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Abstract: Extreme precipitation events can lead to the exceedance of the sewer capacity in urban
areas. To mitigate the effects of urban flooding, a model is required that is capable of predicting flood
timing and volumes based on precipitation forecasts while computational times are significantly low.
In this study, a long short-term memory (LSTM) neural network is set up to predict flood time series
at 230 manhole locations present in the sewer system. For the first time, an LSTM is applied to such a
large sewer system while a wide variety of synthetic precipitation events in terms of precipitation
intensities and patterns are also captured in the training procedure. Even though the LSTM was
trained using synthetic precipitation events, it was found that the LSTM also predicts the flood timing
and flood volumes of the large number of manholes accurately for historic precipitation events. The
LSTM was able to reduce forecasting times to the order of milliseconds, showing the applicability of
using the trained LSTM as an early flood-warning system in urban areas.

Keywords: machine learning; sewer model; LSTM neural network; urban sewer flooding

1. Introduction

Extreme precipitation events, of both short and long duration, can cause inundations
locally or downstream of a catchment due to raising river water levels [1]. This research
focuses on local flooding due to extreme precipitation events and more specifically on
urban flooding due to the exceedance of the sewer capacity. Pluvial urban flooding can
occur quite suddenly, and therefor, early flood warning systems with a short run time are
desired such that proper flood mitigation measures can be taken in time. Urban flooding
differs from flooding in other areas because of the large amount of impervious surface
area negating infiltration and increasing the load on sewer systems. Flooding in an urban
environment is caused by short extreme precipitation events where infiltration is negligible.
It is expected that flood probabilities will increase in the future due to an increase in
impervious surface area, causing more runoff to the sewer system. In addition, due to
climate change, it is expected that rainfall intensities will increase locally, resulting in higher
runoff volumes [2,3].

Numerical models are generally used to investigate the effects of extreme precipitation
events on inundation extents and to design sewer systems accordingly. These physics-
based models are computationally expensive. Since precipitation forecasts are generally
highly uncertain, especially for extreme local events, a probabilistic approach is required to
simulate all potential flood scenarios. Consequently, detailed physics-based models cannot
be used as a flood early warning systems. However, a fast prediction of the inundated areas
during extreme events ensures that flood mitigation measures can be taken on time. For this
reason, other approaches for the faster computation of flood predictions have been studied
in recent years (e.g., [4,5]). A commonly applied method to reduce computational load
is surrogate modelling, representing a second-level abstraction from the original system.
Response surface surrogate models, such as machine learning (ML) algorithms, are data-
driven models trained based on the input–output relations of a physically based model or

Hydrology 2022, 9, 105. https://doi.org/10.3390/hydrology9060105 https://www.mdpi.com/journal/hydrology

https://doi.org/10.3390/hydrology9060105
https://doi.org/10.3390/hydrology9060105
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/hydrology
https://www.mdpi.com
https://orcid.org/0000-0002-9151-7800
https://orcid.org/0000-0002-1560-6828
https://orcid.org/0000-0002-2963-6083
https://doi.org/10.3390/hydrology9060105
https://www.mdpi.com/journal/hydrology
https://www.mdpi.com/article/10.3390/hydrology9060105?type=check_update&version=2


Hydrology 2022, 9, 105 2 of 18

field measurements. As a result, ML algorithms do not capture any physical components
of the original system. They are, once trained, extremely fast in predicting the output based
on a given input [6] and can do so on a continuous basis. For this reason, ML algorithms
have frequently been applied for water resources applications [6,7]. More specifically,
many studies have already shown the applicability of ML algorithms to predict (historic)
stream flow conditions, weather conditions, water quality and dike breaches accurately
(e.g., [8–13]). However, the use of ML algorithms for sewer applications is still limited, but
they have great possibilities in predicting sewer overflows based on precipitation forecasts.

