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Abstract: Electroencephalogram (EEG)-based emotion recognition is a computationally challenging
issue in the field of medical data science that has interesting applications in cognitive state disclosure.
Generally, EEG signals are classified from frequency-based features that are often extracted using
non-parametric models such as Welch’s power spectral density (PSD). These non-parametric methods
are not computationally sound due to having complexity and extended run time. The main purpose of
this work is to apply the multiple signal classification (MUSIC) model, a parametric-based frequency-
spectrum-estimation technique to extract features from multichannel EEG signals for emotional
state classification from the SEED dataset. The main challenge of using MUSIC in EEG feature
extraction is to tune its parameters for getting the discriminative features from different classes,
which is a significant contribution of this work. Another contribution is to show some flaws of
this dataset for the first time that contributed to achieving high classification accuracy in previous
research works. This work used MUSIC features to classify three emotional states and achieve 97%
accuracy on average using an artificial neural network. The proposed MUSIC model optimizes a
95–96% run time compared with the conventional classical non-parametric technique (Welch’s PSD)
for feature extraction.

Keywords: EEG signal; MUSIC; PSD; feature extraction; classification; emotion recognition

1. Introduction

Feelings and emotions have been the sole influence in initiating progress [1]. These
important aspects of human behavior, particularly emotion, are highly correlated with
human consciousness. Each of them is indispensable for the co-existence of the other [2].
The phenomenal evolution of medical imaging modalities in recent times has facilitated
us to explain more of such complex investigations [3]. As a consequence, relevant fields
that focus on the application of the theoretical and hypothetical aspects of neuroscience
have experienced immense advancements. In the process, the fields of HCI (human-
computer interaction), BCI (brain-computer interaction), and neuromarketing [4] have
experienced massive breakthroughs. In HCI research, EEG emotional and attention analysis
has been a decisive framework for assessing the competence of m-learning platforms [5].
By evaluating learners’ mental states, such a system tweaks the learning environment for
optimum efficiency [6]. Modern BCI technologies are capable of ensuring safe driving,
as a driver’s EEG features provide highly correlated information regarding their stress
levels and mental states [7]. EEG emotional recognition techniques are also being used
to evaluate clinical therapies for cancer patients [8]. Wearable EEG headgear is currently
revolutionizing the mobile gaming industry by providing a medium for user interaction

Bioengineering 2023, 10, 99. https://doi.org/10.3390/bioengineering10010099 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering10010099
https://doi.org/10.3390/bioengineering10010099
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0001-6194-664X
https://orcid.org/0000-0003-0306-4029
https://orcid.org/0000-0002-9543-7496
https://doi.org/10.3390/bioengineering10010099
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering10010099?type=check_update&version=1


Bioengineering 2023, 10, 99 2 of 18

with virtual reality-based systems. Such interaction is solely based on the analysis of users’
emotional states and motor-imagery states.

Research in consumer neuroscience has demonstrated that EEG recordings of con-
sumers’ emotional states can provide highly correlated information regarding their product
preferences and liking. Such knowledge describing consumer behavior is now being por-
trayed as a decisive aspect of contemporary marketing schemes [9]. In EEG classification
tasks the major challenge lies within the dilemma of feature extraction. Raw time-series
signals provide little correlated feature information, yet they hold colossal varieties of
hidden feature patterns. Frequency domain transformations, in particular, discrete wavelet
transformations (DWT), short-time Fourier transforms (STFT), non-parametric classical
power spectral estimators, and parametric-based autoregressive power spectral estimator
models can be considered as the state of the art in EEG feature-extraction tasks.

Authors of [10,11], calculated differential entropy for δ, θ, α, β, and γ frequency bands
for selected channels, following 512 points STFT with non-overlapping windows. Extracted
features had the best prediction results in the hybrid model incorporating the Deep Belief
Network (DBN) and Hidden Markov Model (HMM). G. Zhao et al. [12] explored both STFT
and PSD estimations for extracting features from seven classes of emotional states. For the
feature-extraction task, Q. Gao et al. [13] experimented with a unique method of feature
fusion. It fuses features from PSD estimations and features extracted from DWT. E. S. Pane
et al. [14] used hybrid feature-extraction techniques, which use a non-parametric Welch
model for PSD estimation. Z. Yin et al. [15] extracted subject-independent features from
PSD estimations and statistical parameters. M. A. Rahman et al. [16] first extracted channels
from the frontal, prefrontal, central, parietal, and occipital lobe, by excluding the rest of
the channels from each trial of 64 channels. Then they reduced the selected 35 channels
to 5 channel data using principle component analysis (PCA). The method used the classic
Welch PSD-estimation model for transformation and extracted statistical features from the
transformed spectra.

