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Abstract: Convolutional neural networks (CNNs) have been widely applied in the fields of medical
tasks because they can achieve high accuracy in many fields using a large number of parameters and
operations. However, many applications designed for auxiliary checks or help need to be deployed
into portable devices, where the huge number of operations and parameters of a standard CNN
can become an obstruction. MobileNet adopts a depthwise separable convolution to replace the
standard convolution, which can greatly reduce the number of operations and parameters while
maintaining a relatively high accuracy. Such highly structured models are very suitable for FPGA
implementation in order to further reduce resource requirements and improve efficiency. Many other
implementations focus on performance more than on resource requirements because MobileNets has
already reduced both parameters and operations and obtained significant results. However, because
many small devices only have limited resources they cannot run MobileNet-like efficient networks in
a normal way, and there are still many auxiliary medical applications that require a high-performance
network running in real-time to meet the requirements. Hence, we need to figure out a specific
accelerator structure to further reduce the memory and other resource requirements while running
MobileNet-like efficient networks. In this paper, a MobileNet accelerator is proposed to minimize the
on-chip memory capacity and the amount of data that is transferred between on-chip and off-chip
memory. We propose two configurable computing modules: Pointwise Convolution Accelerator and
Depthwise Convolution Accelerator, to parallelize the network and reduce the memory requirement
with a specific dataflow model. At the same time, a new cache usage method is also proposed to
further reduce the use of the on-chip memory. We implemented the accelerator on Xilinx XC7Z020,
deployed MobileNetV2 on it, and achieved 70.94 FPS with 524.25 KB on-chip memory usage under
150 MHz.

Keywords: convolutional neural network; FPGA; hardware accelerator; MobileNetV2; auxiliary medical
tasks

1. Introduction

Currently, convolutional neural networks (CNNs) have become an important part of
many applications due to their superior performance, especially in the parts related to com-
puter vision, such as object detection [1] and image classification [2]. In the medical domain,
CNNs have also been used to achieve many tasks such as MRI image classification [3].

Medical tasks have their own specific characteristics, some of them require only a very
high accuracy and can ignore resource requirements. However, many other auxiliary tasks
under human supervision are supposed to be deployed into portable devices such as small
cameras or monitors connected with a scope to classify histopathological changes and run
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in real-time. Many other medical checks or cares also need to run on small devices and
in real-time, such as mask checks and patient care. However, for standard CNNs [4–6],
the high-power consumption and the huge number of parameters and computation make
it difficult for them be deployed in small devices. Thus, various efficient CNNs with
remarkable results have been proposed, such as MobileNetV2 [7], ShuffleNetV2 [8], and
Xception [9]. They reduce the memory requirement and the amount of computation notably
while keeping a relatively high accuracy.

Thanks to the achievement of efficient CNNs, many relevant medical works have been
proposed by using efficient CNNs and have achieved good results. For human-supervised
situations, such applications could help to identify pathologic tissues quickly and provide
hints for doctors or point out neglected parts. It allows for quicker and more accurate
diagnosis. For example, a real-time analysis of colonoscopies by adapting MobileNet is
proposed by [10]. This network could be deployed into a small computer connected to the
colonoscope and show results on the monitor in order to provide real-time information
to manipulators. This kind of computer-aided diagnosis also allows patients to obtain
reference reports quickly. Skin lesions may cause skin cancer and other harmful effects.
However, it could be a treatable disease and increase the survival rate if the skin lesion
is detected in an early stage. Thus, the authors in [11] use MobileNet to perform skin
lesion classification; this network could be deployed into specific portable devices or even
smartphones to allow patients to conduct a computer-aided diagnosis early and ask for
suggestions from doctors early. For human-unsupervised situations, many methods have
been designed to provide medical help. Hand gestures are an important way of allowing
disabled patients to interact with things. Such a system is proposed by [12]; they built a
hand gesture recognition system using MobileNetV2 for disabled patients as a notification
system. Furthermore, to help fight against COVID-19, a face mask detection method using
MobileNet [13] was proposed to remind people to wear their masks when coming into
indoor places. These applications could be implemented into more small devices such as
surveillance cameras.

