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Abstract: Hand gestures represent a natural way to express concepts and emotions which are peculiar
to each culture. Several studies exploit biometric traits, such as fingerprint, iris or face for subject
identification purposes. Within this paper, a novel ultrasound system for person identification that
exploits hand gestures is presented. The system works as a sonar, measuring the ultrasonic pressure
waves scattered by the subject’s hand, and analysing its Doppler information. Further, several
transformations for obtaining time/frequency representations of the acquired signal are computed
and a deep learning detector is implemented. The proposed system is cheap, reliable, contactless
and can be easily integrated with other personal identification approaches allowing different security
levels. The performances are evaluated via experimental tests carried out on a group of 25 volunteers.
Results are encouraging, showing the promising potential of the system.

Keywords: hand-gesture; person identification; neural networks; security; ultrasound system

1. Introduction

Biometric identification systems have proven their usefulness in several fields [1,2].
The exploitation of morphological or behavioral personal characteristics has proven to be
effective for personal identification as an alternative to passwords or smart cards. The basic
idea is that the recognition is carried out by analysing the subject’s peculiarities rather than
an object in his/her possession (i.e., smart card, token generator) or something that he/she
knows (i.e., passwords). In other words, the sought identification trait is related to the
nature of the subject rather than to something in the subject’s possession or knowledge [3].

Independently from the specific recognizing trait, a biometric identification system
must satisfy constraints related to the overall cost, robustness of the approach, availability
and permanence of the adopted trait. Since biometric measurements have to be easy and
remain stable over time, the specificity and the universality of these systems are crucial.

Nowadays, several biometric identification systems are adopted in real-world appli-
cations, including fingerprint, face, voice and iris recognition [3–7]. All these systems are
very accurate, but also show some limitations, e.g., usage discomfort, the ease of feature
replication and the complexity of the system. For these reasons, a new class of biometric
traits has been recently considered, i.e., the subject’s behavioural peculiarities. The idea
consists in recognizing subjects from the way they execute, intentionally or unintentionally,
actions rather than their morphology [6]. Naturally, it is based on the assumption that
each subject shows specific behaviours, which are different from other subjects and remain
stable over time. This kind of behavioural biometric identification system has proved to be
more robust to spoofing attacks compared to morphological ones [8].

In order to facilitate wide-spread adoption of behavioral recognition systems, the
research community effort has focused on the identification of easily measured and de-
tected behavioural biometrics. In [9], for example, the discrimination properties of the
ECG signal are evaluated, while in [10] the brain’s electrical activity is considered. Even
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if both approaches show very good accuracy, they require an uncomfortable acquisition.
In [11], a digital signature identification system is proposed. The idea consists in analyzing
the way the signature is carried out by the subject, instead of its details. In [12] the iden-
tification problem is treated by analyzing the mouse gesture. Despite its simplicity and
accuracy, the approach requires a contact system that might be a limitation for some applica-
tions. In [13], a system that implements a frequency-modulated continuous wave (FMCW)
radar for recording gait details by means of Doppler spectrum analysis is presented. The
main limitation consists of the wide area required for optimum functioning. The Authors
of [14,15] performed personal identification by means of signals acquired through smart-
phone accelerometers and gyroscopes during a hand-gesture execution. Conversely, in [16]
a solution based on capacitor-sensor acquisitions in which the users tap and swap different
gestures on a smartphone is proposed. These approaches show good performance, but still
require a smartphone with a properly installed application.

Within this manuscript, a novel identification system based on recognition of subject
hand gestures is proposed. A prototype has been built and used for testing its performance.
We choose to focus on hand gestures as they represent an easy and direct method of
communication. Studies have shown that, during a conversation, about 55% of information
is provided by attitude and gestures [17]. Even if two subjects execute the same gesture,
each one will produce unique micro-movements. Thus, even the same gesture could appear
different if properly processed. For example, in [18–21], personal identification prototypes
based on in-air signatures or hand gesture recognition via 3D cameras or Kinect system
have been presented. Moreover, in [22], a first approach of an identification system based
on hand gestures signatures acquired via a Wi-Fi based framework has been proposed.
Results are encouraging but the accuracy level is not enough to make the system reliable in
high-risk application security.