Recent examples of ML algorithms for sewer system applications are presented
by [14,15]. Rjeily et al. [14] developed a data-driven modelling approach to predict water
depth variations within the most critical manholes in an urban drainage system. This
early flood warning system was trained using measurements of 10 storm events simu-
lated with a hydraulic model. Measured rainfall intensities and modelled water depth
variations in five manholes were used as the input and target output data, respectively.
Zang et al. [15] studied the accuracy of multiple ML algorithms to predict sewer overflow
of a combined sewer system into open water bodies causing heavy pollution. In total,
26 rainfall events resulting in sewer overflow were used to train the various ML algorithms.
Although both studies showed the potential of using ML algorithms as an early warning
system for sewer applications, these studies only used a few historic events to train the
algorithms, while using more samples can ensure better model performance since it is
more likely that the global minimum of the error function is found [16]. Therefore, it is
questionable if the trained the ML algorithms are able to generalise the system behaviour.
Furthermore, because of expected climate change, more extreme precipitation events may
occur than observed so far, but these events are not considered in the training data sets
if historic events are considered. Therefore, a synthetic data set with a wide variety of
rainfall events in terms of both rainfall intensities and rainfall patterns will be used in this
study. Additionally, the studies conducted so far only predicted sewer overflow at a few
predefined output locations while an overview of the entire sewer system is required to
make fair flood mitigation measures during extreme events. For this reason, the objective
of this research is to set up an ML algorithm that predicts flood volume time series for
all manholes present in a specific urban area, trained on a wide variety of rainfall events.
Only then will the developed ML algorithm have the potential to be used as an early flood
warning system by decision makers.

The methodology of this research is shown in Figure 1. First, the case study and the
numerical sewer model used to create the training data are described (Section 2). A synthetic
precipitation data set is constructed since no sufficient historic rainfall events resulting
in flood inundations exist and to enable the inclusion of a wider variety of precipitation
events than observed so far (Section 3). These synthetic rainfall events are used as input of
the numerical sewer model. An ML algorithm is constructed which is able to predict flood
volume time series for all manholes in the area as the target output, given a precipitation
time series as input (Section 4). The constructed ML algorithm is validated to determine the
final performance of the algorithm (Section 5.1). Furthermore, the algorithm is tested based
on radar rainfall measurements of a few historic extreme precipitation events (Section 5.2).
This paper ends with a discussion (Section 6) and the main conclusions (Section 7).



Hydrology 2022, 9, 105 3 of 18

Figure 1. Flow chart of the steps taken in the present research to set up an LSTM that is able to predict
inundation volumes at manhole locations.

2. Case Study and the Numerical Sewer Model

The residential area of Hooglanderveen in the city of Amersfoort, the Netherlands, is
chosen as a case study since frequent pluvial flooding occurs in this region. Although the
region of Hooglanderveen is chosen as a case study, the proposed methods in this study are
applicable to any residential area with a similar sewer system and topographical features.

Hooglanderveen is located in the northeast of Amersfoort (see Figure 2) and has a
surface area of approximately 1.75 km2.

Figure 2. Location of the study area of Hooglanderveen in Amersfoort, The Netherlands.

Especially in the northwestern region of Hooglanderveen, frequent pluvial flood-
ing is experienced, where surface levels are relatively low. The combined sewer system
present in Hooglanderveen is a type of gravity sewer and has 230 manholes, 4 pumps, and
3 overflows (Figure 3). These are all connected with sewer pipes (Figure 3). The sewer
system transports both precipitation runoff and domestic sewage to a sewage treatment
plant and can be divided into two components: (1) the major sewer system, consisting
of streets, inlets, ditches, and surface water channels, and (2) the minor sewer system,
composed of interconnected pipes, manholes, and pumps [1]. The major system can be
characterised as the surface system, whereas the minor system represents the subsurface
system. Flooding occurs whenever and wherever the discharge capacity of the inlet into
the minor system is exceeded. This can have several causes. First, flooding can occur when
precipitation intensity exceeds the discharge capacity of the inlet. Water cannot enter the
minor system and remains at the surface level. Second, the discharge capacity may be
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lower between some sewer pipes due to, e.g., clogging or smaller pipe diameters causing
water to flow back onto the streets through the inlets or manholes. Third, the combined
gravity-driven sewer system has a larger discharge capacity than the pump at the end of
the system. Therefore, a storage is designed in the minor system to accommodate this
difference in capacity. This storage is equivalent to approximately 7–9 mm of precipitation
in the Netherlands [17]. When the storage capacity is exceeded and more water enters the
system, storm water will exit via the overflows. If the capacity of the overflows is exceeded,
storm water will flood the streets.