As the literature review so far suggests, non-parametric classical estimator models
are widely used for PSD estimation-based feature extraction from EEG signals. EEG
signals can be contemplated as a random process with stationary intervals. Theoretically,
Fourier transform (FT) for such signals does not exist, as random processes possess finite
power rather than finite energy. However, FT of the autocorrelation function derives the
PSD of such random processes. Non-parametric Bartlett, Welch, and Blackman–Turkey
estimators are just extensions of this core concept, by introducing non-overlapping or
overlapping windowing and averaging techniques. On the contrary, PSD estimators
which use parametric Eigen analysis models solely use linear transformations rather than
computing windowed periodograms from auto correlated functions [17].

Non-parametric PSD-estimation models come with an expensive computational cost, as
they have higher computational complexity and considerably extensive run time. Such exten-
sive run time minimizes the dynamics of HCI and BCI applications, by shrinking real-time
data processing capabilities in systems with comparatively fewer configurations [18–20].
On the contrary, parametric Eigen analysis-based PSD-estimation models use solely linear
transformation and as a result, demonstrate lower computational complexity. On this
basis, parametric Eigen decomposition-based techniques such as, the Multiple Signal Clas-
sification (MUSIC) model holds potential for efficient spectrum feature extraction from
random time series signals. Nevertheless, such parametric-based PSD-estimation models
are relatively unexplored in EEG feature-extraction tasks. Specifically, for the widely used
SEED [11,21] EEG waveform dataset for emotion recognition no prior researches are avail-
able, that investigates the performance of parametric Eigen analysis-based PSD-estimation
models in feature extraction.

One reason behind the unpopularity of the parametric PSD estimation is, such mod-
els, require some preceding information regarding the signal. For instance, the MUSIC
algorithm demands estimations about the signal’s subspace dimension and noise thresh-
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olding parameters. In terms of complex random signals analogous to EEG, such parametric
information is ambiguous and generates complexity.

The MUSIC algorithm has given incredible results in detecting the direction of arrival
(DoA) through PSD estimation, specifically in radar and communication research [22,23].
Previously, the MUSIC model has been very successful in EEG-source localization, due to its
efficiency in DoA estimation [24,25]. However, as a consequence of its complexity in terms
of PSD estimation of random signals, a limited amount of research has been conducted to
investigate its possible use in EEG feature-extraction tasks [26,27]. Particularly in terms of
emotional feature extraction, almost no research can be seen which focuses on the possible
implementation of the MUSIC model.

In this paper, we investigated the use of the MUSIC model in EEG emotional feature-
extraction tasks, on a publicly available SEED dataset. The feature-extraction model
uses parametric-based Eigen-matrix decomposition for estimating power spectral density.
Our research also explains the complex concept of estimating subspace dimensions for
EEG waveforms in unique cases through detailed analysis. As estimation of subspace
dimensionality is indispensable in implementing any Eigen analysis-based parametric PSD
estimations, we believe our findings will benefit a wide spectrum of future EEG information-
processing research. An enormous amount of research has already been conducted on
the SEED dataset; unfortunately, no research has focused on a thorough investigation
of the attribute and characteristics of the dataset. Our investigation has also revealed
some fascinating attributes of the SEED dataset, which had unknowingly affected previous
research works. The novelties of this research work are specifically stated as follows:

i. Finding technical flaws in the SEED dataset that have not been previously discussed
by any research work;

ii. Implementing an Eigen decomposition-based parametric feature-extraction model
in EEG signal;

iii. Proposal of utilizing the MUSIC model for PSD calculation from EEG signals;
iv. Run-time comparison between the proposed and conventional PSD estimation;
v. Comparison of the emotional state classifications with other works in the

same dataset.