In this article, information regarding small differences in hand gesture execution is
acquired by an ultrasound prototype. The system transmits a monochromatic acoustic
wave and receives the signal back-scattered by subject’s hand. The received signal will
contain the information related to the movement of all hand elements (finger, palm, wrist)
by means of its Doppler components. We chose a sonar system rather than a camera-based
one in order to obtain a cheap solution with no privacy issues, as no image is acquired.

Sonar technologies have been already exploited for detection and discrimination of
human movements. In particular, a wideband sonar for human activity classification
has been proposed in [23]. The system, exploiting pulsed frequency modulated signals,
is able to retrieve position and velocity of objects and discriminate static and dynamic
contributions in order to distinguish, for example, standing or walking subjects. More
detail on biometric systems based on ultrasound sensors can be found in [24].

In this paper, in order to obtain a cheap and easy solution, continuous wave signals
without any frequency modulation (i.e., monochromatic waves) are considered. In this
case, the acquired information only rely on the dynamic features, which depends on the
hand’s movements instead of its shape and size. The idea is that every subject has a
unique hand behavior, and thus a unique Doppler spectrum, which differs from other
subjects and remains stable over time. Being a behavioral biometric measurement, it has
the advantage that in cases where gesture is compromised, the user can easily change
it, as in the case of a password. Another advantage is that, conversely from systems
based on morphological biometrics, gestures can be concatenated to obtain more robust
identification. The performance of the presented system has been tested on a real data set
involving 25 volunteers.

The remainder of the paper is the following: in Section 2, the hand-gesture person
identification prototype is presented, with details related to the hardware components and
the software architecture. Section 3 contains a performance analysis of the proposed system
and finally, in Section 4, conclusions are drawn.
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2. System Description

This section provides a brief description of the basic theory which inspired the de-
sign of the system. Hardware components and software implementation details are
also provided.

2.1. Proposed Methodology

Let us consider an ultrasound (US) sonar system, in which a monochromatic ( f = f0)
continuous wave is transmitted. By considering a single point scatterer moving at velocity
v(t), the back-scattered received signal is a function of the radial component of the scat-
terer’s velocity vr(t), i.e., the velocity component in the direction of the system. Thus, it
can be written as:

s(t) = A(t) cos
{

2π f0

[
1 +

vr(t)
c

]
t + φ(t)

}
, (1)

with A(t) and φ(t) being the amplitude and phase of the received signal s(t), and c
propagation speed of the mechanical wave.

In the following, we consider a scenario in which the subject hand backscatters the
signal. In this case, the target can be modelled as a set of N non-stationary point targets,
each with a specific radial velocity vr,i(t) and each producing an echo with different

amplitude Ai, phase φi and Doppler frequency fD,i =
vr,i(t)

c f0, with i = {1, 2, . . . , N}. Thus,
the received signal can be written as [25]:

stot(t) =
N

∑
i=1

Ai(t) cos{2π[ f0 + fD,i(t)]t + φi(t)} . (2)

For the sake of clarity, in Figure 1 a brief sketch illustrates the considered scenario,
showing signals back-scattered by different parts of the hand. The received signal is,
thus, a coherent sum of the contributions due to all the scatterers impinged by the US
wave, as reported in Equation (2). Therefore, the resulting spectrum is composed of
several components, each with a proper amplitude, phase and frequency which are all
time-dependent quantities. Considering the velocities of the hands, the Doppler bandwidth
of the received signal is much smaller than the carrier frequency.