In this study, an ML algorithm is set up to predict flooding in Hooglanderveen in
real-time precipitation forecasts. An ML algorithm is generally trained using field mea-
surements based on historical events or outcomes of model simulations. Since insufficient
measurements are available of historic precipitation events resulting in flooding in the study
area, a numerical sewer model will be used to generate the training data. The numerical
sewer model is a validated model built with the software Infoworks ICM. The sewer model
represents a one-dimensional (1D) model of the minor system and uses the shallow water
equations to solve the 1D flow. Only the surface area of the major system, without consid-
ering topographic gradients, is included in the model. Based on these areas, the shortest
flow paths to the nearest inlet is determined to compute the inflow from the major system
into the minor system. Henonin et al. [18] further details the modelling approach of such a
1D sewer model. The sewer model was calibrated using measurements and is used by local
ministries for flood risk evaluation.

Figure 3. Locations of important structures in the studied area and the level of sewer piping.

The sewer system has a slope from the southeastern to northwestern part of the study
area. Since it is a gravity-based sewer system, the general direction of the sewer flow
follows this slope. The model has as input a spatially uniform precipitation event and
provides as output flood volumes at each manhole in the area. Note that the output is a
flood volume and not a flood level, as topographic gradients of the surface level and the
flow along these topographic gradients are not included in the model.

3. Training and Testing Data
3.1. The Synthetic Precipitation Events

The sewer model computes flood volumes based on an input precipitation event.
In this study, synthetic events are considered to enable the inclusion of a wide variety of
precipitation events. These synthetic precipitation events are based on design events to
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test the sewer systems using numerical models in the Netherlands [19]. Spatially uniform
precipitation events are considered because of the relatively small size of the studied area.
For the construction of the synthetic precipitation training data set, statistics of the follow-
ing three precipitation characteristics are used [19]: precipitation duration, precipitation
intensity, and precipitation pattern. Combinations between the three characteristics are
made to generate unique precipitation events.

Due to the inherent early warning system that is proposed in the present research,
we focus on short-term, high-intensity flood events. For this, [19] recommends a precip-
itation duration of 4, 8, or 12 h. The minimum and maximum precipitation intensities
corresponding to a return period of 2 to 1000 years for a duration of 4 and 12 h are 28 mm
and 139 mm, respectively (Figure 4 shows the intensity curves for a return period of 2 to
1000 years). To generate the training data set, the precipitation intensities are divided into
six values with a minimum and maximum of 30 mm and 105 mm, respectively. The min-
imum value is taken as the rounded minimum value given by the precipitation curves
(Figure 4). The maximum value is set to a lower value than provided by the precipitation
curves since increasing the intensity to a value larger than 105 mm did not result in any
differences in model output in terms of flood complexity since the number of flooded
manholes remained constant. Only the flood volumes increased linearly.
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Figure 4. Precipitation intensity curves, the dashed black lines indicate maximum and minimum for
the 4, 8, and 12 h durations.

In addition to the precipitation duration and intensity, seven distinct precipitation
patterns for short-term events are considered in the Dutch water policy [19]. These patterns
consist of a fraction of the total precipitation per hour. The seven precipitation patterns can
be described as follows (Figure 5):

• Uniform: General uniform shape with minor changes in precipitation intensity during
the event;

• One peak—12.5%: Pattern with one peak that has 12.5% of the total intensity in
the peak;

• One peak—37.5%: Pattern with one peak that has 37.5% of the total intensity in
the peak;

• One peak—62.5%: Pattern with one peak that has 62.5% of the total intensity in
the peak;

• One peak—87.5%: Pattern with one peak that has 87.5% of the total intensity in
the peak;

• Two peaks—short distance: Pattern with two peaks that has a small temporal distance
between the two peaks;

• Two peaks—large distance: Pattern with two peaks that has a large temporal distance
between the two peaks;
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With six precipitation intensity values, seven precipitation patterns, and three pre-
cipitation durations, the total amount of unique precipitation events is 126. The majority
of papers reviewed by [16] use a minimum data set size of 100 samples to train the ML
algorithms, indicating that the size of the data set should be sufficiently large to train the
ML algorithm properly. All possible values of each precipitation feature are shown in
Table 1.