The paper is organized as follows. Section 2 illustrates a detailed overview of the
dataset. Section 3 describes the detailed methodology including signal preprocessing
techniques, MUSIC model-based feature extraction, and classification. Section 4 presents the
results with discussions. Finally, Section 5 presents the concluding remarks for this work.

2. Dataset
2.1. Dataset Description

This work used a publicly available EEG dataset, which is widely known as the SEED
dataset. The SEED dataset is prepared by the BCMI laboratory of Shanghai Jiao Tong
University. This EEG dataset is of three emotional states of 15 participants and these states
are neutral, positive, and negative emotional states. The distinct emotional states were
evoked by showing film clips of each subject. Each film clip is easy to interpret and evokes
a single desired targeted emotion. All subjects underwent 15 trials for each of the emotional
states. The total elapsed time for EEG waveform acquisition in each trial was 305 s, with
each trial representing 62 channel EEG waveforms.

For each trial, data were down-sampled to 200 Hz and then filtered by a low-pass
(cut-off 75 Hz) filter. After down-sampling and filtering, each trial retained the information
of 0 Hz to 75 Hz band EEG waveform of 62 channels. The SEED dataset has a total of
675 trials, with 225 trials representing each of the three classes of emotional states. The
detailed experimental setup for preparing the dataset is available at [11], and [21].

2.2. Dataset Examination

Before going to further processing, our team thought to go through the dataset to
examine its channel-wise distribution of signal-amplitude level. Three-dimensional contour
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plots of the raw time-series data revealed intriguing characteristics of the dataset. It was
found that 17% of the total 675 trials contained at least one overshooting channel out of
a total of 62 channels. EEG-evoked potential ranged from 10 µV to 100 µV; on the other
hand, EMG-evoked potential was at the millivolt level [28]. However, some of the channels
exhibited evoked potentials that ranged up to 5 mV. The existence of such overshooting
channels could have resulted from electrode leakage or any other arbitrary issue during
data acquisition.

Three-dimensional contour plots of faultless trials from subject 4 are shown in Figures 1 and 2,
which represent three-dimensional contour plots of trials with overshooting/corrupted
channels. In Figure 1, evoked potentials range up to 200 µV for all the emotional states,
which are within the evoked neural potential range. At the same time, the contour plots for
the time-series signals are distinguishable for the three psychological states. In Figure 2a,
channel 45 (P1) contains recorded evoked potentials of 2500 µV or 2.5 mV, and channel 56
(PO6) contains recorded evoked potentials that range up to 10,000 µV or 10 mV, which lies
within the voltage band of EMG signals. The maximum value of overshooting channels’
voltage bands ranges from 0.6 mV to 10 mV, where generally an EEG signal has the
amplitude in the microvolt range. Trials from subject 1 demonstrated the faultiest trials
with 100% corrupt channels in the negative state and the neutral and the positive states
hold 60% and 66%, respectively. Subject 9 demonstrated the least faulty trials with no trials
containing any corrupt channels. Table 1 represents the total distribution of trials with
overshooting corrupt channels.
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Table 1. Distribution of trials with overshooting corrupt channels.

State Sub
1

Sub
2

Sub
3

Sub
4

Sub
5

Sub
6

Sub
7

Sub
8

Sub
9

Sub
10

Sub
11

Sub
12

Sub
13

Sub
14

Sub
15

Negative 15 2 1 1 6 12 0 0 0 1 0 0 8 3 15
Neutral 9 0 0 0 0 2 2 0 0 2 0 3 0 1 2
Positive 10 4 1 0 2 2 0 2 0 3 0 3 0 2 3