Though efficient CNNs such as MobileNets could reduce resource requirements. We
still need an accelerator to achieve high resource utilization since general processors cannot
fit CNNs’ structures perfectly. FPGA or ASIC could be a choice to run and accelerate CNNs.
FPGA has the ability to support frequent updating of the architecture of CNN models;
therefore, we will focus on FPGA-based efficient CNN accelerators.

Most edge devices and small FPGAs only have a few kilobytes or less of on-chip
memory. Adding a high-capacity off-chip memory such as DRAM and storing all data
in it could be a good choice because DRAM can store gigabytes of data. However, off-
chip memory has higher latency compared with one or two cycles latency of on-chip
memory. Off-chip memory also consumes two orders of magnitude higher energy than
small on-chip memory [14]. Hence, we propose a high-performance accelerator based on
FPGA for MobileNets, which aims to minimize the usage of on-chip memory and data
transfer between on-chip memory and off-chip memory. The accelerator is also designed to
minimize the requirement of other resources in order to be deployed on small devices.

The main contributions of this work are:

1. A high-performance CNN hardware accelerator is proposed where operations are
processed in parallel in the Pointwise Convolution Accelerator and Depthwise Con-
volution Accelerator individually. The Depthwise Convolution Accelerator could be
pipelined after the Pointwise Convolution Accelerator or bypassed to match with
depthwise separable convolutions in MobileNets, leading to less off-chip memory
access and higher inference speed.

2. A changeable number of channels in the Pointwise Convolution Accelerator could
reduce both memory and computation resource requirement of blocks behind the
Pointwise Convolution Accelerator and maximize utilization of existing resources.
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3. The usage of on-chip memory and data interaction between on-chip memory and
off-chip memory can be minimized by using a switchable ping-pong buffer structure
and reorganized dataflow to further reduce memory requirement.

2. Related Works

Firstly, an overview is provided by [14], showing the basic components of NN, its
history, and why NNs are important. It also discusses various hardware platforms and
architectures that are proposed to support NNs and how they help to reduce computation
costs solely via hardware design changes or joint hardware design and NN algorithm
changes.

Traditional CNNs usually require large storage and computation resources, which
makes it difficult to deploy them into FPGAs. Though many architectures are proposed
to conquer parts of these difficulties such as [15,16], they store parameters into the on-
chip memory to deal with memory bandwidth limitation in order to accelerate CNNs.
Nevertheless, it is still hard to obtain high performance. So many recent accelerators choose
depthwise separable convolution based networks as their target network to reduce storage
requirements. The method proposed in [17] implements a variant network of ShuffleNetV2
on the ZU3EG platform and achieves 96.5 FPS and 159 BRAM usage. It can achieve 68.47%
top-1 accuracy on the ImageNet classification task. Another work [18], uses methods such
as pruning to reduce redundant parameters and operations of MobileNet and deploy it on
the ZU9EG platform. Results show that it achieves 64.6% top-1 accuracy on the ImageNet
classification task with 25× fewer parameters compared with AlexNet.

For MobileNetV2 specifically, many hardware accelerators have also been proposed.
The authors of [19] propose a single computing engine that can deal with both pointwise
convolution and depthwise convolution efficiently. However, under some conditions, the
computing process of depthwise convolution cannot start until the previous pointwise
convolution has been completed. It achieves 266.6 FPS on Arria10, and the feature map
cache is 24.5 Mb. An accelerator aiming to boost inverted residual layers is proposed
by [20]. It introduces a two-layer (pointwise–depthwise) pipeline to maximize resource
utilization. Furthermore, it also analyzes the workload of pointwise convolution and
depthwise convolution to determine the best configuration of its accelerator. It achieves
205.3 FPS on Xilinx UltraScale ZU2 under 430 MHz. The total memory usage is 145 BRAM.
An ultra-high throughput design is achieved by [21]. Many more DSPs are used to reduce
computing latency. It also uses a two-layer pipeline to increase the throughput. Two of
the same accelerators are implemented on the FPGA with independent memory that is
interconnected to further improve performance. It achieves 1050 FPS on Arria10 under
200 MHz. The cache usage is 15.3 Mb. A hybrid dataflow structure is proposed in [22],
which focuses on improving resource utilization and reducing the memory requirement by
using suitable dataflow schemes for each different layer.