Figure 1. The signal back-scattered by the hand is an ensemble of multiple waves reflected by the
different parts of the hand. Each one is characterized by its own amplitude and phase and, in case of
a moving hand, Doppler frequency.
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By manipulating Equation (2) and moving its formulation in the baseband case, the
resulting backscattered signal can be written as:

sbb
tot(t) =

N

∑
i=1

Ai(t) cos{2π fD,i(t)t + φi(t)} . (3)

The baseband signal is non-stationary, thus, to provide a proper input to the CNN
detector, a time/frequency transform of sbb

tot(t) is considered. Further details about this
pre-processing step are provided in Section 2.2.

2.2. Hardware and Software Details

The system is composed of a continuous-wave ultrasonic apparatus and a software
detector. The acquired signal is processed to extract its time/frequency characteristics and is
analyzed by the detector in order to identify the subject. The system is composed of a wave-
form generator (mod. 33220A, Agilent Technologies), two US transducers (mod. 40LT16
and 40LR16, respectively, SensComp) and an analog-to-digital converter (mod. USB-6343,
National Instruments). All the signals are processed in a MatLab environment (Figure 2).
The adopted frequency is 40 kHz with a wavelength of approximately 8.5 mm in the air,
which ensures a scattered signal, due to fingers motion of proper amplitude [26]. Such
frequency proved to be effective to capture fingers movement in hand gesture recognition
framework [27]. The received signal is sampled at 16 bits and 250 kHz.

Figure 2. Picture of the proposed ultrasound-based person identification system. From left to right: a
standard laptop used for signal processing, the waveform generator, the ultrasound transducers and
the analog-to-digital converter.

The Doppler components of the acquired signals are extracted by means of the follow-
ing transformations [28,29]:

• Short-time Fourier Transform (STFT), a sequence of Fourier transforms of a windowed
signal. The result is a two-dimensional (2D) signal representing both time and fre-
quency information, and its absolute value is named Spectrogram.

• Wavelet Transform (WT), which decomposes the signal in a linear combination of orthog-
onal functions (“Wavelets”). Conversely from STFT, Wavelet transform provides high
frequency resolution at low frequencies and high time resolution at high frequencies.
The matrix of Wavelet coefficients could be seen as a time/frequency representation
named Scalogram or Scaleogram.
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• Stokewell Transform (ST), also known as “S-Transform”, which is an extension of the
Wavelet transform using a specific Wavelet whose size is inversely proportional to the
frequency of the signal.

• Hilbert–Huang Transform (HHT), which decomposes the signal into oscillatory waves
named “Intrinsic Mode Functions” (IMF), which are characterized by a time-varying
amplitude and frequency. Subsequently, the instantaneous frequencies of each IMF
are computed, obtaining the so-called Hilbert spectrum.

• Constant Q Transform (CQT), which follows similar procedures with respect to the
STFT with the main difference of non-uniform frequency resolution of time-frequency
representation.

Figure 3 shows the first IMF of the received signal in the case of two different subjects
performing the same gesture, i.e., hand closing. It is possible to note that, although
the general trend of the signal is quite similar, there are visible differences due to some
peculiarity in the gesture execution. This is what we are interested in for the identification
purpose. The processing chain of the proposed system was developed in order to detect
such differences in order to identify a particular user even if his/her gesture is copied by
an hypothetical impostor. Further, a deep learning approach based on convolutional neural
network (CNN) was adopted for the detection. This kind of architecture is widely used in
classification, segmentation and regression problems, proving to be very flexible [30–32].
The employed CNN topology consists of three 2D 5× 5 convolutional layers with 32 filters
and a rectified linear unit (ReLU) after each layer. Mini-batch size was equal to 64 and Adam
algorithm, with an initial learning rate of 10−4, has been exploited as optimizer. In order
to reach the convergence, the network has been trained for 100 epochs. The cross-entropy
was adopted as cost function in the training process. In detail, in the case of a training set
composed of N entries, each one consisting of the acquired data X and the related label (g
and g in case of genuine and impostor subjects, respectively), the cross-entropy function L(·)
can be written as [33]:

L(X, Φ) =− 1
2N

N

∑
n=1

{
pre f (g|Xn)ln

[
pnet

(
g|(Xn, Φ)

)]
+

+ pre f (g|Xn)ln
[

pnet

(
g|(Xn, Φ)

)]} (4)

where Φ are the network-tuning parameters (weights and biases), pre f represents the true
labels (genuine or impostor) of the samples, while pnet represents a detector score related
to the assignment of the considered gesture sample to genuine or impostor class.

