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Abstract: The climate is changing and its impacts on agriculture are a major concern worldwide.
The impact of precipitation will influence crop yield and water management. Estimation of such
impacts using inputs from the General Circulation Models (GCMs) for future years will therefore
assist managers and policymakers. It is therefore important to evaluate GCMs on a local scale for an
impact study. As a result, under the Shared Socioeconomic Pathways (SSPs) future climate scenarios,
namely SSP245, SSP370, and SSP585, simulations of mean monthly and daily precipitation across
Brunei Darussalam in Phase 6 of the Coupled Model Intercomparison Project (CMIP6) were evaluated.
The performance of two multi-model ensemble (MME) methods is compared in this study: the basic
Arithmetic Mean (AM) of MME and the statistical downscaling (SD) of MME utilizing multiple
linear regression (MLR). All precipitation simulations are bias-corrected using linear scaling (LS), and
their performance is validated using statistical metrics such as Root Mean Square Error (RMSE) and
coefficient of determination (R2). The adjusted mean monthly precipitation during the validation
period (2010–2019) shows an improvement, especially for the SD model with R2 = 0.85, 0.86 and
0.84 for SSP245, SSP370 and SSP585, respectively. Although the two models produced unsatisfying
results in producing annual precipitation. Future analysis under the SD model shows that there will
be a much lower average monthly trend in comparison with the observed trend. On the other hand,
the forecasted monthly precipitation under AM predicted the same rainfall trend as the baseline
period in the far future. It is projected that the annual precipitation in the near future will be
reduced by at least 27% and 11% under the SD and AM models, respectively. In the long term, less
annual precipitation changes for the SD model (17%). While the AM model estimated a decrease in
precipitation by at least 14%.

Keywords: statistical downscaling; precipitation; CMIP6; bias correction; multi-model ensemble

1. Introduction

Precipitation is the most crucial hydro-climate phenomenon that plays a vital role
in agricultural production and water management due to its significant influence on
long-lasting social, economic, and environmental conditions. Climate change is having a
significant impact on hydrology and the ecosystem [1,2]. Extreme weather (such as heavy
rain, flooding, and strong winds), an increase in landslides during the rainy season, the loss
of forestry and biodiversity due to forest fires, particularly during the dry season; the loss
of agriculture due to untimely precipitation; impacts on fisheries due to increased salinity
caused by backwater flow influenced by tidal surge; and threats to public health are all
potential effects of climate change in Brunei Darussalam [3]. Therefore, a reliable forecasting
system is essential, which can play a vital role in financial investment decision-making and
risk management, and mitigation policies in many sectors, including agriculture, water
management infrastructures, coastal and disaster management, and their preparedness
plans [3]. Good knowledge of the climate drivers and their influence on localized rainfall
events can facilitate an understanding of the precipitation trend [4]. Climate scenario
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development is necessary as a strategy commonly used in preparing for disaster risks or
climate change impact studies. For example, Adib et al. (2022) projected future precipitation
to estimate effective rainfall, which is an important component in evaluating optimum rice
irrigation water requirements [5]. Ayugi et al. (2022) evaluated the effect of future climate
scenarios from CMIP6 on drought events in East Africa. They were able to locate potential
drought hotspots for early drought preparedness and mitigation [6]. Another climate
change adaptation study conducted by Hamed et al. (2022) focuses on the projection of
CMIP6 temperature to map potential changes in bioclimatic characteristics in Southeast
Asia [7].

The General Circulation Model (GCMs) outputs of the Coupled Model Intercompar-
ison Project (CMIP) are an essential dataset for forecasting future climate trends. The
sixth assessment report (AR6) is the latest series of reports concerning climate change, pro-
duced by the United Nations Intergovernmental Panel on Climate Change (IPCC) which
is refined further from the fifth assessment report (AR5). One of the major differences
between CMIP5 and CMIP6 output is the set of future scenarios used to project climate
evolution. The purpose of the CMIP6 phase is to overcome and improve the restrictions
identified in the CMIP5 output, namely identifying systematic errors in simulations and
improving the representation of land use changes on climate (IPCC report). Several new
scenarios are used by CMIP6 called Shared Socioeconomic Pathways (SSPs), which are in
combination with previous CMIP5 scenarios of climate radiative forcing called Radiative
Concentration Pathways (RCPs) [8]. However, GCM outputs are often coarse in the tem-
poral and spatial dimensions, resulting in systematic biases [9]. Therefore, downscaling
of these model outputs is necessary to improve the resolution to match the resolution at
a local scale. Downscaling is the process whereby spatial data is represented with lower
spacing and with smaller temporal intervals. Among the methods that have been used
for post-processing, GCMs are dynamical downscaling and statistical downscaling. The
statistical approach has advantages over dynamical downscaling as it is a lot less resource
intensive. Additionally, during statistical downscaling, calibration or training periods aim
at conserving and replicating historical regional climatic features. Statistical downscaling is
based on empirical relationships between observed climate predictand and a set of suitable
large-scale predictors obtained from GCM data.