3. Material and Methods

The work process of the conducted research is briefly explained in Figure 3. Trial
separations for each of the subjects are conducted manually from the parent database.
Before pre-processing, detailed analysis of the filtering techniques is conducted to derive
the optimal method. Signal filtering is a computationally expensive operation, and such
analysis is indispensable in reducing the run time for feature-extraction tasks. The MUSIC
model requires a specific estimation for the number of signal subspaces. Such a requirement
makes the model difficult to implement in terms of non-stationary signals with random
characteristics. The algorithm analysis explores such complexities in terms of implementing
the MUSIC model for feature-extraction tasks. The pre-processing includes the implemen-
tation of derived optimal signal filters and time-series-dimensionality reduction. Multiple
methods are introduced in each of the steps. The methods are tested on bilayer ANN
networks, which are built on Keras sequential and functional APIs. Each of the steps is
discussed briefly here.
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3.1. Signal Filtering

Before the extraction of a specific psychological information band, a 2nd order But-
terworth IIR bandstop filter with a half-power frequency band of 48 Hz to 52 Hz is imple-
mented as a notch filter to remove power-line noise. Eyeblink artifacts are removed with
the help of the EAWICA toolbox. This toolbox-utilization procedure has been widely ex-
plained [29,30]. The raw signal is then filtered to extract the relevant neural bands holding
emotional state information. To deduct an optimal and time-efficient filtering method FIR
Hamming window, FIR Kaiser window, and FIR Chebyshev window are tested. For the
4 Hz to 40 Hz band, the Chebyshev window has a sharper cutoff. On the other hand, the
Kaiser window and Hamming window demonstrated similar performance. However, as
the Hamming window possesses a better time-complexity function, a higher-order FIR
Hamming window of 500 data points was chosen. EEG waveform holds 5 major bands,
which are δ, θ, α, β, and γ wave. As the δ band represents sleep waves and the θ band
represents the deeply relaxed phase, both of them can be ignored for information extraction
in this particular case. Our bands of interest should only represent attention and concentra-
tion states, as they are relevant to the experiment. As a result, only the α, β, and γ bands
are our targeted extraction bands.
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3.2. MUSIC Model

The concept of signal and noise subspace is crucial for understanding the fundamentals
of the MUSIC algorithm. The vector [x1(n) x2(n) x3(n) . . . xp(n)] can be considered as the
signal-subspace vector of an arbitrary signal y(n) if,

y(n) ≡ [x1(n) x2(n) x3(n) . . . xp(n)]. (1)

If [xp+1(n) xp+2(n) xp+3(n) . . . xL(n)], the vector represents the noise subspace for
the signal, then the signal y(n) can be presented as,

y(n) = x1(n) + x2(n) + . . . + xp(n)+
xp+1(n) + xp+2(n) + . . . + xL(n)

(2)

Here p represents the number of signal subspaces. The MUSIC algorithm estimates
the PSD of the targeted signal y(n) by decomposing the signal autocorrelation function,
Γyy, to its auto-correlated function of signal subspace, Γxx, and noise subspace σw. The
signal subspace and the noise subspace are orthogonal to each other. The concept can be
mathematically expressed as,

Γyy = Γxx + σ2
w I. (3)

The dimension of Γyy is L × L and rank is p (number of subspace), where p < L.
(3) can be further simplified into,

Γyy =
p

∑
i=1

λiνiν
H
i + σ2

ωνi

M

∑
i=1+p

νiν
H
i . (4)

Here λi, represents the non-zero eigenvalue for the range of i = 1 to p. Moreover, vi
is the eigenvector and vH

i is the Hermitian conjugate of the eigenvector. The term λivivH
i

represents each signal subspace element of y(n). Equation (4) fully decomposes the targeted
signal and is considered a fundamental of the MUSIC model. The targeted signal can be
represented as the complex sinusoidal vector s(ω),

s(ω) ≡ [1 ejω e2jω . . . e(M−1)jω ]. (5)

The eigenvectors in noise subspace vnoise are denoted as,

vnoise ≡ [vp+1 vp+2 vp+3 . . . vk]. (6)

Then the MUSIC model frequency estimator PMUSIC(ω) is stated as,

PMUSIC(ω) =
1

M
∑

k=p+1
|sH(ω)vk|

. (7)

Here, sH(ω) is the Hermitian conjugate of the vector s(ω). After calculating the peaks
(estimated frequencies) of PMUSIC(ω), the power spectrum can be calculated from the
following Pisarenko harmonic equation [31],

cos ω1 cos ω2 · · · cos ωp
cos 2ω1 cos 2ω2 · · · cos 2ωp

. . · · · .