Figure 3. Instantaneous frequency of the first IMF of the received signal in case of two subjects
executing the same gesture.
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Let us assume that the task consists in the recognition of a person in a set of possible
users. After the training process, the CNN provides a membership score (P), i.e., a value
between 0 and 1, which can be seen as the (estimated) probability that the genuine subject
has been acquired: values close to 1 indicate that, for the CNN, the gesture was most
probably executed by the considered user; conversely, if the membership score is close to 0,
the gesture was very likely done by one of the other users. The detection is performed by
comparing the score to a previously set threshold Th. By choosing a different threshold
value it is possible to select different working points and characterize them by measuring
the related performance. The overview of the whole processing chain is reported in Figure 4.

Figure 4. Processing chain of the proposed system. The acquired signal s(t) is demodulated and
filtered by the receiver Rx, obtaining the base-band signal x(t). X(t, f ) is subsequently computed
by means of a time/frequency transformation and provided as input to the CNN. Its output, i.e., the
membership score P, is compared to the threshold Th in order to obtain the genuine/impostor detection.

3. Prototype Performance Evaluation

In order to test the performance of the proposed system, different one-vs-all identifica-
tion tests were considered. Such tests simulate a possible scenario in which an authorized
subject has to be authenticated and several impostors try to cheat the system. For this
purpose, a data set has been acquired by asking 25 subjects to repeat different kinds of
gestures several times.

3.1. Acquisition Protocol

The volunteers have been asked to repeat the same three gestures placing the hand in
front of the prototype, approximately 30 cm distant. The considered three gestures are the
hand closing and opening (Gesture 1), the shift from left to right (Gesture 2) and the key-tapping
(Gesture 3). Pictures of the three considered gestures are shown in Figure 5.

Figure 5. Picture of the considered gestures: hand closing and opening (Gesture 1), hand shift from left to
right (Gesture 2) and key-tapping (Gesture 3).
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The acquisition campaign was divided into two different phases. In the first one, all
the subjects repeated each of the three considered gestures 40 times. These repetitions were
used to train the CNNs. In the second acquisition phase, which was used for testing the
system performance, each user repeated the same three gestures 50 times. This phase took
place with variable delays (from 30 min to one week) from the first one. The overall dataset
is composed of 2250 samples per each gesture, of which 1000 are used for training the
detector and the remaining 1250 are used to test the prototype and produce the results of
Figures 6–9 and Tables 1 and 2.

Figure 6. Boxplot of the Area Under ROC (AUR) for the considered pre-processing strategies. Each
boxplot includes mean results for 3 gestures and 25 subjects.

Figure 7. Boxplot of the Equal Error Rate (EER) for the considered pre-processing strategies. Each
boxplot includes mean results for 3 gestures and 25 subjects.
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Figure 8. ROC of the three considered gestures. Each curve is averaged on the 25 subjects.

Figure 9. ROC curves in case of 30 min delay (Short-Time Delay) and 4-day delays (Long-Time Delay)
between training and testing acquisitions.

Table 1. Performance comparison (TPR, AUR and EER) for the three considered gestures.

TPR for
FPR = 0.005

TPR for
FPR = 0.01

TPR for
FPR = 0.05

TPR for
FPR = 0.1 AUR EER

Gesture 1 0.51 0.61 0.8 0.85 0.92 0.13

Gesture 2 0.32 0.41 0.68 0.78 0.89 0.15

Gesture 3 0.21 0.28 0.54 0.66 0.85 0.20

Table 2. Performance comparison for testing gestures executed with different delays from the training
gestures.