All these accelerators focus on basic computing components of MobileNets and achieve
significant results. However, they either neglect to optimize the memory model to fit
MobileNets’ structures or design excessively complex structures to optimize each layer,
which ignores the characteristics of MobileNets. In this paper, the proposed method will
focus on both computing and memory architectures in order to minimize memory and
other resource requirements and maintain a relatively high efficiency.

3. Background

In this Section, the depthwise separable convolution (DSC) and MobileNets will be
introduced. In Section 3.1, the mechanism of DSC will be introduced in detail, and the
benefits of DSC compared with the standard convolution will also be calculated and given
as equations. In Section 3.2, we introduce MobileNet and MobileNetV2 as examples of effi-
cient networks that are based on DSC. Their specific structures and the final performances
will be also given.
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3.1. Depthwise Separable Convolution

Depthwise separable convolution was first introduced in [9], it replaces the standard
convolution (SC) with the depthwise separable convolution (DSC). DSC is composed of
a depthwise convolution (DWC) and a pointwise convolution (PWC). Specifically, DWC
performs a convolution with the same kernel size and stride of SC but for each input channel
individually. This means that the sizes of input channels, output channels, and kernel
numbers are always the same. Furthermore, PWC performs a standard convolution with a
1 × 1 kernel size. Figure 1a demonstrates how an SC works, and Figure 1b,c demonstrates
how a DWC works. This kind of replacement is proved by [23] and can be mathematically
approximately equal to SC.

Figure 1. Standard convolution and depth separable convolution.

One notable benefit of using DSC is the decrease in the number of operations and
parameters. As it is shown in Figure 1, assuming that we have the input feature map with
size W ∗ W ∗ M and kernel size K ∗ K ∗ M ∗ N, where M is the size of input channels and N
is the size of output channels, for an SC whose stride is 1; the size of output feature map is
W ∗ W ∗ N; and the number of operations OSC and parameters WSC is:

OSC = W ∗ W ∗ K ∗ K ∗ M ∗ N (1)

WSC = K ∗ K ∗ M ∗ N (2)

While in the case of DSC, the DWC’s total number of operations and parameters are
referred as ODWC and WDWC; OPWC and WPWC refer to the same things for PWC. Hence
the total number of operations ODSC and parameters WDSC is:
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ODSC = ODWC + OPWC = W ∗ W ∗ K ∗ K ∗ M + W ∗ W ∗ M ∗ N (3)

WDSC = WDWC + WPWC = K ∗ K ∗ M + M ∗ N (4)

As a result, we can see the reduction factor of parameters FW and operations FO is:

FW =
WDSC
WSC

= FO =
ODSC
OSC

=
1
N

+
1

K2 (5)

3.2. MobileNet and MobileNetV2

Many CNN models try to merge DSC into their structures, and one of the typical mod-
els is MobileNet [24]. The basic component of MobileNet is shown in Figure 2. MobileNet
can achieve a top-1 accuracy that is 3% higher on ImageNet compared to AlexNet [25]
while its parameters are reduced by 45 times, and the number of operations is reduced by
9.5 times.

Figure 2. MobileNet Basic Block.

MobileNetV2 [7], the successor of MobileNet, decreases the number of parameters by
reducing some layers’ output channels. It also proposed the Inverted Residuals structure
which adds one more PWC before the DSC to improve performance, as shown in Figure 3.
In MobileNetV2, the activation function is replaced by ReLU6 to improve robustness.
MobileNetV2 can achieve 72% top-1 accuracy on ImageNet with 3.4 M parameters and
300 M MAC operations. Compared to MobileNet, MobileNetV2 achieves a top-1 accuracy
that is 1.4% higher and reduces 0.8M parameters. On a Google Pixel 1 phone, the run time
of MobileNetV2 is only 75 ms while MobileNet is 113 ms.
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Figure 3. MobileNetV2 basic block.