Figure 5. Seven precipitation patterns for a duration of 8 h, with (a) Uniform; (b) 1 peak—12.5%;
(c) 1 peak—37.5%; (d) 1 peak—62.5%; (e) 1 peak—87.5%; (f) 2 peaks—short; and (g) 2 peaks—long.

Table 1. All possible values for each precipitation event feature.

Pintensities Ppatterns Pduration

30 mm Uniform 4 h
40 mm 1 peak—12.5% 8 h
60 mm 1 peak—37.5% 12 h
75 mm 1 peak—62.5%
90 mm 1 peak—87.5%

105 mm 2 peaks—short
2 peaks—long

3.2. Interpolation of Precipitation Patterns

The precipitation patterns provided by [19] have a time step of one hour, while the time
step of the sewer model is set to one minute to ensure accurate model results. For this reason,
the precipitation patterns are linearly interpolated to create realistic precipitation events.
Furthermore, to facilitate the operationally of a flood early warning system, the input time
series is made to mimic a conventional precipitation forecast. Based on expert opinion, it
was found that for short-term precipitation forecasts, a time step of 5 min is generally used.
Therefore, the input time series will be a cascading precipitation pattern with a time step
of 1 min, which changes its value after every 5 min (Figure 6). Due to this interpolation
method, the total precipitation is, at maximum, 2% lower than the value as defined.
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Figure 6. Example interpolation of an eight hour precipitation pattern with a peak of 37.5% of the
total precipitation (precipitation pattern as given in Figure 5c).

3.3. Historic Data

The synthetic data set is used to train, validate, and test the LSTM. However, this
raises the question whether the LSTM, trained on synthetic data, is capable of reproducing
the results of the sewer model on real-world precipitation data. To evaluate this, radar
precipitation data from historic extreme precipitation events were obtained. A list of three
reported flood events in Hooglanderveen was provided by the municipality of Amersfoort,
and related precipitation time series were obtained from precipitation radar data provided
by Hydrologic (Figure 7) and used as input for the sewer model. The time series start one
day prior to the date that a flood was reported, as there can be a delay between flooding and
reporting. All events show large peaks in precipitation up to 106 mm/h. This precipitation
peak is higher than the value used in the synthetic data set, having a maximum precipitation
of 88 mm/h.

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
Time [h]

0

20

40

60

80

100

Pr
ec

ip
ita

tio
n 

[m
m

/h
]

Event ID
1
2
3

Figure 7. Precipitation time series for historic flood events in Hooglanderveen. All time series start
one day prior to the reported flooding, as there can be a delay in reporting. This can be seen with
precipitation events 1 and 2.
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4. Construction of the Long Short-Term Memory (LSTM) Neural Network

In this study, the LSTM neural network proposed by [20] is used to predict flood
volumes for the 230 manholes in the sewer system of Hooglanderveen. Although many
neural network structures exist, LSTMs have shown to be most successful and are generally
applied to predict time series [21]. More specifically, LSTM has become the focus of deep
learning because of their powerful learning capacity in comparison to other recurrent
neural network (RNN) approaches [21]. To explain the concept of an LSTM, we first briefly
explain artificial neural networks (ANN) and recurrent neural networks (RNN).

4.1. The Concept of Neural Networks

An ANN is a network of interconnected neurons that translate an input to an output
using weights and transfer functions. A flowchart of a simple ANN is shown in Figure 8.
Here, the inputs (xi) are multiplied by their weights (wi), with the result being summed
and used as input for the transfer function of the neuron. The result of the transfer function
is then used as input for the output function. This output function is a linear function
for regression. The output function gives the output (y). The difference between the
predicted value and the observed value is then used to change the weights of the ANN.
This can be performed using various techniques, with the most common approach being
back-propagation with stochastic gradient descent [22]. The transfer function of a neuron
can be a linear function, sigmoid function, or any other function. When the ANN is
expanded to use more inputs and neurons, all inputs are connected to every neuron with
individual weights. One can add as many neurons, inputs. and outputs as desired and
can also vary the amount of layers of neurons. The parameters not trained by the neural
network, such as the choice of the number of neurons and the type of transfer functions,
are called hyper-parameters.

Figure 8. An illustration of a simple ANN. Here, we have multiple inputs (xi), connected to the
neuron with weights (wi). This output of the neuron is passed to the output (y) via a linear function.