TPR for
FPR = 0.005

TPR for
FPR = 0.01

TPR for
FPR = 0.05

TPR for
FPR = 0.1 AUR EER

Short-Time Delay 0.29 0.4 1 1 0.99 0.04

Long-Time Delay 0.12 0.15 0.88 0.93 0.97 0.08
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In this framework, an augmentation technique has been adopted in order to increase
the systems performance. In particular, every gesture sample used for the detector training
has been temporally shifted in order to obtain five different versions. In this way, the CNN
detector has been trained to recognize the Doppler gesture signatures independently from
their position in the observation window.

It is worth noting that we assumed all the users, and thus also the impostors, knew
the gestures used for the identification perfectly. This is a strong assumption that made us
consider the worst case scenario.

3.2. Results

In order to evaluate the discrimination performance, an identification test was per-
formed considering as genuine a single user per time. Assuming that the subject to be
identified is labeled as genuine, while the others are named impostors, for each working
point (i.e., Th value) the True Positive Rate (TPR), defined as the ratio between the correct
genuine assignment against all the genuine testing samples and the False Positive Rate (FPR),
that is the ratio between the incorrect genuine assignment against all the impostor gesture
samples, are computed. It is also worth recalling their complementary quantities, the False
Negative Rate (FNR), defined as the ratio between the incorrect impostor assignment against
all the genuine sample and the True Negative Rate (TNR), that is, the ratio between the correct
impostor assignment against all the impostor samples.

Based on TPR and FPR values, it is possible to compute the Receiver Operative
Characteristic (ROC) curve [3] for each subject and identify the optimal pre-processing
algorithm and gesture type. From each ROC curve two synthetic metrics were extracted;
the Area Under ROC (AUR), representing the overall performance of the receiver, the closer
this value is to 1 the better the receiver has to be considered; the other metric is the Equal
Error Rate (EER) defined as the threshold which gives an FPR equal to FNR. In this case,
values closer to 0 represent better performance.

An important preliminary step is to identify the most promising kind of pre-processing
for the considered application. The AUR and EER values reported in Figures 6 and 7 show
that the system trained with the Hilbert–Huang Transform of the received signals has
the worst performance while the STFT the best one, both in terms of median value and
75th–25th percentiles differences. For this reason, in the following analyses only the STFT
case is reported. The second analysis is aimed at identifying which is the best gesture
candidate for the considered test case. For this purpose, the average ROC curves for
each of the tree gestures are shown in Figure 8, while the TPR values for different FPR,
AUR and EER values are summarized in Table 1. From these results it is evident that the
choice of the gesture has a significant impact on the prototype performance; in particular,
gestures 1 (closing and opening) and 2 (shift from left to right) help the system in the
enhancement of differences between the subjects. This is probably due to their Doppler
spectra richness, produced by the faster and wider movements they have with respect to
gesture 3 (key tapping).

Furthermore, a third analysis was performed on the evaluation of the time reliability,
i.e., the performance stability over time, which is an important factor for an identification
system. This problem generally affects systems based on behavioural biometrics. If the
observed trait remains the same and, consequently, the performance of the system remains
stable, the need to periodically reacquire the specific biometric attribute is limited. A
volunteer was asked to repeat the second acquisition phase twice, 10 minutes and 4 days
later than the first phase, respectively. These two sets, referred to as Short-Time Delay and
Long-Time Delay, produced the ROC curves reported in Figure 9 and the values reported
in Table 2. A slight worsening of the performance happens, which suggests that gesture
re-acquisition and CNN re-training after a certain amount of time is recommended for
this system.

It is worth noting that state of the art solutions, such as fingerprint, iris, face and voice
recognition systems can achieve better performance compared to the proposed system (in
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the actual configuration). However, the strength of the proposed approach is the possibility
of being used in a multi-biometric configuration (as suggested in [34]), in order to increase
the robustness of the overall system or in stand-alone configuration, where the scenario is
critical from environmental point of view. In more detail, ultrasound systems are robust
against light changes and acoustic noise conversely to iris and facial technologies or voice
systems, and have no privacy issues.