4. Hardware Design

Since the proposed accelerator aims to fit MobileNetV2’s structures in order to min-
imize the memory requirement and other resource usages, we build up some specific
modules mainly around configurable computation structures and switchable RAM control
to achieve this goal. In Section 4.1, the overview of the total design is introduced, and some
analysis of different pipeline designs is also given. In Section 4.2, we focus on efficiency,
showing the details of the PWC and DWC Accelerators, the choice of the number of input
channels for PWC, and some skills to reduce resource usage will be discussed. The remain-
ing sections will focus on memory and dataflow structures. In Section 4.3, two dataflow
structures will be discussed and optimized. One is the dataflow between on-chip memory
and registers; the other is the dataflow between off-chip memory and on-chip memory. In
Section 4.4, a new on-chip memory control method is proposed to minimize the memory
capacity. The method of reordering outputs is also discussed.

4.1. Architecture Overview

The block diagram of the proposed accelerator is shown in Figure 4. It is mainly
composed of a Memory Control Unit, the PWC Accelerator, the DWC Accelerator, and
a Post-Process Unit. All the parameters and feature maps are stored in off-chip memory
initially. The Memory Control Unit controls the data flow, determines which part of data
will be stored in specific on-chip memory, and uses a ping-pong buffer while transferring
data with off-chip memory to maximize the bandwidth. The PWC Accelerator and the
optional DWC Accelerator complete the convolution parallel. Considering the basic struc-
ture of MobileNetV2 is a PWC followed by a DWC and then another PWC, adding an
additional PWC Accelerator could achieve a full pipeline design. However, an additional
PWC Accelerator requests many more resources while only providing a small performance
improvement [20]. So, we choose a PWC-DWC pipeline structure to take both performance
and resource utilization under consideration. The Post-Process Unit executes other types
of operations such as pooling and concatenation. It also generates addresses for results to
ensure addresses are continuous.
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Figure 4. Hardware architecture overview.

4.2. Compute Engine Design

The main compute engine in the design is the PWC Accelerator and the optional DWC
Accelerator because the most common structure in MobileNetV2 is a single PWC and a
PWC followed by a DWC.

PWC Accelerator unrolls input channels and output channels to allow parallel cal-
culations, as shown in Figure 5. It can compute 256 multiplications in one cycle at most.
Furthermore, the number of channels is changeable in both the implementation stage and
runtime stage in order to fit various situations. We achieve this by a parameter in the
design stage and a register in the runtime stage. Common designs tend to fix the number of
channels to 16 × 16 to keep the balance between input and output bandwidths. However,
the fixed 16 input channels cannot be fully utilized at the beginning of a network because
the number of channels at the beginning is usually small. Furthermore, the fixed 16 output
channels will lead to more resource requirements because we need to increase the scale of
all the following parts to meet the requirements of pipeline design. Hence, we design the
Configurable Adder Tree to allow the channel number configuration according to the appli-
cation’s specific situation. Sometimes on-chip memory and the number of logic devices
are sufficient. We set a smaller number of input channels and a bigger number of output
channels to increase resource utilization, especially during the beginning of a network.
Sometimes the memory bandwidth is redundant, but the number of logical devices is not
enough, so we can properly increase the number of input channels, such as 32, and the
number of output channels reduces to 8. In this way, we reduce the resource usage by
1/2 while doubling the bandwidth usage of on-chip memory. Considering the number
of input channels of most CNN layers is bigger than 32, it may lead to lower resource
utilization at the beginning of a CNN but the total utilization can be acceptable. Meanwhile,
a DSP48E supports a 25 bits multiplier and an 18 bits multiplicand at most. Using one
DSP to compute an 8 × 8 multiplication directly will cause more DSP usage. Therefore, we
adapt two 8 × 8 multiplications into one DSP48E to reduce the total DSP usage (Figure 5).
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Figure 5. PWC Accelerator architecture.