Among the statistical methods, multiple linear regression (MLR) is the most popular
approach used by many researchers, hydrologists, and climatologists [10,11]. Multiple
Linear Regression (MLR) is a method for developing prediction models that are widely
used in the field of hydrology for flood, streamflow, and rainfall forecasting [12,13]. The
benefits of MLR models include easy identification of critical factors contributing to peak
events. Another approach to statistical downscaling of climate is through the application
of statistical downscaling model (SDSM) software. It has also been widely used to evaluate
the hydrologic impacts of climate change, particularly for CMIP5 GCM outputs [12].

Numerous studies in Brunei have used other statistical downscaling techniques to
examine both historical and potential future climate change in Brunei Darussalam for
changes in precipitation and temperatures [14–16]. Statistical downscaling methods that
have been employed include the use of MLR with correlation analysis by Aziz (2018) [13]
and the integration of SWR and MLR used by Hasan (2018) [14]. Screening of predictors
plays a vital role in statistical downscaling in terms of the practicality and accuracy of the
results of the models. Several predictor screening methods have been applied under the
downscaling model of precipitation in Brunei Darussalam, such as correlation analysis
and backward stepwise regression (BSR) [15]. BSR is the simplest form of stepwise regres-
sion, and it begins by including all variables and repeating the process of removing the
most insignificant variables until a set of optimal predictors that are highly significant at
p-value < 0.05 is reached. Others also applied stepwise regression (SWR) and principal
component analysis (PCA) [16]. It is evident that climate change studies have been growing
in Brunei, but much focus has been on the application of CMIP5 GCM models, and CMIP6
is relatively new. CMIP6 has better correlation and lower error coefficients as compared to
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CMIP5 [17], and performs better than CMIP6 HighResMIP in simulating precipitation [18],
particularly in monsoon precipitation and hydrological extremes [19–21]. Therefore, one
of the approaches used for forecasting precipitation is statistical downscaling to evaluate
CMIP6 simulations of mean monthly and daily precipitation over Brunei Darussalam using
the GCMs.

Over the past few decades, another climate forecasting approach is the application of
multiple GCM techniques to achieve a multi-model ensemble (MME). The MME approach
offers an effective strategy to tackle any uncertainties among GCMs and further enhance-
ment in forecasting skills has been achieved through the combination of the MME approach
and downscaling techniques [22]. Wang et al. 2021 studied the performance of MME of
the CMIP5 and CMIP6 to downscale precipitation and reported that CMIP6-MME outper-
formed CMIP-MME, although both show unsatisfied simulation of rainy days [23]. Recent
studies with the application of a multi-model ensemble derived from CMIP6 output to
simulate future rainfall and temperature to study climate variability have been conducted
over the Southeast Asia (SEA) region. For example, future rainfall under the two monsoon
seasons was assessed by Wang et al. (2020) [24]. It utilized an ensemble of 15 CMIP6
models, where a significant increase in monsoon rainfall is forecasted during the June to
September period (under the influence of the Southwest Monsoon). The increasing trend
in monsoon rainfall also corresponds to the rainfall simulation over selected SEA regions
(Cambodia, Laos, Vietnam, Thailand, and Myanmar) as deduced by Supharatid et al. 2022,
based on the ensemble of 18 CMIP6 models under SSP245 and SSP585 [25]. The arithmetic-
mean approach of averaging multiple models is more commonly applied for CMIP6-based
climate change projection for several regions, such as Canada [26], Uganda [27], South
Asia [28] and East Asia [29]. Guo et al. evaluated the annual precipitation pattern, an-
nual cycle precipitation, and the long-term change in Central Asia by evaluating a simple
ensemble mean based on the top X (X is 1 to 30 GCMs), and they discovered that the
optimal number of GCM ensembles varied across the region between 8 to 16 GCMs [30].
Juneng et al. 2010 made a comparative study between the ensemble mean (MME without
downscaling) approach and the downscaling of MME for rainfall in Malaysia, and the
results show that the downscaled MME prediction has greater skills than the ensemble of
raw GCM outputs [22]. Over South Korea, Kang et al. investigated the performance of
three different types of statistical downscaling MME approach to predict both tempera-
ture and precipitation, the methods comprise of MME using data downscaled from the
single-model ensemble means, calculated the simple ensemble mean applied to statistical
downscaling and the weighted ensemble mean after statistical downscaling. They found
that the weighted ensemble mean performed the best relative to spatial and temporal
observations [31]. However, the aforementioned studies did not consider bias correction of
the model output. The comparison of these MME approaches with bias correction should
be further investigated.

