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Abstract: Background: Colony morphology (size, color, edge, elevation, and texture), as observed
on culture media, can be used to visually discriminate different microorganisms. Methods: This
work introduces a hybrid method that combines standard pre-trained CNN keras models and clas-
sical machine-learning models for supporting colonies discrimination, developed in Petri-plates.
In order to test and validate the system, images of three bacterial species (Escherichia coli, Pseu-
domonas aeruginosa, and Staphylococcus aureus) cultured in Petri plates were used. Results: The system
demonstrated the following Accuracy discrimination rates between pairs of study groups: 92% for
Pseudomonas aeruginosa vs. Staphylococcus aureus, 91% for Escherichia coli vs. Staphylococcus aureus and
84% Escherichia coli vs. Pseudomonas aeruginosa. Conclusions: These results show that combining deep-
learning models with classical machine-learning models can help to discriminate bacteria colonies
with good accuracy ratios.
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1. Introduction

Evaluation of the number of viable microorganisms in a sample is a commonly used
method in most microbiology laboratories. The method consists of counting visible colonies
on agar plates and calculating the number of colony-forming units per mL (or gram) of the
sample. For example, it is widely used for food, clinical, environmental, and drug safety
testing. The counting of bacteria is usually carried out manually, and is, therefore, subjective
and error-prone [1]. At present, automatic digital counters are common in laboratories
and some have highly efficient automatic counting methods, which have replaced manual
counting methods.

Although the counting of visible colonies on agar plates is the most commonly used
method to assess bacterial populations, with the advantage of only considering the counts
of viable cells [2], it is time-consuming, laborious and requires at least 24 h or more for
visible colonies to form. This can be a considerable limitation in some situations, such as
quality control of certain foods and in clinical settings, where fast results are required so
that actions can rapidly be implemented.

One important factor in cell counting is the analyst’s ability to see colonies distinctly.
Colony morphology is used to select bacteria as phenotypically different. This is normally
carried out by visual inspection, and the selected parameters are often colony size, color,
texture, edge, and elevation, according to the colony morphology protocol emitted by the
American Society for Microbiology [3].

In a previous work, a software capable of semi-automatically quantifying the num-
ber of colonies in Petri plates from a digital image was developed [4]. This method
did not, however, automatically distinguish different colony types. Thus, in the present
work, we attempted to include this distinguishing characteristic. Therefore, three bacterial
species (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) that represent the
predominant pathogenic microorganisms in a variety of settings—food [5], clinical [6] and
environmental [7]—were used to evaluate and develop our solution/software to support
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colony discrimination. Table 1 shows the the current state-of-art on colony-distinguishing
methods based on machine-learning (ML) models.

Table 1. State-of-the-art papers.

Ref. Year ML Model Comparison Group Accuracy

[8] 2021 SVM
E. coli vs. S. aureus vs.

S. Typhimurium vs. E. faecium vs.
P. aeruginosa

93.3%

[9] 2017 CNN
33 bacteria comparison (all the

bacteria used in this study
are included)

97.24%

[10] 2019 CNN
33 bacteria comparison (all the

bacteria used in this study
are included)

98.22%

[11] 2022 Linear
Discriminant

E. coli vs. E. coli-β vs. S. aureus vs.
methicillin-resistant S. aureus vs.
P. aeruginosa vs. E. faecalis vs.
K. pneumoniae vs. C. albicans

92%

2. Methodology

In this section, all the procedures are described. The microbiological analysis and
the image database are presented and, after that, the deep and classical machine-learning
analysis of images is explained. Figure 1 presents a summary of the whole methodol-
ogy procedure.

Figure 1. Methodology workflow.

2.1. Microbiological Analysis and Image Database

Plates containing Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus
isolates from our center’s internal collection were cultivated aerobically at 37 °C, for
24 h, in Trypto-Casein Soy Agar™ (TSA, BIOKAR Diagnostics, Allonne, France) using the
spread-plate technique (0.1 mL of the diluted samples). All experiments were carried out
in triplicate. Colony enumeration was performed and the number of colonies was recorded
and posteriorly attributed to each image of the database.

The final dataset [12] consists of about 1252 labeled Petri images with 422 colonies of
Escherichia coli, 431 of Pseudomonas aeruginosa and 399 of Staphylococcus aureus. The color
images were acquired by a smartphone camera with 12 megapixels [3024 × 4032 × 3]. For
more details, consult the previous authors’ published paper [4].