For the DWC Accelerator shown in Figure 6, many mature and efficient methods for a
standard 3 × 3 convolution have been proposed, such as Winograd [26,27]. Because the
DWC part needs to match the PWC output and one kernel is only used in one channel, we
keep the data unchanged and feed it into a line buffer unit directly to complete the DWC.
The line buffer unit is composed of two connected line buffers. A line buffer could store a
whole line of the input feature map and work like a queue, when the first pixel of a new
line is pushed, the pixel of the previous line will start to be popped. The line buffer unit
allows us to obtain a 3× 3 window so that we can operate a 3× 3 convolution. Considering
that a whole feature map and the weights may be too big to be loaded into buffers, we have
to split feature maps and weights into several parts and compute them individually (this is
known as loop tiling). So, the DWC Accelerator is designed to add essential extra pixels in
the edge of the input feature maps by the padding unit in order to adjust the size of the
output feature maps and drop invalid outputs automatically depending on the current
input part by the valid generation unit.

Figure 6. DWC Accelerator architecture.
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4.3. Dataflow Structure

In this paper, we optimize the dataflow in order to minimize the data transfer between
the on-chip memory and off-chip memory, the on-chip memory and registers, and to
minimize the on-chip memory capacity requirement.

First, the on-chip memory and registers are to be discussed. Generally speaking,
there are four kinds of dataflow based on their data handling characteristics: Weight
Stationary (WS), Output Stationary (OS), Non Local Reuse (NLR), and Row Stationary
(RS) [14]. For PWC, which has the largest amount of operations in DSC, using a WS-like
dataflow structure could maximize the efficiency according to [28]. For DWC, considering
its relatively small amount of operations, we also use a WS-like dataflow structure to
simplify the design.

For on-chip memory and off-chip memory, we want to reduce the access to the off-chip
memory since such communication is expensive. Furthermore, the minimum amount of
data transfer between the on-chip memory and off-chip memory is reading and writing
each data block only once. A standard convolution is performed by four levels of loops
shown in Figure 7. The order and unrolling of these loops will influence the data footprint
and further determine the data access pattern. We need to find the suitable order and
unrolling method, as well as the data tiling approach if the on-chip memory is insufficient.

According to [29], there are three ways to achieve minimal data access: compute
Loop-3 first and buffer all required weights for a pixel; compute Loop-4 first and buffer
all required pixels for a weight; and buffer all weight or input pixels. The first method
is suitable for the situation where input channels can not be fully buffered. However,
while tiling, we only split the feature map horizontally because the continuous address is
beneficial to DMA transfer, meaning we store all input channels. This method also has a
complex control method. The second method conflicts with the WS dataflow. Thus, we
minimize data access by storing all weight or input pixels. Specifically, we store the weight
in the front half of the network and the input pixels in the second half because the amount
of weight will become bigger as the network goes deeper, while the amount of input pixels
becomes smaller. For partial sums storage, since we unroll Loop-1, Loop-2, and Loop-4,
we set Loop-1 as the innermost loop and then Loop-3 to meet the requirement of the WS
dataflow. To minimize the partial sums storage, Loop-1 and Loop-2 need to be performed
as early as possible. So, the final order of our convolution is Loop 1-3-2-4.

Figure 7. Default standard convolution order.

4.4. On-Chip Memory Control Method

Traditional hardware accelerators use two of the same on-chip ping-pong memories
as their input and output buffers. This kind of design can maximize the bandwidth.
However, in MobileNetV2, using two of the same buffers will waste nearly half of the
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on-chip memory. This is because MobileNetV2 uses Inverter Residual as the basic block,
and the size of PWC input and output is unbalanced. Specifically, Inverter Residual is
composed of one expansion PWC, one DWC, and one contract PWC. In DWC, the number
of input channels and output channels is equal. However, in the remaining two PWCs,
the ratio of output channels and input channels is 6 or 1/6 (6 is the expansion factor in
MobileNetV2). Meanwhile, the size of Height and Width of the feature map is not changed.
Therefore, the ratio of feature maps’ size is also 6 or 1/6. For two of the same buffers, this
unbalanced size means the utilization of one of them will only approach 1/6.

In this paper, we proposed a switchable ping-pong RAM to solve this problem, as
shown in Figure 8. We set two different size ping-pong buffers, and the ratio of their
capacity is 6. The Memory Control Unit will pick one of them as the input buffer and
another as the output buffer according to the type of the current layer. In this way, we can
save almost half of the memory compared to the two same ping-pong buffers’ structures
while doing the same operation under the same tiling.