Projection of climate change derived from GCM models tends to produce biased
output; hence, bias correction is required to prevent over-or-under estimation and to en-
sure a realistic representation of the future climate. Dk. Fathiyah et al. (2021) compared
power transformation (PT) and quantile mapping for screening predictors and found that
PT showed better performance in terms of sensitivity of timing and length and calibra-
tion and validation periods [15]. Previous studies performed in Brunei Darussalam by
Aziz (2018) [14] have used linear scaling, whereas Hasan et al. (2018) used linear scaling and
power transformation as bias correction methods [15]. Both studies have shown satisfying
results when compared to the observed precipitation data, but with a low correlation. As
a result, linear scaling adjusts the mean precipitation without affecting the Coefficient of
Variation (CV), as a result of the same factor multiplying both mean and standard deviation.

Previous similar studies in Brunei focus on several atmospheric variables in downscal-
ing CMIP5 climate, which involves (atmospheric) predictor selections. This study tried to
improve the data usage by applying a more high-resolution CMIP6, focusing on a multi-
model ensemble of several CMIP6 GCM outputs, where precipitation was the sole predictor.
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This study thus seeks to project precipitation in Brunei Darussalam by two approaches. The
first approach is to use a statistical downscaling method, MLR, with linear scaling as the
bias-correcting method. The second method is to use a seven-GCM multi-model ensemble
by averaging all GCMs without downscaling. Furthermore, this paper aims to assess the
projected climate scenarios derived from CMIP6 models, which will be useful as input for
the integration of hydrological models for the evaluation of the impacts of climate change
on water resources.

2. Study Area

Brunei Darussalam is situated on the island of Borneo in Southeast Asia, covering
an area of 5765 sq. km. The Belait River, Tutong River, Brunei River, and Temburong
River are the major rivers that drain freshwater from the country into the sea. Most of the
coastal areas are flat and swampy with alluvial depositions, whereas the inland is hilly
and covered with tropical rainforests rich in biodiversity. Brunei Darussalam has a tropical
equatorial climate which is hot all year round. The average annual precipitation is about
3000 mm/year, in which wet seasons with high precipitation tend to be from October
to January (a total average of about 1320 mm) and May to July (a total average of about
490 mm), based on rainfall records from 1979–2019. Precipitation is not only influenced
by the monsoon season but also by the Inter-Tropical Convergence Zone (ITCZ) and the
localized land-sea circulation as shown in Figure 1.
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3. Methodology
3.1. Data

The observed precipitation was obtained from the Brunei Darussalam Meteorological
Department, in which hourly precipitation (in mm) was recorded from the station located
at Brunei International Airport, at an altitude of 22 m above sea level. In this study,
41 years of observed daily precipitation (in mm) from the period 1979 to 2019 is used
to validate the rainfall generated by MME of CMIP6′s precipitation from several GCM
models (Table 1). In previous climate downscaling studies, precipitation and temperature
changes in Brunei Darussalam were generated from the predecessor GCMs from phase 5 of
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CMIP [17,18,27,30]. In this study, historical and future climate scenarios are obtained
from https://esgf-node.llnl.gov/search/cmip6/ (accessed on 20 May 2022), which is the
outcome of the coupled model intercomparison project of Phase 6 (CMIP6) under several
SSP scenarios (shown in Table 2) for the calibration period (1979–2009), validation period
(2010–2019) and future periods (2020–2100). The future period is further broken down into
three time categories: (i) near-future period (2020–2046); (ii) mid-future period (2047–2073);
and (iii) far-future period (2074–2100). Each SSP scenario depends on different radiative
forcing from RCPs and the projection of future rainfall by CMIP6.

