several
relevant studies have been published, the need for a gold standard tissue-independent
decellularization protocol still prevails. This is because each individual donor source (ani-
mal or human) possesses distinct features in terms of size of the tissue/organ, eidonomy,
anatomical architecture, cellular composition, extracellular matrix organizations, stiffness
and quantity of the interlocking ingredients. Accumulated knowledge has revealed over
the past decade that the relevant physicochemical characteristics and mechanobiological
profiles in the preserved components of decellularized liver biomaterials vary and generally
depend on the method of decellularization (Figure 2). For these reasons, when performing
decellularization treatments, it is essential to recognize that one experimental protocol may
not yield efficient outcomes and the development of the more advanced decellularization–
recellularization technologies offer the opportunity to obtain reliable preclinical results or
development of clinical grade tissue engineered products [48,118–136].
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Figure 2. Macroscopic images for the preparation and characterization of native and decellularized
rat liver (a). (a1) Fesh liver, (a2) frozen liver-after 24 h, (a3) liver perfused with distilled water
over 30 min through both portal vein and bile duct systems, (a4) liver perfused with 4% TritonX-
100 solution over 3 h and (a5) liver perfused with 0.5% SDS solution over 3 h. (b) Cross sections
of histological and immunofluorescence images of native and decellularized livers stained with
hematoxylin-eosin, fibronectin (red), collagen I (green), laminin (red), and collagen IV (red) showing
the overall structure, sulfated GAG, and collagen, respectively. (c) Scanning electron microscopy
images showing ultrastructure of normal and decellularized livers treated with 0.4% Triton and 0.5%
SDS based protocols. SEM images of (c1–c3) normal liver and (c4–c6) decellularized liver. Intact and
smooth vessel wall (c5) and extracellular matrix parenchyma (c6) with hepatocyte-sized free space in
the decellularized liver matrix can be clearly observed. Yellow triangles in indicate the vessel walls
native and decellularized liver. (d) Appearance of over perfused decellularized liver left lobes, with
vasculature preserved. (e) Confirmation of DNA removal native and decellularized rat liver. Data
are expressed as means ± SD (n = 3). *** p < 0.001. Figure 2 is adopted with copyright permission
from [136], Elsevier.

4. Liver-Derived Acellular Matrix as a Platform for Whole Organ Bioengineering

Over the past decade, several research groups have been able to fully decellularize
simple tissues to whole-livers and demonstrate the ability to repopulate cells into acellular
templates for experimental biology research and preclinical applications [137–142]. One of
the first studies on bioengineering the whole liver using decellularization and recellulariza-
tion approaches was reported by Uygun et al. [142]. The authors decellularized ischemic rat
livers using sodium dodecyl sulfate (SDS) and performed washout perfusion through the
portal vein for 72 h. The characterization results revealed that the decellularized scaffold
retained the ultrastructural components of the liver extracellular matrix (collagen types I
and IV, fibronectin, and laminin β1) and microvascular network. To validate the effective-
ness of the acellular liver scaffold, the authors performed recellularization with rat primary
hepatocytes (four injections of 5 × 106) through the portal vein. The entire liver scaffold
supported efficient cell engraftment with 96.5% ± 3.6% efficiency. Initially, the injected cells
were adhered around large veins, but over the next few days, the cells were found to be
distributed throughout the matrix. During the experiment period, approximately 20% of
cells were damaged due to microenvironmental perturbations and apoptosis. Interestingly,
functional analysis revealed elevated levels of albumin, urea, UDP-glucuronyltransferase
1 family, polypeptide A1, and glucose 6-phosphatase. Expression levels of cytochrome
P450 enzymes were reported to be similar to those found in normal livers. The researchers
also experimented with the addition of microvascular endothelial cells to the recellularized
structures and succeeded in aligning the vasculature in three days. Preserving vascular
network allowed the transplantation (heterotopic) of the recellularized liver as auxiliary
liver in rats through the arterialization of the portal vein.