Figure 8. On-chip memory architecture.

Because of the unrolling of output channels, the original outputs are not continuous on
physical addresses. As shown in Figure 9a, it assumes that the addresses of the input feature
maps are in the order of Channel, Width, and Height; both input channels and output
channels are unrolled into two parts. If we want to compute the red part of the output
feature map, we need to compute it as shown in Figure 9b. The white block in Figure 9b
is the supposed part to be computed next if the output could have the same order as the
input. Obviously, the output addresses are not continuous along the Channel. However,
we hope the output feature map has the same address order as the input feature map so
that we can avoid re-ordering the data after the off-chip memory receives all of the results.
Or, we can re-order the data during the DMA transfer, but DMA also requires continuous
physical addresses in order to maximize bandwidth. Thus, an address generation module
is proposed in the Post-Process Unit in order to generate addresses for the original outputs.
This module generates the corresponding final addresses for each output pixel while storing
it in the output buffer. In this way, we can ensure the addresses are continuous and have
the same order as the input during the DMA transfer and in the off-chip memory.
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Figure 9. Unrolled convolution and computing details.

5. Results

The proposed accelerator architecture is demonstrated by implementing the MobileNetV2
network on the Xilinx XC7Z020 FPGA, which contains 13,300 logic blocks, 140 Block RAM,
and 220 DSP48E. Each logic block has four 6-input LUTs and eight Flip-Flops. The reason why
we choose XC7Z020 and the final implementation results will be described below.

5.1. Experimental Framework

Since our goal is minimizing the memory requirement and other resources usages
to deploy MobileNets into small devices, we choose Xilinx XC7Z020 FPGA as our target
device due to its limited resources. We simulate a real situation. For MobileNetV2, we use
the quantization method proposed by [30] to quantize the network to 8 bits. Furthermore,
we also fuse each Conv-BN block to reduce the operations and parameters further. The
middle results are stored as 32 bits to avoid overflow. For PWC, we use the 32-input and
8-output configuration to minimize resource usage. DWC is configured as 8 × 8, which
matches the PWC. We set the smaller feature buffer to 28,800 bytes, the weight buffer to
18,880 bytes, and the partial sum buffer to 32,768 bytes. DSP is used for multiplications of
the PWC part and all quantization processes. Multiplication of the DWC part is executed
by LUT due to resource limitations. Since there is a dual-core Cortex-A9 on board, we use
it to load all the weights and the input image from the SD card into the DRAM shared by
the Cortex-A9 and the FPGA before starting the inference. When data is ready, we send a
start signal and the configuration of each layer to finish the inference. The physical picture
of our platform is shown in Figure 10.
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Figure 10. Physical picture of the platform.

5.2. Experimental Results

The implementation platform is PYNQ-Z2 with Xilinx XC7Z020 FPGA and 512 MB
DDR3 as off-chip memory. The standard bandwidth of DDR3 is 1050 Mbps. Dual-core
Cortex-A9 is used as the Processing Stream Controller. The bus protocol of IPs is AMBA
AXI4 bus. We use the Processing Stream Controller to send only the information of each
layer to the accelerator to keep a high efficiency while producing various depthwise
separable convolutions. The implementation result is listed in Table 1.

Table 1. Resource utilization.

Name LUT DSP (DSP48E) BRAM

Accelerator 32,956 (61.9%) 176 (80%) 107.5 (76.8%)
DMA 2000 (3.8%) 0 (0%) 12 (8.6%)
Other 1333 (2.5%) 0 (0%) 0 (0%)

Total 36,289 (68.2%) 176 (80%) 119.5 (85.4%)

To analyze the performance in detail, we measure the communication and computation
delay in each layer. The results are shown in Table 2. The results show that the PWC+DWC
parts have shorter communication and longer computation delays compared with the PWC
in the same layer. This makes sense because the PWC+DWC parts perform the channel
expansion, meaning that the amount of input data is small. So, the computation could start
quickly when one of ping-pong RAMs is loaded. We can see the communication delay of
the PWC in the 4th, 5th, and 6th lines are bigger than others. This is because we store all
the weights in order to minimize the off-chip access in these layers when the sizes of the
input feature map are small enough to be buffered. So, we also store all the input feature
maps without tiling to simplify the computation in these layers, which may cause longer
communication times.