Table 1. List of CMIP6 models used for MME approaches: SD and EM.

Model Name Modeling Center Resolution (Lon × Lat)

ACCESS-CM2 Australian Community Climate and Earth System Simulator, Australia 1.25◦ × 1.875◦

AWI-CM-1-MR Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Germany 0.94◦ × 0.94◦

INM-CM5-0 Institute for Numerical Mathematics, Russia 2◦ × 1.5◦

MIROC6 University of Tokyo, National Institute for Environmental Studies and
Japan Agency for Marine-Earth Science and Technology, Japan 1.41◦ × 1.41◦

MPI-ESM1-2-LR Max Planck Institute for Meteorology, Germany 1.875◦ × 1.875◦

MRI-ESM2-0 Meteorological Research Institute, Japan 1.125◦ × 1.125◦

NorESM2-MM Norwegian Climate Centre, Norway 1.25◦ × 0.9375◦

Table 2. Summary of the selected CMIP6 scenarios for the study.

CMIP6 Scenarios Description

SSP245 Middle-of-the-road: It considers slight improvement to economic growth with challenges to minimizing
vulnerability to environmental changes persist

SSP370 Regional Rivalry: It represents the inequality in income within and between countries.

SSP585 Fossil-fueled development: It involves strong economic growth due to fossil fuel usage

The first approach is based on a statistical downscaling model using multi-linear
regression, hereinafter referred to as SD, and the second approach is the arithmetic mean of
a multi-model ensemble (MME). The selection of GCMs for both MME approaches is based
on the availability of all scenarios of Shared Socioeconomic Pathways (SSP245, SSP270,
SSP585) in the study area. These GCMs are selected based on several criteria: (i) historical
runs and future scenarios for all GCMs are included in Table 1; (ii) all GCMs are available
at a daily time step; and (iii) this study is a sub-model of a climate change projection that
also includes maximum and minimum temperature, relative humidity, and wind speed.
In which, the listed GCMs in Table 2, such climatic variables are available in the daily
historical and future run.

3.2. Statistical Downscaling Model of MME (SD)

Multiple linear regression is applied to downscale precipitation based on the rela-
tionship between precipitation from seven GCMs and observed precipitation. Figure 2
is the methodology showing the steps of the downscaling process involving two stages,
namely, the predictor selection and training stage, also known as the calibration stage
(1979–2010) and the validation stage (2011–2019). The MLR equation initially includes
all the GCM precipitation as its predictor to generate rainfall, then the predictors with a
p-value greater than 0.05 are removed from the equation. This is due to p-value > 0.05
having an insignificant relationship with the predictand rainfall.

https://esgf-node.llnl.gov/search/cmip6/
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3.3. Arithmetic Mean of MME (AM)

Precipitation forecasted from the arithmetic mean (or ensemble mean) of seven GCMs
is calculated by using the arithmetic mean under SSP245, SSP370, and SSP585, and the
formula is as follows:

MME =
1
N ∑N

i=1 Pi (1)

Daily precipitation (Pi) from nine GCMs listed in Table 1 is averaged to generate
precipitation under the future SSPs. Figure 2 also represents the steps in the AM method.
Similarly, the AM approach also undergoes a calibration and validation process with a bias
correction using linear scaling. To evaluate the changes in precipitation throughout the
future scenarios (2020–2100), three-time spans are categorized into the near future period
(2020–2047), mid-future period (2048–2074) and far future period (2075–2100).
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Figure 2. Schematic flowchart of the methodology.

3.4. Bias Correction

A Bias correction is applied to the generated precipitation time series under the
historical SSPs scenarios (1979–2019). The method used is linear scaling (LS), based on
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Shrestha M. [33]. LS is a simple approach to adjusting the mean of simulated precipitation
to match the mean of observed precipitation in Equation (2).