Around the same year, Shupe et al. [143] also reported a perfusion strategy using
Triton X-100 in combination with 0.1% SDS to achieve more efficient decellularization
results in a less time-consuming manner. The authors performed perfusion mediated
recellularization using rat liver progenitor cells (WB344) through the inferior vena cava
(IVC) route. Although, long-term analyses were not performed, the researchers observed
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the migration of the cells from the vessels to the center of the acellular matrix. This was
followed by the active exploration of decellularization–recellularization technology for liver
tissue engineering research. For example, Gessner et al. [144] developed a liver scaffold
from rats by perfusing the detergent fluids through the portal vein route. The authors
perfused the liver for 30 min–1 h using a dewaxing buffer (36 U/L phospholipase A2
in 1% sodium deoxycholate) in order to remove the biological membranes (plasma and
nuclear membrane). To maintain the biophysicochemical characteristics of the native organ,
the liver was also infused with a high-salt buffer that helped keep collagen insoluble and
preserved the cytokines and growth factors. Nucleases (DNases and RNases) were exposed
to the decellularized scaffold to remove any remaining nuclear material in the acellular
structural framework. Surface topography captured using scanning electron microscopy
(SEM), confirmed that extracellular components were preserved at a comparable level to
normal liver tissue. Maintenance of the microvasculature integrity allowed the reseeding
of human hepatoblast-like cells (Hep3B cells). The recellularized structure with a cell
seeding density of 1.3 × 108 cells was maintained in bioreactors for up to 14 days. At the
termination of the experiment, lobes of the recellularized matrix framework were used
for assessing the cell distribution using immunofluorescence, immunohistochemistry and
scanning electron microscopy imaging. The results showed that engrafted cells exhibited
proliferation potential (Ki67 staining) without showing the signs of apoptosis. Additionally,
biomarkers such as albumin and EpCAM were expressed, but the expression levels were
directly dependent on the localization of the attached cells. In the same year, a Japanese
research group led by Yagi et al. [145] reported an improvement in the decellularization
protocol for porcine liver. The authors performed decellularization in larger animal ex-
periments with the intent of generating large sized organs similar to the human liver, an
important step toward engineering whole organs for clinical applications. The results
showed that the morphological and structural components of the liver were well preserved
after undergoing decellularization procedures. The presence of growth factors (hepatocyte
growth factor, basic fibroblast growth factor, insulin-like growth factor 1, and vascular
endothelial growth factor) crucial for maintaining a healthy niche of hepatic cells was also
analyzed. Still, the growth factors in the acellular matrix were significantly lower than
in normal liver tissue. Prior to the recellularization, the authors sterilized the scaffold
with ultraviolet irradiation and performed a multi-step infusion of hepatocytes (1 × 109)
through the portal vein. Albumin staining results (after 4 and 7 days of culture) revealed
that the hepatocytes remained mostly in the portal vein for the first 24 h, then engrafted
and migrated to the surrounding liver parenchymal region. Interestingly, after 4 days of
the perfusion culture incubation, grafted hepatocytes showed albumin expression levels
comparable to those of normal livers; however, long-term functionality analysis showed
that expression levels decreased significantly only after day 7.

Around 2015, researchers started to explore new strategies for reestablishing the
vascular network within the decellularized liver scaffold. To investigate the vasculature
reconstruction concept, Ko et al. [146] utilized Triton X-100 and 0.1% ammonium hydroxide
as detergents for the perfusion decellularization of porcine liver through the portal vein
and hepatic artery routes. To understand the reestablishment of the vascular network,
the authors bioconjugated the acellular scaffold with anti-endothelial cell specific antibod-
ies by employing 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/and
N-hydroxysuccinimide ester chemistry. This was the first report demonstrating a strategy
to maximize the coverage of acellular vessel walls with GFP protein (MS1)-expressing
vascular endothelial cells. As a result, the endothelium adhered uniformly throughout the
vasculature, reached the capillary bed of the scaffold and greatly reduced platelet adhesion
during blood perfusion in vitro. The authors further validated the vascular functionality by
transplanting the reendothelialized livers using a pig model. On day 1 after heterotrophic
transplantation, the vascular patency of the scaffolds was examined by ultrasound imaging
and radiographic fluoroscopy techniques. The recovered scaffolds were examined by histo-
logical (H&E) and immunohistochemical (platelet immunostaining) analysis. The results
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demonstrated that the reendothelialized scaffolds were able to withstand physiological
blood pressure and maintained blood flow within the bioengineered constructs for 24 h.