Bioengineering 2023, 10, 28 13 of 15

Table 2. Communication and computation delays in each layer.

Layer (Input Size) Operator Stride PWC+DWC PWC 1

Communication
Delay (us)

Computation
Delay (us)

Communication
Delay (us)

Computation
Delay (us)

224 × 224 × 3 Conv2d 2 N/A N/A 24.56 405.81
112 × 112 × 32 Bottleneck 1 31.40 586.67 24.56 404.49
112 × 112 × 16 Bottleneck 2 34.01 1296.53 65.02 270.47

1 30.65 600.87 108.00 430.33
56 × 56 × 24 Bottleneck 2 30.65 522.08 106.08 129.47

1 24.07 265.79 127.01 150.92
28 × 28 × 32 Bottleneck 2 24.07 171.47 33.04 78.68

1 16.55 209.50 65.68 144.35
14 × 14 × 64 Bottleneck 1 16.55 209.47 65.79 216.36

1 24.71 412.38 98.43 314.83
14 × 14 × 96 Bottleneck 2 24.71 341.67 28.08 152.12

1 21.43 309.20 46.32 244.99
7 × 7 × 160 Bottleneck 1 21.43 309.17 46.85 489.72
7 × 7 × 320 Conv2d 1 N/A N/A 19.65 670.02
1280 × 1000 Conv2d 1 N/A N/A 9.77 1345.96

1 Include pooling or concatenation if necessary.

The reduction in the resource requirement of the proposed method is significant when
using the 32 × 8 PWC module mentioned in Section 4.2 and the memory control method
mentioned in Section 4.4. Otherwise, it is impossible to deploy the accelerator on the target
platform under the same situation due to P&R congestion and over-required memory
and logic resources. Table 3 provides a comparison between the solution proposed in
this work and other similar ones. The final result shows that we use the lowest memory
resources while achieving a high efficiency compared with other implementations. Due
to resource limitations, we cannot achieve a very high speed, but we achieve the highest
efficiency according to FPS/MHz per DSP per KB. In the future, we will try to increase the
frequency and to further reduce the storage of the partial sum in order to achieve a higher
performance.

Table 3. Compared with other implementations.

[19] [20] [21] [31] This Paper

Platform Arria10 ZU2 Arria10 Virtex7 XC7Z020
CNN Model MobileNetV2
Frequency 133 MHz 430 MHz 200 MHz 150 MHz 150 MHz
DSP Usage 1278 212 1220 2160 176 (248 1)

On-Chip Memory
Usage

1844 M20K (3.07
MB) 145 BRAM 15.3 Mb (1.91 MB) 941.5 BRAM 119.5 BRAM

(524.25 KB)

Speed 266.2 FPS 205.3 FPS 1050 FPS
(Throughput) 302.3 FPS 70.94 FPS

FPS/MHz per DSP
per KB (10−6) 0.50 3.54 2.20 0.23 5.13 (3.64 1)

1 As mentioned above, we use LUTs to conduct the multiplications in DWC because of insufficient resources. This
will cause unfair results. Here, we assume every multiplication is conducted by DSPs and calculate the relevant
results.

6. Conclusions

In this work, a high-performance, low-memory utilization CNN accelerator is pro-
posed. This structure is optimized for depth separable convolution, especially MobileNetV2.
As the implementation sample described above, we deploy our accelerator on Xilinx
XC7Z020 and achieve 70.94 FPS under 150 MHz while only using 524.25 KB on-chip
memory and 176 DSPs. This means that our design is sufficient for auxiliary medical
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applications in both speed and resource requirements. Compared to other similar designs,
we use the least on-chip memory and achieve a relatively high efficiency according to the
FPS/MHz per DSP. Due to the two-layer pipeline structure that is mentioned in Section 4.1,
our design cannot achieve the highest efficiency. However, it helps us to reduce a large
amount of on-chip memory usage and still keeps a relatively high efficiency. Therefore,
the proposed structure matches our goal and can be fit into auxiliary medical devices with
high performance and can run in real-time.
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