. . · · · .
cos pω1 cos pω2 · · · cos pωp




P1
P2
.
.

Pp

 =


γyy(1)
γyy(2)

.

.
γyy(p)

. (8)

Vergallo et al. [32] implemented the MUSIC algorithm for brain-source localization and
their findings suggest that the neural signal band consists of three source dipoles. As per
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their research, the number of signal subspaces depends mostly on the extracted information
bands for an arbitrary EEG channel. The vector [δ θ α β γ] can be generalized as
the subspace vector for an arbitrary channel holding all neural information bands. However,
as discussed previously, in this particular case our targeted neural information bands only
lie in the range of 8 Hz to 40 Hz. For this, the number of subspaces, p in this particular case,
can be estimated as 3 and the subspace vector can be denoted as [α β γ].

The estimated subspace vector is also clarified in Figure 4. In Figure 4a the three peaks
clearly state the presence of α, β, and γ bands, as the peaks can be found near 10 Hz, 15 Hz,
and 20 Hz for all the states. All five bands are considered for calculating the spectrum in
Figure 4b, but the spectrum does not demonstrate any peaks near δ and θ bands (1 Hz to
8 Hz). This clarifies the absence of these two information bands in the target signal. The
number of the subspace is undefined (p = ∞) in Figure 4c and the spectrum is calculated
by only thresholding the eigenvalues for the noise subspace. The spectrum for the negative
state gives three major peaks which lie in α (peak at 10 Hz), β (peak at 27 Hz), and γ (peak
at 35 Hz) bands. Each of the state spectrums in Figure 4a is distinguishable and clarifies
the estimated signal-subspace vector for the targeted EEG channels. Thus, for the whole
dataset transformation, the MUSIC spectrum is calculated considering p = 3.
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estimation for subject: 15, state: negative, trial: 10, channel: FP1 (a) considering δ, θ, α, β and γ bands
as signal subspace vector (b) considering α, β and γ bands as signal subspace vector (c) undefined
signal subspace vector.

3.3. Pre-Processing and Feature Extraction

Figures 5 and 6 explain the pre-processing and feature-extraction method which ex-
cludes the corrupt/overshooting channels. Following the literature, in [16] only prefrontal,
frontal, central, parietal and occipital channels are extracted, excluding the rest of the
22 channels. Each channel band matrix (M× N, M represents the number of channels and
N represents the number of data points) is then filtered for handling baseline noise and
eye-blink artifact removal.

After the initial filtering corrupt/overshooting channels are excluded for each M× N
channel-band matrix, followed by an 8 Hz to 40 Hz bandpass FIR filter for extracting the
relevant information band. Each clean channel-band matrix is then reduced to a single
channel (1× N dimensional vector) using PCA. Each PCA vector is then cascaded to form
the reduced 5× N dimensional trial vector. The workflow is designed to gain maximum
computational efficiency. Lastly, Figure 7 demonstrates the pre-processing and feature-
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extraction methods, which include the overshooting channels. The pre-processed matrices
are then transformed using a MUSIC model with 50% overlapping data points.
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3.4. Training and Method Evaluation

For training and evaluation, the k-fold cross-validation technique is followed, where
the value of k is considered as 5. The dataset is split into 5 equal folds, and then the
networks are repeatedly trained on 4 folds and tested on the remaining fold. The average
accuracy from the five training: and testing incidents are evaluated; due to folding each
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trial gets the chance to appear in both the training and testing set at least once. Moreover,
in each of the folds, 10% of the training data is used as the validation set.

Moreover, in each of the folds, 10% of training data is used as the validation set. Each
feature set is trained on a fully connected ANN, which has a 3-node SoftMax layer acting
as the final classification layer. The network uses the ReLU activation function, and binary
cross entropy (BCE) loss is used as the loss function for optimization. The ANN used in the
experiment has two hidden layers, consisting of 512 and 248 nodes, respectively. In each of
the experiments the network is trained for a maximum of 500 epochs, but if the validation
loss is not improved for 20 consecutive epochs, the training is terminated. The initial learning
rate for the experiments is 0.001, with an epoch patience of 5. If for 10 consecutive epochs
validation loss is not improved, then the learning rate is increased by 25%.