To further improve vascular reconstruction and enhance hepatic functions in bioengi-
neered livers, Hussain et al. [147] hypothesized that a mixed heparin–gelatin coating on the
scaffold would facilitate optimal antithrombotic management and enhance endothelial cells
attachment as well as migration on vascular spaces within decellularized livers by exploit-
ing gelatin’s multiple integrin binding sites. To evaluate the effect of reendothelialization
on parenchymal cells, the authors co-cultured hepatocellular carcinoma (HepG2) cells and
ECs. Finally, recellularized scaffolds were heterotopically transplanted in a porcine model.
The overall results showed that the heparin–gelatin coating improved ex vivo blood perfu-
sion when compared to non-coated frameworks. This was followed by a study published
by Devalliere et al. [148], where the authors employed a different strategy for enhancing
reendothelialization and manipulating endothelial cell attachment in decellularized rat
liver scaffolds. In order to facilitate endothelial cell binding to vessel walls, the authors
genetically fused elastin-like peptide (ELP) to five internal peptide sequences (REDV) of
the CS5 segment of fibronectin. The linkages of the cell-binding domain REDV via REDV–
ELP coupling enhanced the attachment, proliferation and spreading of endothelial cells
within the acellular structure. The results showed that modification of the scaffold with
REDV–ELP resulted in the formation of a uniform endothelial lining of the vasculature and
a clear decline in platelet adhesion to the substrate.

Joining forces in the development of potential preclinical models, our research labora-
tory, Meng et al. [149], performed whole liver decellularization and employed a different
approach for the reconstruction of vasculature in rat liver derived scaffolds. The authors
hypothesized that the infusion of gelatin-encapsulated cells would improve reendothe-
lialization. Results showed that perfusion of immortalized endothelial cells-encapsulated
in gelatin-based cocktails facilitated the retention of large numbers of cells in the recellu-
larized scaffolds. Recellularized liver scaffolds were transplanted heterotopically in a rat
model. Observations using doppler ultrasound waves showed that blood was actively
flowing within the reendothelialized liver scaffold on day 8 after transplantation (Figure 3).
In addition, platelet aggregation and thrombus formation were observed in the vascular
lumen of the reendothelialized liver scaffold on day 8 post-transplantation.