3.3. Comparison with the State of the Art

As seen in Section 3.2, the proposed US hand gesture identification system is able to
reach, in average, an EER equal to 13% when gesture 1 is considered. In this subsection,
a comparison between the identification performance of the proposed system and other
state-of-the-art solutions is provided.

In detail, in [12] a person identification system based on mouse gesture is considered.
The system achieves an EER of 5.11% for a test involving 39 subjects (29 genuine users and
10 impostors). This EER value was obtained for a combination of four different gestures
(single-gesture results were worse).

Moreover, [19] proposes a system based on an in-air signature verification system.
The system is mainly composed of a depth camera for the acquisition step and a deep
learning detector. In this work, 5.5% of EER was achieved for a test involving 40 subjects in
a one-versus-five authentication scenario.

Finally, an identification system based on hand gestures acquired by a 3D camera is
proposed in [20]. A forgery testing involving six subjects showed that the system EER was
approximately 26% in a one-versus-five identification scenario.

3.4. Computational Burden

As a final analysis, the computational burden of the proposed approach is measured.
In Table 3 a comparison of processing times for the different considered time-frequency
representations of the prototype is reported. In particular, the Training Time is the time
needed for the training of the CNN, while the Testing Time is the time needed to make the
prediction after the CNN has been trained.

Table 3. Computational burden of the proposed approach.

Training Time Testing Time

Short-Time Fourier Transform 6 min 3 ms

Stokewell Transform 35 min 27 ms

Wavelet Transform 30 min 25 ms

Hilbert-Huang Transform 70 min 13 ms

Constant Q Transform 8 min 8 ms

It is worth noting that the training time depends on the number of epochs needed
by the CNN for the convergence. For this operation, several minutes (between 6 and 70)
are required; thus, it has to be done offline. Conversely, the testing time is essentially that
required for obtaining the considered time/frequency representation plus the time for its
multiplication with the CNN weights. Generally, it is in the order of milliseconds, making
the system capable for real time or quasi-real time applications.

From Table 3 it is possible to underline that, further obtaining the best performance, the
low training/testing time of the STFT approach suggests its use in time-critical applications.

All the evaluations were performed in a MatLab environment on a Linux 64 bit worksta-
tion with an AMD Ryzen 3990X processor and an NVIDIA Quadro RTX 6000 graphics card.
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4. Conclusions

In this work, a novel system for person identification purposes which exploits hand-
gesture information acquired by means of ultrasound waves is presented. By exploiting
the Doppler signature of scattered pressure waves, the prototype is able to extract a repre-
sentative pattern for each user and to use it for identification. The Doppler information
is extracted via appropriate time/frequency transformations, while the detection is per-
formed through convolutional neural networks. A prototype was built for testing the
performance of the system on real data. Due to the ultrasound technology and the low
computational complexity, the prototype is compact, light and cheap. The experimental
results, in one-vs-all person identification scenarios, showed that the proposed solution
seems very promising due to good identification performance and low computational
time. Its compactness and robustness to environmental noise allow the adoption of the
proposed system in different scenarios, both in a multi-biometric system (combined with
other systems such as fingerprint, voice, facial recognition, etc.) as well as in stand-alone
configurations. However, similar to other behavioral biometric systems, problems related
to time stability and background clutter may occur. Therefore, future development will be
focused on improving system stability and robustness.
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ECG ElectroCardioGraphic
FMCW Frequency-Modulated Continous Wave
US UltraSound
CNN Convolutional Neural Network
STFT Short-Time Fourier Transform
WT Wavelet Transform
ST Stokewell Transform
HHT Hilbert–Huang Transform
IMF Intrinsic Mode Functions
CQT Constant Q Transform
TPR True Positive Rate
FPR False Positive Rate
FNR False Negative Rate
TNR True Negative Rate
ROC Receiver Operative Curve
AUR Area under ROC
EER Equal Error Rate
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