4. Results and Discussion

For the feature set constructed from the 62× N dimensional pre-processed signal
matrix (considering all 62 channels), subject wise 5-fold cross-validation accuracy from the
network is 97%. As our additional findings suggest, specific trials from the seed dataset
hold corrupted channels demonstrating voltage bands, which are much higher than desired
EEG-voltage bands. These channels can be considered EMG artifacts or caused due to
electrode-leakage current, and do not demonstrate any EEG information. Until now, no
research has handled these specific channels demonstrating corrupt data. As discussed
earlier for such particular cases, we have excluded the corrupt/overshooting channels
and then reduced the number of channels with PCA. In this case, the feature space is
constructed from a 5× N dimensional reduced signal matrix. From this distinct feature
space, which excludes the corrupted channels, subject-wise 5-fold cross-validation accuracy
from the network is 86.53 %.

Our research also implements higher dimensional visualization techniques for inter-
preting the influence of the corrupted channels in the feature space. Figure 8 represents a
three-dimensional visualization of the constructed MUSIC feature space for a trial demon-
strating the negative stage. In Figure 8a, the feature space is constructed from the 62× N
dimensional signal matrix, which includes the corrupted channels for this particular trial.
In Figure 8b,c, the feature space is constructed from the 5× N dimensional reduced signal
matrix, but only the latter representation excludes the corrupted channels through peak
finding. The overshooting channels for this particular trial lie in the parietal and occipital
bands. Correspondingly, in the 62× 124 dimensional MUSIC feature space for the trial,
spectrum values for the rest of the channels are suppressed due to much higher peaks
generated from the overshooting channels in the β band. In the feature space extracted from
the reduced signal matrix, which also includes these overshooting channels, the PCAoccipital
and PCAparietal bands similarly suppress the spectrum from the rest of the bands. Removing
the corrupt/overshooting channels from the occipital and parietal bands provide the true
spectrum distribution across all PCA bands, which are represented in Figure 8c.

Subsequently, it can be observed in Figure 8a,b, that the presence of the corrupt
channels generates high peaks which demonstrate β band components. When the particular
overshooting channels are excluded, the β components are significantly reduced and the
α band is dominating across all channels. Additionally, in such a case the presence of the
γ band can also be observed, which is absent when the corrupted channels are present
in the feature space. The high amplitude peaks in the β bands suggest the presence
of EMG artifacts in the trial due to the corrupted channels. The corrupt/overshooting
channels demonstrate similar effects across all subjects. The spectrums of Figures 9 and 10
represent feature space for subject 12 from the MUSIC spectrum and non-parametric (Welch)
spectrum, respectively. For Figures 9a and 10b, the weight of the α band is significantly
higher across all the spectrums.

The MUSIC spectrum visualizations interpret that, α band is dominant for each of the
states but varies with amplitude. For the frontal and central channels, γ components are
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also observed for the neutral and positive states. Both 62× 124 and 5× 124 dimensional
feature space demonstrates the presence of similar signal subspace bands.
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The first three principal components hold around 65% to 95% of the information for the
entire feature space; consequently, three-dimensional visualizations of these three principal
components can provide explicit information. The PCA visualizations in Figures 11 and 12
demonstrate the quality of each of the feature spaces, as the visualizations can interpret
class separability. In this regard the MUSIC model also demonstrates superiority over the
classical non-parametric approach of feature extraction, for both of the signal pre-processing
approaches. Figure 11a represents the MUSIC feature space and Figure 11b represents the
non-parametric (Welch) feature space, from the pre-processed 62× N dimensional signal
matrix. Figure 12a,b represents MUSIC and Welch feature spaces, respectively, for the 5×N
dimensional reduced signal matrix. Both of the figures’ feature spaces that are generated
from the MUSIC model form more separable clusters. As demonstrated in the visualization,
Welch feature space of subject 1, clearly cannot distinguish neutral and positive states when
all 62 channels are considered.