Pcorrected = Praw,m,d ×
µ (Pobserved,m)

µ(Praw,m)
(2)

where, Pcorrected is the corrected precipitation for all SSP scenarios and is obtained by
multiplying daily precipitation simulated under SSP scenarios (denoted by Praw) by the
monthly mean observed precipitation, Pobserved,m divided by the mean monthly simulated
precipitation (Praw,m).

3.5. Performance of Model Evaluation

The next step after bias correction is to downscale SSP245, SSP370, and SSP585 gen-
erated climate parameters to obtain bias-corrected precipitation for the validation period
(2011–2019) using the regression model. During the validation process, the performance
of the regression model is evaluated based on a comparison between statistical indicator
parameters, including mean and standard deviation, and the goodness of fit of the mod-
els, which is evaluated using the coefficient of determination (R2) and Root Mean Square
Error (RMSE).

The coefficient of determination (R2) is a measure of the strength of the linear associa-
tion between observed and simulated values. R2 can be between zero and one, for instance,
R2 of 0.75 can be interpreted as 75% of the variation in observed precipitation is accounted
for by the simulated precipitation values. R-squared is written as:

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 (3)

Similar to R2, RMSE is also a widely popular metric to determine how well-simulated
values fit into the datasets in several studies [34,35].

RMSE =

√
∑N

i=1(y− ŷ)2

√
N

(4)

The predictand (observed precipitation) and simulated precipitation are indicated as y
and ŷ, respectively, y indicates the predicted value of precipitation (y), and y is the sample
mean of y with sample size N.

Changes in mean precipitation for the near future (2020–2046), the mid-future (2047–2073),
and the far future (2074–2100) are calculated relative to the historical period (1979–2019),
by calculating the difference between the historical mean and the projected mean for their
respective periods, and calculating their percentage change, as follows:

Changes in Precipitation =
( mean o f simulated – mean o f observed)

mean o f observed
× 100% (5)

4. Results and Discussion
4.1. Statistical Downscaling Model (SD)

The initial regression model of precipitation from selected GCMs as predictor variables
against observed precipitation is shown in Table 3, y before the reduction in variables is
written as

y = −0.000230 a + 0.005601 b− 0.020 c + 0.036 d + 0.036 e + 0.050 f + 0.047 g + 6.705 (6)

Three insignificant variables from (MRI-ESM2, MPI-ESM-1-2-LR and MIROC6) are
removed due to p-value greater and equal to 0.05, whereas, the predictors listed below
(x1–x4) exhibits p-value < 0.05, showing that there is a statistically significant relationship
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between the observed and the predictors. Hence, the final regression model is written as in
Equation (7), which generates the precipitation time series for the SD model under all SSP
scenarios as shown in Table 4.

y = 0.049 x1 + 0.046 x2 + 0.036 x3 + 0.035 x4 + 6.601 (7)

Table 3. Initial regression model of precipitation from selected GCMs as predictor variables.

Variable Definition Coefficient Std.Err. p-Value

a MRI-ESM2 −0.000230 0.017 0.989
b MPI-ESM-1-2-LR 0.005601 0.029 0.846
c MIROC6 −0.020 0.019 0.314
d NOR-ESM2-MM 0.036 0.018 0.046
e INM-CSM-0 0.036 0.016 0.024
f ACCESS_CM2 0.050 0.021 0.019
g AWI-CM-1-MR 0.047 0.017 0.006

Constant 6.705 0.439 0.000

Table 4. Final regression model with satistical parameters.

Variable Definition Coefficient Std.Err. p-Value

Constant 6.601 0.363 0.000
x1 ACCESS-CM2 0.049 0.021 0.020
x2 AWI-CM-1-MR 0.046 0.017 0.006
x3 INM_-SM_- 0.036 0.016 0.026
x4 NOR-ESM2-MM 0.035 0.018 0.053