2.2. The Deep and Classical Machine-Learning Analysis

To verify the suitability of the Image dataset for building deep-learning models that
can obtain a total of 50 features from each colony for image-based microorganism recogni-
tion, we evaluated the performance of the following standard, pre-trained 31 CNN keras
models [13]: Xception; VGG16; VGG19; ResNet50; ResNet50V2; ResNet101; ResNet101V2;
ResNet152; ResNet152V2; InceptionV3; InceptionResNetV2; MobileNet; MobileNetV2;
DenseNet121; DenseNet169; DenseNet201; EfficientNetB0; EfficientNetB1; EfficientNetB2;
EfficientNetB3; EfficientNetB4; EfficientNetB5; EfficientNetB6; EfficientNetB7; Efficient-
NetV2B0; EfficientNetV2B1; EfficientNetV2B2; EfficientNetV2B3; EfficientNetV2S; Effi-
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cientNetV2M; EfficientNetV2L. For more details please check the Keras default models at
https://keras.io/api/applications/, accessed on 20 November 2022.

Due to the relatively high resolution of all images, the samples were scaled down to
[303 × 404 × 3] to reduce the computation time and guarantee proper aspect ratios. Thus,
the patches of each neural network architecture were resized to match the default input
layer size. The output layer of each used standard CNN keras models [13], and was also
replaced by a dense layer with 50 units and softmax as the activation function to obtain, as
output, in a blinding feature extraction process, 50 features from each colony to serve as
vector inputs for several classical ML models: decision trees (DT), support-vector machines
(SVM), K-nearest neighbors (KNN), multi-layer perceptron (MLP) and three ensemble
classifiers (please check Table 2 for more details). The models’ performance was evaluated
within a leave-one-out-cross-validation procedure, a well-known process that allows for
the use of all datasets for testing, without leakage between train and test sets.

In this work, the feature extraction and the classification were carried out in a cloud-
based service, the Google Colaboratory. The software code was developed in Python-
Jupyter Notebook for machine-learning and deep-learning operations within a virtual
machine with two Intel Xeon CPUs both at 2.20 GHz, 100 GB of storing, and 13 GB of Ram.

Table 2. Used classical machine-learning classifiers and optimal parameters.

ML Model Optimal Parameters

DT Medium Tree Maximum number of splits = 150 & criterion = “gini”

SVM Radial Basis Cost = 1 & gamma = 2

KNN Balltree Number of neighbors = 3

MLP

1 input layer activation function = “relu”
training algorithm = “adam”

1 hidden layer L2 regulation term = 1
fullyConnectedLayer = 3

1 output layer hidden layer neurons = 100

Ensemble

Random Forest (RF) Maximum number of splits = 100 & criterion = “gini”

Bagged Trees (BagT) Maximum number of splits = 150 & criterion = “gini”

XGBoost

boosted trees to fit = 150
learning rate = 0.1

max depth of the tree = 6
L2 regulation term = 1

The evaluation metric for colony detection was based on the Accuracy and F1-score [14].
Accuracy shows how many cases were correctly labelled out of all the cases, and is
defined as,

Accuracy =
TruePositives + TrueNegatives

TruePositives + TrueNegatives + FalsePositives + FalseNegatives
× 100% (1)

where a TruePositive is an outcome in which the MP model correctly predicts a positive
class, a TrueNegative is an outcome where the model correctly predicts the negative class,
a FalsePositive is an outcome where the model incorrectly predicts the positive class and,
finally, FalseNegative is an outcome where the model incorrectly predicts the negative
class [14].

The F1-score is the harmonic mean of precision and recall and can be defined as,

F1-score = 2 × precision × recall
precision + recall

× 100% (2)

https://keras.io/api/applications/
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where precision and recall are, respectively,

precision =
TruePositives

TruePositives + FalsePositives
(3)

and
recall =

TruePositives
TruePositives + FalseNegatives

(4)

Thus, if the F1-score is high, both the precision and recall of the classifier indicate good
results [14].