From comparing Figures 11a and 12a, it is evident that the quality of the feature
space is significantly decreased when the number of channels is reduced. The subject-
wise accuracies from k-fold cross-validation also clarify such behavior. The subject-wise
5-fold cross-validation accuracies from the MUSIC-generated feature spaces are shown in
Figure 13. For the feature set that is constructed without channel exclusion, the network
demonstrates 100% accuracy for 6 out of 15 subjects and achieved over 97% classification
accuracy for 13 out of 15 subjects. The average subject-wise accuracy is 97% for this specific
technique. For the feature set that excludes the overshooting/corrupt channels before
signal pre-processing, the network demonstrates a subject-wise average accuracy of 86.53%.
In this particular case, the networks perform satisfactorily across all subjects except subjects
4 and 9. When subject 4 and subject 9 are excluded, the average accuracy is observed to be
over 90% for this particular channel-exclusion technique.
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Subject-wise precision, recall, and F1 scores for both of the networks on the feature
set that do not exclude any channels are illustrated in Figure 14. The exceptionally high-
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precision values suggest that the network is extremely efficient in predicting true values for
each of the states across all subjects. All of the average metric values are over 96.5%, which
suggests that both the feature space and the networks demonstrate excellent performance
in each of the state-classification tasks.

Subject-wise precision, recall, and F1 score for the feature space that excludes the
overshooting/corrupt channels before reducing the number of channels with PCA, are
shown in Figure 15. The matrices suggest that for this specific technique the network
performs comparatively better in predicting the negative states.
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The k-fold validation results and the feature-space visualization techniques both
suggest that by reducing the number of channels the quality of the MUSIC feature space is
significantly reduced. The network performance on the 45× 62× 124 dimensional feature
space is exceptionally higher than the feature space constructed by reducing the number
of channels.

Compared with existing high-performance classification techniques on this partic-
ular SEED dataset, our 97% subject-dependent classification accuracy suggests that the
proposed MUSIC model is superior for such a feature-extraction task. Table 2 makes a
detailed comparison with existing works. M. A. Rahman et al. [16] explore Welch-based
brain topography for feature extraction and CNN for the classification task, which achieved
around 94% accuracy. A. Bhattacharyya et al. [33] explored modified wavelet-based decom-
position for feature extraction and auto-encoder-based random forest for classification, this
particular approach also achieved an accuracy level of around 94%. W. Zheng et al. [34]
used parametric PSD-estimation models and F. Wang et al. [35] used STFT for the emotional
feature-extraction task, which achieved 86.65% and 90.59% accuracy, respectively.

Table 2. Performance comparison with existing research on emotional state classification for the seed dataset.

Author and Research Feature Extraction Method Classification Method Average Accuracy

Y. Jin et al. [36] Differential Entropy Domain Adaptive Network 79.19%
D. W. Chen et al. [37] Differential Entropy Linear Discriminant Analysis 82.5%

W. L. Zheng et al. [21] Critical Frequency
Band Investigation Deep Belief Network 86.08%

Y. Yang [38] Differential Entropy Hierarchical Network 86.42%

M. A. Rahman et al. [16] PCA and non-parametric
Welch model ANN 86.57%

W. Zheng et al. [34] Parametric Model Group Sparse Canonical Correlation
Analysis 86.65%

Y. Luo et al. [39] Data augmentation approach Generative adversarial network 87%
X. Wu et al. [40] Connectivity Network SVM 87%
F. Yang et al. [41] High dimensional features ST-SBSSVM 89%
F. Wang et al. [35] STFT CNN 90.59%

W. Zheng et al. [42] Differential Entropy Discriminative graph regularized 91%
A. Bhattacharyya et al. [33] Wavelet-based decomposition Random Forest (Autoencoder based) 94.4%

M. A. Rahman et al. [43] Welch topographic map CNN 94.63%

Proposed Method MUSIC model (Includes all
62 channels) Bilayer ANN 97%
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As is evident from the comparison, our proposed approach achieves significant im-
provement. Additionally, none of the existing research has made any investigation consid-
ering corrupt channels. As discussed previously, the dataset contains a large number of
trials, which holds multiple corrupt/overshooting channels. These overshooting channels
were ignored in previous research on this dataset. Nevertheless, due to the existence of
these particular channels in the feature space, the network will demonstrate bias. Such bias
will affect network performance on an external dataset, which does not hold such flawed
channels. Thereby these specific channels should be excluded before feature extraction. Our
investigated approach of removing these specific channels before constructing the feature
space has demonstrated 86.53% accuracy on the network. This article is the first research to
observe such extensive flaws in the SEED dataset. The results from the computation-time
analysis are shown in Figure 16.
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Figure 16. Run time comparison of various methods for multi-channel EEG pre-processing and
feature-extraction tasks.