4.2. Calibration and Validation of the Models

Validation of the model is measured based on the daily mean, root mean square er-
ror (RMSE), and determination of coefficient (R2) of average monthly for observed data,
ensemble mean of seven GCM data, and statistical downscaling precipitation (SD) after
bias adjustment. Table 5 summarizes the comparison of these statistical measurements
for monthly average observed and corrected data under calibration and validation pe-
riods before and after bias adjustment. Before bias adjustment, the AM model has the
closest mean value of (µ = 8.48) in the calibration period. The mean for bias-corrected SD
precipitation (under all SSP scenarios) improved significantly (Supplementary Materials),
ranging from 6.29 to 7.84, matching the mean of observed precipitation (µ = 8.97). After bias
correction of AM for the validation period, there are mean differences ranging from 7.48 to
7.74 between the mean of the observed data (µ = 8.97) and bias-corrected SSP scenarios.
Table 5 also compares the R2 and RMSE values for the AM and SD models of the SSP245,
SSP370, and SSP585 scenarios. The results showed that there was an improvement achieved
in bias-corrected precipitation simulated by the SD model. The highest correlation with
observed precipitation is found for SSP370 (R2 = 0.86), while SSP245 and SSP585 show
also a very good correlation with the observed time-series (minimum R2 = 0.85 and 0.84).
After bias correction, the RMSE of SD precipitation improves significantly more than AM.
Moreover, the bias-corrected AM model resulted in a lower R2 than the SD model and
RMSE values. The result indicates that corrected SD under the SSP245 scenario yields better
performance in terms of RMSE and R2 values. Therefore, the statistical metric in Table 5
shows that the SD model outperforms the arithmetic mean (AM) for the validation period
after bias correction (2015–2019). Figure 3 shows the boxplot displaying the observed and
the simulated precipitation to show the variability of the data. For the annual precipitation,
both models seem to diverge significantly from the observed data, but the similarity in
median precipitation with the observed data. In terms of monthly variations, the two
models were able to capture the same variance and median with the reference data. These
findings suggest that the bias correction with linear scaling may be suitable for improving
the mean of the monthly variation following the observed data, in comparison to annual
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precipitation. Further investigation is required to compare the performance of the model
in terms of annual precipitation with different bias correction methods, such as power
transformation or variance scaling.

Table 5. Summary of mean and standard deviation for calibration and validation period before and
after bias correction for SD model and AM model.

Before Bias Correction After Bias Correction

Calibration (1979–2009) Time Series Mean NSE R2 Mean NSE R2

Obs 8.13
SD 13.90 −0.63 0.82 8.13 1.00 1.00
EM 8.48 0.48 0.71 8.13 1.00 1.00

Validation (2010–2019) Obs 8.97
SD_SSP245 11.90 115.04 0.33 7.08 75.74 0.85
SD_SSP370 12.16 119.826 0.42 6.92 71.02 0.86
SD_SSP585 12.07 118.15 0.39 7.84 89.812 0.84
EM_SSP245 8.13 85.22 0.22 7.74 57.37 0.83
EM_SSP370 8.13 85.22 0.22 7.64 61.15 0.80
EM_SSP585 7.05 73.07 0.23 7.48 66.60 0.77
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Figure 3. Box plot of annual and monthly simulated precipitation by SD and AM model, N = 30 years.

Figure 4 shows the downscaled MME by statistical downscaling (SD) and arithmetic
mean (AM) results for the validation period compared to the baseline period. After bias
correction, average monthly SD and AM precipitation generates the typical highest rainfall
amount of the baseline period during January, November, and December, compared to the
rest of the month. However, they still tend to show significant underestimation for the
months of January, November, and December in comparison to observed precipitation.

Although the SSP370 time series for corrected SD precipitation follows the observed
trend closer than others, the biggest overestimation can be found in October under SSP245
and SSP370. On the other hand, AM shows significant improvement after bias correction,
but it has a slight overestimation of the average monthly rainfall in August (under SSP370
and SSP585), October (under SSP245and SSP370), and March (under SSP585). Throughout
the validation period, SD models under all SSP scenarios give the best outcome, as the SD
time series follows the closest trend to the observed precipitation.
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Figure 4. Validation Period (2015–2019) under for SD and AM approach under the figure.
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4.3. Future Projection of Precipitation