Recently, Takeishi et al. [150] took advantage of the characteristics of human induced
pluripotent stem cells (iPSCs) to create functional bioengineered liver. In the first attempt,
the researchers improved the liver decellularization process by using a 30-fold lower con-
centration of Triton X-100 than previously published protocols, and then assessed the
biological and biomechanical features of the dECM components using a differential scan-
ning calorimetry technique. Subsequently, they optimized the protocols for generating
the human iPSC-derived hepatocytes, iPSC-derived cholangiocytes, and iPSC-derived
endothelial cells for recellularization of the decellularized livers with parenchyma, biliary
system, and vascular spaces. Interestingly, when researchers transplanted bioengineered
livers into an immunocompromised rat model, they were able to maintain function for four
days (Figure 4). Many researchers have published similar studies, but what makes this
multistep protocol unique from others is their ability to repopulate not only the parenchy-
mal cells, but also the vasculature and biliary network. The authors illustrated that an
organ-specific acellular scaffold showed marked improvement in the differentiation of
specialized liver cell lineages (hepatocytes, cholangiocytes, and vascular endothelial cells)
in the pertinent parenchymal and non-parenchymal structures. Although, iPSC-derived
hepatic cells alleviate the procurement limitations of primary human cells, they not only
mimic the fetal rather than the adult cells’ phenotype, but are also functionally immature.
Due to low differentiation functions, engineered liver acellular structures recellularized
with iPS cell-derived lines exhibited immaturity, but urea production analysis markedly
improved [151–153]. Overall, functional analysis revealed that the decellularized liver
scaffolds repopulated with different cell types derived from human iPSCs, showed ade-
quate liver function both in vitro and in vivo. Although the recellularized liver remained
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functional in vivo for four days after auxiliary transplantation into immunocompromised
rats (interleukin 2rg−/−), the overall strategy was not 100% effective in repopulating the
bile ducts or vascular tree. Additionally, the rats had to undergo a right native nephrectomy
to create space for the allograft as well as a left lateral lobectomy of the native liver to
induce regeneration. The final outcomes were unsatisfactory because by four days, two rats
had developed infection with poor blood flow throughout the graft, one developed portal
vein thrombosis, and the other two developed intestinal ischemia.
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ning calorimetry technique. Subsequently, they optimized the protocols for generating the 
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Figure 3. Decellularized rat liver scaffold after reendothelialization. (A) Adhesion of endothelial
cells to the vascular walls and infiltration towards the extravascular. (B) Anastomosis of the PV and
IVC of the reendothelialized liver scaffold to the abdominal aorta and IVC of the recipient rat.
(C) Ultrasound imaging showed the blood flow into the transplanted scaffold 8 days post-
transplantation. Figure 3 is reproduced with copyright permission from [149], Wiley.

In recent years, similar decellularization and recellularization techniques have been
investigated for continuous perfusion of bioengineered livers in a large animal model,
but these efforts have focused primarily on endothelial cell-based revascularization. For
example, Shaheen et al. [154] reported an improved technique with the capability to func-
tionally reendothelialize the vasculature of a human-sized acellular liver scaffold using
human umbilical vein endothelial cells (HUVECs) in a large animal recovery model while
maintaining continuous perfusion. A follow-up study carried out by the same group,
Anderson et al. [155], demonstrated the seeding and engrafting of primary porcine hepato-
cytes into bioengineered liver (BEL) scaffolds that had been previously reendothelialized
with HUVECs. The results showed that bioengineered livers were functionally compe-
tent enough for the production of albumin, synthesis of urea and ammonia detoxification
that indicated the presence of a functional hepatocyte compartment. Furthermore, bio-
engineered livers delayed ammonia accumulation during in vivo perfusion in a porcine
model of surgically induced acute liver failure. After graft removal, bioengineered liver
parenchyma was found to maintain canonical endothelial and hepatocyte biomarkers. As
Shaheen et al. [154] demonstrated in their heterotopic transplantation of endothelialized
liver constructs into an immunosuppressed large animal model, the pig survived for ap-
proximately 15 days post-transplantation, but the reported technique still possesses several
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technical and practical limitations that must be resolved. The main problem with this
study, however, was that only 11.9% of the allograft portal veins were found to be patent at
the study end point. Other important issues that need to be resolved include long-term
maintenance of transplant functions in large animals, recellularization of multiple cell types,
human liver-sized cell populations, and application to preclinical large animal models with
liver-related health disorders.
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Figure 4. Transplantation (auxiliary) of the bioengineered human liver graft recellularized with
induced pluripotent stem cells (iPSCs). (A) Schematic description of the surgical techniques for the
transplantation of auxiliary liver grafts or human bioengineered liver grafts: (1) after right nephrec-
tomy, (2) PV and IVC were exposed. (3) IVC anastomosis (end to side). (4) PV anastomosis (end to
side). (5) After reperfusion. (6) Before closing abdomen. (B) Microscopic images of the engineered
liver graft three–four days post-implantation. (C) immunofluorescence staining of recellularized
auxiliary graft post-transplantation (left), compared to human adult liver tissue (middle), and rat
recipient liver (right). H&E, hematoxylin and eosin; h-ALB, human-specific albumin; h-CD31, human-
specific CD31; h-CK7, human-specific cytokeratin 7. Sections were counterstained with Hoechst (blue
stain). (D) The serum concentration of human specific A1AT and human-specific ALB was measured
by ELISA at day 4 post-transplantation. Abbreviation: N.D: Not determined. Figure 4 is adopted
with copyright permission from [150], Elsevier.