The figure illustrates the computation time for the MUSIC model and non-parametric
model-based feature-extraction task, along with the execution time for both of the signal pre-
processing methods investigated in this research. The computation time varies intensively
with the length of the targeted matrix and across machine specifications. Each of the
tasks was executed in an intel CORE-i5 processor with 32 GB DDR4 RAM, 512 GB SSD
Memory, and 4 GB NVIDIA GEFORCE GTX 960 M graphics card, under a prioritized
thread. The length of each trial was duly considered for the computation-time analysis.
Table 3 summarizes the run-time analysis, which shows non-parametric feature-extraction
techniques. Although the pre-processing techniques consider all 62 channels to enhance
the quality of feature space, they are computationally heavy.
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Table 3. Investigated computation-time metadata for non-parametric feature-extraction method
(Welch model) vs MUSIC model.

Trial Dimension Channel Length
Computation Time (s)

Optimization %Welch Based
Model

MUSIC Based
Model

62 × N

Below 40,000 28.30 s 1.32 s 95.33%
40,000 to 45,000 31.09 s 1.35 s 95.65%
45,000 to 50,000 35.05 s 1.38 s 96.07%
50,000 to 55,000 39.36 s 1.39 s 96.47%

5 × N

Below 40,000 2.37 s 0.12 s 94.94%
40,000 to 45,000 2.46 s 0.14 s 94.31%
45,000 to 50,000 2.64 s 0.13 s 95.07%
50,000 to 55,000 2.79 s 0.13 s 95.34%

According to the results from computational time analysis, the MUSIC spectrum
exhibits far greater superiority in terms of run time. Even for a full 62-channel trial, the
computation time was investigated to be near 1.3 s. On the contrary, the non-parametric
estimation models required around 28 s to 40 s in a prioritized thread. As Table 3 illustrates,
the MUSIC model can optimize computation time for feature-extraction tasks by around
94% to 96%. With a PCA-based pre-processing approach, the feature-extraction time is just
around 0.1 s. The results also suggest that with the implementation of the MUSIC model
along with PCA-based pre-processing techniques, an EEG-based BCI system can achieve
comparatively real-time performance.

5. Conclusions

Owing to the complexity of implementing the MUSIC algorithm for random signals,
the algorithm is rarely investigated in feature-extraction tasks for neural signals. In this
research, we investigated the performance of the MUSIC algorithm in neural information
processing by implementing the MUSIC model-based feature-extraction method for emo-
tional state-recognition tasks from multichannel EEG recordings. With a bi-layer ANN
network, the MUSIC model-generated feature space achieves an admirable 97% accuracy on
the SEED emotional dataset. Our investigation also finds that a significant number of trials
in the SEED dataset hold corrupt or overshooting channels which were previously over-
looked, and we have also investigated the effects of these channels on subject-dependent
classification tasks. Future research on this dataset should benefit from such intriguing
observation. The existence of the corrupt channels in the SEED dataset could have resulted
from electrode leakage or any other arbitrary issue during data acquisition. State-of-the-art
filtering techniques such as dynamic spatial filtering or adaptive filtering, which uses
weighted attention to extract features from good channels leaving out the corrupted chan-
nels, can be investigated on this dataset for future work. We achieved a subject-dependent
emotional state classification accuracy of 86.53% after excluding these specific channels.
We then compared the quality of the MUSIC model-generated feature space with feature
space generated by implementing conventional methods. Finally, our computation-time
analysis of various methods illustrates that the MUSIC model can optimize 94% to 95% run
time in similar feature-extraction tasks. Such findings suggest that the MUSIC algorithm
has great prospects in real-time BCI applications.
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