The future projection of precipitation is divided into three time slices: the near future
period (2020–2046), the mid-future period (2047–2073), and the far future (2047–2100).
Overall, the trend of precipitation in the late 21st century for SSP scenarios generated by
SD and AM precipitation follows the observed trend but with some underestimation and
overestimation for some scenarios and months. Figure 5a–c represents the comparison of
monthly variation between the arithmetic mean (AM) and the downscaled future MME
(SD) under different SSP scenarios after bias correction. SD generated future precipitation
with lower monthly precipitation compared to AM precipitation. Towards the end of the
century, the rainy season from October-December under the SD approach will experience a
slight increase in monthly precipitation compared to the previous mid-future period. On
the other hand, the future precipitation by the AM model has smaller differences with the
observed rainfall shown in Figure 5. However, AM also produced a similar lower rainfall
amount than the previous SD Near and Mid-future time series during the wet season
(October, November, and December). Furthermore, the far-future period under the AM
approach forecasted the same average rainfall amount as the baseline period. Similarly,
months with a lesser precipitation amount (February and April) remain the same for both
SD and AM models throughout the future periods. From an agricultural perspective, a
lower precipitation trend in the future, especially during the wet season, may affect the
agricultural water needs for rain-fed crops, leading to crop failure. More irrigation may be
required, and precautionary actions should be taken to adapt to the changing climate. Such
adaptations are deficit irrigation scheduling methods to estimate the proper amount and
timing during those lower rainy occurrences; farmers should start to rely on a water-saving
irrigation method such as alternate wetting and drying water regime [36].

Annual precipitation for future scenarios under SD and AM approaches can be ob-
served in Figure 6. It is predicted that the precipitation time series generated under the SD
model will have a steady increase and the lowest annual precipitation trend. The EM model
simulated a higher amount of annual precipitation than the SD model. These findings
also coincide with the previous work by Hasan et al. (2018), in which a downward trend
is detected in the future precipitation based on CMIP5 future scenarios under HadCM3
A1B and CGCM3 A1B, but a more fluctuating trend is observed for annual precipitation
under CanESM2 [15]. Table 6 presents the changes in annual precipitation in the three
future periods. Under the SD approach, the annual precipitation is reduced significantly
by approximately 28% in the near and mid future for all SSP scenarios. Towards the end
of the century, the SD projected an increasing trend as the precipitation change began to
reduce by at least 16.7% (SSP585). On the contrary, the AM model predicted a smaller
precipitation change but with a steady decreasing trend towards the far future. This result
is in contrast with the study reported by Dk Fathiyah et al. (2021), where the annual CMIP5
precipitation projection in Brunei was predicted to have a more chaotic nature with a
significant increasing trend. Hasan et al. (2018), and Dk Fathiyah et al., (2021) applied
SDSM and statistical downscaling with backward regression, respectively, and yielded
different outcomes for the same region in comparison to this study. This may be due to the
use of several atmospheric predictors to develop the SD model.

Table 6. Changes in future precipitation in comparison to observed mean of 3041.2 mm.

Precipitation Change (%)

Near Future Mid Future Far Future

(2020–2046) (2047–2073) (2074–2100)

SD_SSP245 −27.3 −27.1 −17.7
SD_SSP370 −27.8 −27.8 −18.5
SD_SSP585 −27.6 −25.4 −16.7
AM_SSP245 −10.8 −11.1 −14.4
AM_SSP370 −11.7 −9.4 −17.6
AM_SSP585 −12.1 −8.4 −18.7
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Figure 5. Comparison of monthly average precipitation based on SD and AM model for the figure.



Hydrology 2022, 9, 161 13 of 15

Hydrology 2022, 5, x FOR PEER REVIEW 14 of 16 
 

 

tively, and yielded different outcomes for the same region in comparison to this study. 

This may be due to the use of several atmospheric predictors to develop the SD model. 

 

Figure 6. Annual Precipitation generated by SD and AM model relative to the observed precipita-

tion. 

Table 5. Changes in future precipitation in comparison to observed mean of 3041.2 mm. 

  Precipitation Change (%) 

 Near Future Mid Future Far Future 

(2020–2046) (2047–2073) (2074–2100) 