The most significant advancement to date, at least in terms of successful hepatic
vascular perfusion of repopulated scaffolds or in vivo perfusion duration, has been made
by Higashi et al. [156] who seeded decellularized whole pig livers with HUVECs. The
authors found that they were able to perfuse the heterotopically implanted scaffolds
successfully for up to 20 days. Their study was primarily focused on (i) establishing
human-sized bioengineered livers, (ii) optimizing protocols by recellularization of multiple
cell types, (iii) optimizing protocols for efficient transplantation of bioengineered liver
grafts in large animal models with liver dysfunction, and more importantly (iv) to improve
the post-transplant survival of the bioengineered graft in pigs with induced liver failure.
Interestingly, the authors found that the auxiliary bioengineered liver graft improved
liver function and increased the expression of liver-specific genes over 28 days (Figure 5).
This was the first study of its kind to present 28 days of post-transplant evaluation of a
bioengineered liver graft using a preclinical large animal model.
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Figure 5. Engraftment (in vivo) of the bioengineered liver graft at different time points (postop-
erative days 14 and 28). (A,B) CT images of the transplanted graft on postoperative 14 (A) and
postoperative 28 (B). Angiography through the intraportal infusion catheter on postoperative 14 (C)
and postoperative 28 (D). Reconstructed three-dimensional CT image of the remnant native liver
and the transplanted graft on postoperative 14 (E) and postoperative 28 (F). Time courses of the
CT images for the transplanted graft on postoperative 14 (G) and postoperative 28 (H), Blue tube
depicts IVC and HV, and pink tube depicts PV. Time course of the mean CT numbers for the graft and
remnant native liver on postoperative 14 (I) and postoperative 28 (J). Intraoperative images of the
graft on postoperative 28 (K,L). Macroscopic images of the procured graft on postoperative 28 (M).
The arrowheads indicate PV in the graft. Macroscopic image of the stenosed anastomosis site of the
procured graft on POD 28 (N). Patency rate was estimated to be approximately 11.9%. The dashed
red and white lines show the anastomosis site and patent area, respectively. Weight of the procured
graft on postoperative 28 (O). Figure 5 is adopted with copyright permission from [156], Elsevier.

5. Current Challenges and Future Directions

Over the past several years, decellularized materials derived from liver from multiple
mammalian sources (e.g., rat, mouse, pig, human) have been used for tissue and organ
bioengineering applications. It is well documented that the decellularized liver extracel-
lular matrix offers a unique amalgamation of ultrastructural connectivity and inherent
biochemical features that allow dECM to be exploited for cell culture, adhesion, prolifer-
ation, differentiation, migration, and maintenance of morphologic integrity of different
hepatic cell types during subsequent recellularization procedures. Broadly speaking, sev-
eral aspects of decellularization and recellularization technology are immediately quite
appealing, and successful translation and clinical-grade bioengineered organ supply to pa-
tients with end-stage liver disease could ultimately transform the scenario of the transplant
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program, worldwide. The main challenge in decellularization/recellularization technology
is the inability to efficiently generate fully hemocompatible and endothelialized whole
organ (liver)-like constructs containing multiple cell lines with an intact and healthy vas-
culature comparable to that of the native organ. It is evident that converging various
advanced interdisciplinary research approaches may one day generate volumetric liver
tissue or autologous bioengineered organ equivalents for deployment in clinical settings
for transplantation purposes [157–159].