3. Results and Discussion

By analyzing Table 3, some considerations regarding the classification results between
pairs of study groups are revealed. Accuracies higher than 84% were obtained for all
pairs, with at least one combination of deep and classical machine-learning methods. The
combination of classifiers MobileNet-XGBoost provided the best results for all study pair
classifications; in this way, it was shown to be a good candidate combination for differenti-
ating colonies. The XGBoost was shown to be the most effective classical machine-learning
classifier, as 81% (82 of 93) of the best combinations of deep and classical machine-learning
have XGBoost as a classifier. The group pairs comparisons that involved Staphylococcus
aureus achieved high Accuracy and F1-score rates, above 91%. One of the explanations for
these results is that Staphylococcus aureus produces yellow colonies [15] on a plate, which
are very typical and differentiated from the Escherichia coli and Pseudomonas aeruginosa that
produce beige colonies on a plate [16,17]. As Escherichia coli and Pseudomonas aeruginosa
colonies are both beige on a plate, the problem of differentiating each becomes more difficult
for the classifiers. Even so, the proposed methods achieved good ratios of Accuracy and
F1-score ≈ 84% on Escherichia coli vs. Pseudomonas aeruginosa discrimination. The graphic
of Figure 2 shows the best discrimination results between the study groups. The results are
in line with those found in the state-of-art literature (please check Table 1) and provides us
with a good indication that, if we continue to improve and refine the algorithm, we can
build an even more helpful, powerful, and robust tool for this purpose.

Figure 2. Best discrimination results between study group pairs.
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Table 3. Summary of the best discrimination results between study group pairs.

Escherichia coli vs. Pseudomonas aeruginosa Escherichia coli vs. Staphylococcus aureus Pseudomonas aeruginosa vs. Staphylococcus aureus

Classifiers Accuracy F1-Score Classifiers Accuracy F1-Score Classifiers Accuracy F1-Score

Xception-DT 76.79% 76.76% Xception-XGBoost 81.49% 81.47% Xception-XGBoost 81.33% 81.26%

VGG16-XGBoost 77.26% 77.26% VGG16-XGBoost 84.90% 84.89% VGG16-XGBoost 84.70% 84.67%

VGG19-XGBoost 71.86% 71.85% VGG19-XGBoost 84.04% 84.04% VGG19-XGBoost 84.94% 84.93%

ResNet50-XGBoost 77.96% 77.95% ResNet50-XGBoost 86.97% 86.97% ResNet50-XGBoost 86.75% 86.74%

ResNet50V2-XGBoost 76.20% 76.17% ResNet50V2-XGBoost 82.10% 82.09% ResNet50V2-XGBoost 87.11% 87.11%

ResNet101-BagT 76.91% 76.89% ResNet101-XGBoost 85.51% 85.49% ResNet101-XGBoost 88.43% 88.42%

ResNet101V2-XGBoost 74.79% 74.79% ResNet101V2-XGBoost 75.52% 75.50% ResNet101V2-XGBoost 78.43% 78.37%

ResNet152-XGBoost 79.02% 78.99% ResNet152-XGBoost 86.11% 86.11% ResNet152-XGBoost 86.99% 86.99%

ResNet152V2-XGBoost 75.15% 75.15% ResNet152V2-XGBoost 78.20% 78.19% ResNet152V2-XGBoost 80.96% 80.94%

InceptionV3-XGBoost 75.38% 75.37% InceptionV3-XGBoost 76.49% 76.49% InceptionV3-RF 77.83% 77.68%

InceptionResNetV2-XGBoost 74.91% 74.91% InceptionResNetV2-XGBoost 74.30% 74.30% InceptionResNetV2-XGBoost 79.28% 79.24%

MobileNet-XGBoost 83.94% 83.94% MobileNet-XGBoost 91.11% 91.11% MobileNet-XGBoost 92.05% 92.04%

MobileNetV2-XGBoost 78.90% 78.88% MobileNetV2-XGBoost 85.75% 85.75% MobileNetV2-XGBoost 88.55% 88.54%

DenseNet121-KNN 79.60% 79.60% DenseNet121-KNN 83.80% 83.77% DenseNet121-XGBoost 86.51% 86.49%

DenseNet169-XGBoost 79.48% 79.48% DenseNet169-KNN 84.17% 84.15% DenseNet169-KNN 84.82% 84.76%

DenseNet201-XGBoost 79.60% 79.58% DenseNet201-XGBoost 84.41% 84.41% DenseNet201-XGBoost 86.14% 86.15%

EfficientNetB0-XGBoost 68.35% 68.24% EfficientNetB0-XGBoost 74.91% 74.91% EfficientNetB0-XGBoost 80.84% 80.78%