SD_SSP245 −27.3 −27.1 −17.7 

SD_SSP370 −27.8 −27.8 −18.5 

SD_SSP585 −27.6 −25.4 −16.7 

AM_SSP245 −10.8 −11.1 −14.4 

AM_SSP370 −11.7 −9.4 −17.6 

AM_SSP585 −12.1 −8.4 −18.7 

5. Conclusions 

A Multi-Model Ensemble (MME) of CMIP6 precipitation is applied to forecast future 

rainfall in Brunei Darussalam. The predictor variables of seven CMIP6 GCM precipita-

tion from 1979 to 2009 are used to develop the relationship with observed daily and 

monthly precipitation obtained from BMDB. The first approach is statistical downscaling 

by evaluating the relationship between observed rainfall and the selected CMIP6 GCM 

predictors using multiple linear regression. The second MME approach is the arithmetic 

mean of seven CMIP6 GCMs by taking all the mean of seven precipitations with bias 

correction of linear scaling. During the validation period, linear scaling has significantly 

improved monthly precipitation with both SD and AM models, and there is a reasonable 

agreement with observation. However, linear scaling shows poor performance in the 

annual precipitation for both SD and AM. 

The precipitation projection based on the arithmetic mean suggests an Increasing 

trend in the future with both monthly and annual precipitation consistently below the 

observation. Statistical downscaling of MME predicted a steady decreasing trend during 

the near and mid-future periods, but with a slight increase in the far future term. This 

study provides a climate scenario as input for simulating hydrological models to help 

assess future water resources and/or monitor potential drought spells. Further research 

needed to be carried out includes incorporating other bias corrections such as Power 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
1

9
7

9
1

9
8

1
1

9
8

3
1

9
8

5
1

9
8

7
1

9
8

9
1

9
9

1
1

9
9

3
1

9
9

5
1

9
9

7
1

9
9

9
2

0
0

1
2

0
0

3
2

0
0

5
2

0
0

7
2

0
0

9
2

0
1

1
2

0
1

3
2

0
1

5
2

0
1

7
2

0
1

9
2

0
2

1
2

0
2

3
2

0
2

5
2

0
2

7
2

0
2

9
2

0
3

1
2

0
3

3
2

0
3

5
2

0
3

7
2

0
3

9
2

0
4

1
2

0
4

3
2

0
4

5
2

0
4

7
2

0
4

9
2

0
5

1
2

0
5

3
2

0
5

5
2

0
5

7
2

0
5

9
2

0
6

1
2

0
6

3
2

0
6

5
2

0
6

7
2

0
6

9
2

0
7

1
2

0
7

3
2

0
7

5
2

0
7

7
2

0
7

9
2

0
8

1
2

0
8

3
2

0
8

5
2

0
8

7
2

0
8

9
2

0
9

1
2

0
9

3
2

0
9

5
2

0
9

7
2

0
9

9

A
n

n
u

al
 P

re
ci

p
it

at
io

n
 (

m
m

/y
ea

r)

Year

Observed SD_SSP245 SD_SSP370 SD_SSP585 AM_SSP245 AM_SSP370 AM_SSP585

Figure 6. Annual Precipitation generated by SD and AM model relative to the observed precipitation.

5. Conclusions

A Multi-Model Ensemble (MME) of CMIP6 precipitation is applied to forecast future
rainfall in Brunei Darussalam. The predictor variables of seven CMIP6 GCM precipitation
from 1979 to 2009 are used to develop the relationship with observed daily and monthly pre-
cipitation obtained from BMDB. The first approach is statistical downscaling by evaluating
the relationship between observed rainfall and the selected CMIP6 GCM predictors using
multiple linear regression. The second MME approach is the arithmetic mean of seven
CMIP6 GCMs by taking all the mean of seven precipitations with bias correction of linear
scaling. During the validation period, linear scaling has significantly improved monthly
precipitation with both SD and AM models, and there is a reasonable agreement with
observation. However, linear scaling shows poor performance in the annual precipitation
for both SD and AM.

The precipitation projection based on the arithmetic mean suggests an Increasing
trend in the future with both monthly and annual precipitation consistently below the
observation. Statistical downscaling of MME predicted a steady decreasing trend during
the near and mid-future periods, but with a slight increase in the far future term. This study
provides a climate scenario as input for simulating hydrological models to help assess
future water resources and/or monitor potential drought spells. Further research needed to
be carried out includes incorporating other bias corrections such as Power transformation
or Quantile Mapping to produce a better performance of annual precipitation, and spatial
change of precipitation based on available satellite data can also be useful. Furthermore,
the arithmetic mean model can be improved further through careful selection of GCM
models by ranking their performance based on statistical metrics, empirical cumulative
distribution function (ECDF), and Taylor skillscore (TSS) [37].
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