Although preliminary findings are quite encouraging, this research domain is still in
its infancy. Notably, decellularized matrix obtained from native liver displays several key
changes, including the unintended removal of small molecules and incomplete recapitula-
tion of the native organ. To motivate further developments, there are several other critical
issues that need to be resolved immediately, such as the effect of different decellularization
methods on the variation of obtained liver acellular matrix, preservation or reconstruction
of native vasculature networks, homogeneous repopulation of the entire scaffold and its
hidden compartments with autologous cells, and sustained diffusion of the nutrients and
oxygen both in vitro and in vivo [142,150,154]. Other important issues that need to be
addressed include employment of multiple cell types, development of a universal seeding
protocol, ex-vivo maintenance of repopulated livers, real-time monitoring and prevent-
ing total arterial and venous thrombotic events, and the reproduction of histotypic liver
microstructure and zonation.

As explained above, several research laboratories have explored various decellulariza-
tion and recellularization approaches for whole liver bioengineering. Indeed, published
studies underpin forward-looking options of the combined implementation of various
convergent approaches based on cell biology/pluripotent stem cell biology, surface mod-
ification chemistry, and bioengineering principles. The recellularized whole liver grafts
generated by the coupling of recellularization and stem cell-based technologies have
generally been transplanted as auxiliary organs. All animal models in which auxiliary
transplantation of liver grafts was performed, exhibited several limitations. The main obsta-
cle was the lack of advanced technical and scientific methodologies to address issues related
to hepatic arterial blood supply. In general, the auxiliary grafts are supplied with blood
from the portal vein, which may not provide adequate oxygenation and potentially limit
the functionality. Similarly, the absence of a bile duct system inhibits external bile drainage
from the graft. In such a scenario, bioengineered liver allografts cannot effectively handle
bile production and secretion, which may inevitably lead to complications. In addition, the
need for intra-abdominal space for optimal graft placement, the need for various cell types
to repopulate the liver graft, cellular immunogenicity, and the risk of developing thrombo-
sis, are also some of the burning issues. To improve graft functionality in vivo, all of the
above-mentioned issues related to auxiliary liver transplantation in animal models need to
be addressed urgently [145,150,154]. Therefore, additional work based on multidisciplinary
approaches is needed to realize the potential of this technology for the bioengineering of
fully functional and clinically transplantable humanized liver bioequivalents. Nevertheless,
the published reports are inspirational steps toward achieving this unforeseen goal.

6. Conclusions

Despite the advancements in decellularization and recellularization methodologies,
establishment of completely functional liver grafts/in vitro models remain a huge chal-
lenge. Our overview of the various decellularization approaches for obtaining liver specific
homogenous acellular scaffolding systems highlights the fundamental obstacles associated
with recapitulating the liver’s extracellular microenvironment in vitro. We also demon-
strated that the cell culture platforms based on organ-specific decellularized biomaterials
exhibit several key obstacles that need to be resolved immediately. For example, there
is still no consensus about which protocol is universal for obtaining high grade decellu-
larized matrix without losing its essential properties or the best recellularization culture
procedures. Therefore, significant advancements are necessary especially for developing
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novel detergent-free protocols, establishing aseptic decellularization workstations, and
bioprocess engineering tools for controlling batch-to-batch variability related issues. As
a whole, to improve functionality, immunogenicity, maturation and sustainably of the
decellularized grafts for both in vitro and in vivo transplantation applications, researchers
must address the critical obstacles associated with production of organ-specific materials
with desired structural, functional and mechanical properties. Other important issues that
need to be intensively addressed to realize recellularization technology include a proper
selection of cell sources or appropriate cell types (parenchymal and nonparenchymal cells),
quantity control of the cultures, reseeding endothelial cells to cover the endothelial lin-
ing and vascular spaces, optimization of recellularization routes, and ensuring efficient
blood flow. Further efforts in technological and materiobiological innovation will allow
researchers to explore alternative approaches to providing tissue/organ substitutes from
bioengineered sources that will have profound implications for studying liver-related
pathologies or regeneration of a fully functional organ replacement. However, there are
additional roadblocks that must be addressed in the future, including the availability of the
organs, the need for instrumentation to maintain and perform the entire decellularization
and recellularization procedure, overall cost, clinical trials, and regulatory approvals.
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