EfficientNetB1-XGBoost 70.57% 70.54% EfficientNetB1-XGBoost 78.93% 78.93% EfficientNetB1-KNN 83.13% 83.06%

EfficientNetB2-XGBoost 72.22% 72.22% EfficientNetB2-XGBoost 82.10% 82.09% EfficientNetB2-XGBoost 81.57% 81.53%

EfficientNetB3-XGBoost 67.76% 67.75% EfficientNetB3-XGBoost 69.79% 69.77% EfficientNetB3-XGBoost 75.90% 75.82%

EfficientNetB4-XGBoost 76.55% 76.55% EfficientNetB4-XGBoost 78.81% 78.80% EfficientNetB4-XGBoost 83.73% 83.71%
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Table 3. Cont.

Escherichia coli vs. Pseudomonas aeruginosa Escherichia coli vs. Staphylococcus aureus Pseudomonas aeruginosa vs. Staphylococcus aureus

Classifiers Accuracy F1-Score Classifiers Accuracy F1-Score Classifiers Accuracy F1-Score

EfficientNetB5-XGBoost 71.51% 71.51% EfficientNetB5-XGBoost 80.63% 80.63% EfficientNetB5-BagT 83.49% 83.45%

EfficientNetB6-XGBoost 66.47% 66.47% EfficientNetB6-XGBoost 71.86% 71.87% EfficientNetB6-XGBoost 76.39% 76.31%

EfficientNetB7-XGBoost 75.62% 75.61% EfficientNetB7-XGBoost 84.77% 84.77% EfficientNetB7-XGBoost 87.83% 87.82%

EfficientNetV2B0-XGBoost 75.38% 75.38% EfficientNetV2B0-XGBoost 83.68% 83.67% EfficientNetV2B0-XGBoost 86.63% 86.60%

EfficientNetV2B1-XGBoost 75.85% 75.83% EfficientNetV2B1-XGBoost 84.04% 84.03% EfficientNetV2B1-XGBoost 87.47% 87.45%

EfficientNetV2B2-XGBoost 75.85% 75.85% EfficientNetV2B2-KNN 80.63% 80.52% EfficientNetV2B2-XGBoost 84.10% 84.05%

EfficientNetV2B3-XGBoost 79.95% 79.95% EfficientNetV2B3-XGBoost 83.68% 83.68% EfficientNetV2B3-XGBoost 86.51% 86.50%

EfficientNetV2S-XGBoost 70.93% 70.92% EfficientNetV2S-XGBoost 75.03% 75.01% EfficientNetV2S-XGBoost 77.47% 77.41%

EfficientNetV2M-XGBoost 65.42% 65.42% EfficientNetV2M-XGBoost 70.89% 70.89% EfficientNetV2M-XGBoost 67.47% 67.45%

EfficientNetV2L-BagT 63.89% 63.86% EfficientNetV2L-XGBoost 72.59% 72.59% EfficientNetV2L-XGBoost 72.41% 72.31%
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4. Conclusions

This work introduced a preliminary method that combines standard CNN keras
models and classical machine-learning models to support colony discrimination, developed
in Petri-plates. In order to test and validate the system, images of three bacterial species
(Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) cultured in Petri plates
were presented to the CNN models’ entries to extract 50 image features to feed classical
machine-learning models within a leave-one-out-cross validation procedure. The system
demonstrated good accuracy discrimination rates between pairs of study groups: 92% for
Pseudomonas aeruginosa vs. Staphylococcus aureus, 91% for Escherichia coli vs. Staphylococcus
aureus and 84% Escherichia coli vs. Pseudomonas aeruginosa. The presented preliminary
results showed that a combination of deep-learning models and classical machine-learning
models can help to discriminate bacteria colonies in Petri-plates. Tools, such as the one
developed in the present work, are really valuable in ascertaining different colony types in
a single step, using a general, whole-purpose medium instead of several selective and/or
differential media, rendering the process time-consuming, expensive, and prone to errors
due to the increased manipulation steps required by the operator. Furthermore, differential
colony counting is quite useful, since most analyzed samples in a microbiology setting
are not pure-culture, but mixed cultures involving more than one bacterial species. In
future work, the dataset should be extended to more bacteria colony types to evaluate the
system’s ability to discriminate other species and should include a set of pictures containing
a mixture of colonies to evaluate the accuracy of the method in a mixed/complex sample.
Additionally, the deep and classical machine-learning models should be refined to improve
the system’s performance.
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