A recurrent neural network is a type of artificial neural network (ANN) that uses
the output of previous time steps (yt−1) as input for the current time step (yt). Therefore,
the RNN is better equipped to predict time series than traditional ANNs [23]. However [24]
have shown that a simple RNN can barely store information for longer than 10 time steps.
Therefore, other approaches to an RNN have been studied, with one of the most commonly
applied being the LSTM proposed by [20]. More specifically, [15] compared the accuracy of
various neural network approaches in predicting sewer overflows. Even though the LSTM
had a relatively slower learning curve, the results of this type of neural network were most
promising for multi-step-ahead predictions [15]. This is because an LSTM has an added
cell state that is updated using transfer functions at each time step. This cell state is also
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used to predict the output of each time step, making it possible to store information for a
longer period.

4.2. The LSTM Set-Up

The sewer model input is a spatially uniform precipitation intensity time series, and
the output is a flood volume for each time step at each manhole in the studied area. The
LSTM is a ‘one-to-one’ recurrent neural network. This means that for each timestep of
the input, an output is calculated. The timesteps for the precipitation input time series,
sewer model output, and LSTM predictions are thus all equal to 5 min. Furthermore,
the LSTM set-up is similar to that of the sewer model with 1 input, 1 hidden layer, and
230 outputs (1 for each manhole). The number of neurons in the hidden layer and the
learning rate are determined using hyper-parameter optimisation. The LSTM is constructed
using Keras [25]. Keras is a high-level library used for machine learning applications. Keras
runs on Tensorflow [26], which is an open source machine learning software released by
Google in 2015.

The synthetic input–output data set, created with the sewer model, is split into training,
testing, and validation data sets. The training data are used to find an optimal set of
connection weights, the test data are used to choose the best network configuration (i.e.,
the hyperparameters: in this study, the number of neurons and the learning rate), and
the validation set is only used to evaluate the LSTM’s final performance in terms of
generalization ability [27].

The data set is divided according to the average of studies studied by [16]. They
found that 60%, 18%, and 22% of the total data were used for training, testing, and vali-
dation, respectively. In the present study, a split of 60%, 20%, and 20% is used. The input
precipitation time series are normalised to a [0, 1] range.

For the determination of the hyper-parameters of the LSTM, Bayesian hyper-parameter
optimisation is used. Due to the long training times for each configuration of the LSTM
(60 min+), grid search or random search hyper-parameter optimisation was not feasible.
The hyper-parameters determined were the number of neurons of the LSTM layer and the
learning rate. The sequential model built with Keras is comprised of two layers. The first
layer is the LSTM layer, in which the transfer functions were set to the standard functions.
The second layer is a Dense layer. This layer is a standard ANN layer of neurons with a
linear activation function. The layer consists of 230 units, which coincides with the amount
of target outputs in the model. The sequential model is compiled using the MAE loss
function for training.

4.3. The Performance Indicators

The performance indicators used to assess the predictive capability of the trained
LSTM are Nash-Sutcliffe efficiency (NSE) and coefficient of determination R2. The MAE
is used to train and test the LSTM, and the NSE and R2 are used to assess the predictive
ability of the LSTM on the validation data set.

The calculation of the MAE is shown in Equation (1). A value of 0 shows a perfect fit
between the observed and predicted values:

MAE =
1
n

n

∑
i=1
|yi − ŷi|, (1)

in which yi is the i-th predicted value, and ŷi is the i-th observed value.
The NSE is commonly used as a predictive measure of hydrological models. For some

precipitation events, manholes in the north of the area had NSE values approaching
negative infinity. No flooding occurred at these manholes and the (negative) flood volumes
in the sewer model results. However, the LSTM still predicted relatively high fluctuations.
The scale of these fluctuations were small, causing no wrong predictions in flooding.
These fluctuations around the mean did result in the NSE values approaching negative
infinity. Therefore, the bounded version of the NSE, proposed by [28] and called C2M
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(see Equation (2)), is applied instead. NSE values are now bounded to the interval [−1, 1],
providing a more usable mean NSE value of all manholes in the area:

C2M =

(
1− ∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − yµ)2

)
/
(

1 +
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − yµ)2

)
, (2)

in which yµ is the mean of the predicted values, and ŷµ is the mean of the observed values.
The last performance indicator used is the R2. The R2 measures the correlation between

the observed and predicted values. The Equation for R2 is shown in Equation (3):

R2 =
(∑n

i=1(yi − yµ)(ŷi − ŷµ))2

∑n
i=1(yi − yµ)2 ∑n

i=1(ŷi − ŷµ)2 (3)

5. Results
5.1. LSTM Validation Based on Synthetic Precipitation Events

After Bayesian optimisation, the LSTM has 636 neurons to predict the flood volumes
at the 230 manholes accurately and a learning rate of 0.01. The total run time of the
LSTM on the 25 precipitation events present in the validation data set was 1.89 s. During
this validation, the LSTM was capable of predicting if a manhole will flood with an
accuracy 99.60% (with a threshold value of 1 m3). Only in 0.26% of the precipitation events
was a flood predicted by the LSTM, while no flooding occurred during the sewer model
simulation (LSTM prediction > 1 m3 and sewer model prediction < 1 m3 in Figure 9). Only
in 0.14% of the precipitation events was the opposite applied, meaning that the LSTM
did not predict a flood while flooding occurred according to the sewer model (LSTM
prediction < 1 m3 and sewer model prediction > 1 m3 in Figure 9). This high accuracy,
in combination with the extremely low computation time, shows the potential of using an
LSTM as an early flood-warning system.

Furthermore, the flood volumes were predicted with high accuracy by the trained
LSTM. An average R2 of 0.99 and an average NSE of 0.87 for all manholes was found
(Table 2). However, only 38% of the manholes in the studied area experienced flooding on
the validation data set. The manholes that did not flood show a relatively low goodness-
of-fit. In these cases, the sewer model predicted mostly an almost constant negative flood
volume that varied slightly over time. A negative flood volume predicted by the sewer
model means that the water level is below the surface level and thus no flooding occurs.
For these situations, the LSTM predicts larger negative flood volume fluctuations since
the LSTM is sensitive to any change in the input parameters: even a small change in
the precipitation results in a different predicted flood volume. However, these volume
fluctuations predicted by the LSTM were still below 0.1 m3 and not relevant for flood
forecasting purposes.

Table 2. The hyper-parameter and evaluation values of the LSTM sequential model after Bayesian op-
timisation.

Performance Indicator Value

NSE (all manholes) 0.87
NSE (flooding manholes) 0.92

R2 0.99

Since the manholes that do not flood are not interested from an early flood warning
perspective, we only focus on the results of the flooded manholes. Figure 9 shows the
predicted flood volumes of the LSTM and sewer model for each time step of the 25 precip-
itation events present in the validation data. It shows that the LSTM predictions closely
resemble the sewer model output since most data points follow the linear 1:1 line. However,
the LSTM tends to slightly underpredict the flood volumes, and especially the peak, com-
pared to the sewer model output. On average, the peak values are underpredicted by 8.5%
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by the LSTM. This behaviour is a well-known problem with neural networks since they
are prone to systematically underpredict flood series for extreme events [13]. If accurate
prediction of the peak values is of high importance, LSTM performance can be increased
by, for example, postprocessing the flood volume predictions by applying an unscented
Kalman filter [29].

Figure 9. Scatter plot of the predicted and actual flood volumes for the LSTM regressor evaluated on
the synthetic validation data set (R2 = 0.99). Negative flood volume are plotted until −15 m3, no
more false negative or false positive values are observed past this value.

A map with the NSE values for the flooded manholes is shown in Figure 10. The NSE
values vary between 0.39 and 0.99, with an average value of 0.92. Higher NSE values
are generally found in the centre and northwest of the study area, where the most severe
flooding occurs. The LSTM predictions were less accurate in the southeastern region of the
study area, where the manholes only experience minor flooding because of the relatively
high surface levels.

Figure 10. The NSE values for each manhole in the case study area that experienced flooding from
the validation data set (NSE = 0.92). The NSE values were calculated with the predicted flood volume
time series by the LSTM network and sewer model. The NSE is calculated for each time series and a
mean is taken for each manhole. Dark grey manholes indicate locations where no flooding occurs.

Figure 11 shows the predicted flood volumes both by the LSTM and sewer model for
a manhole located in the centre of the study area, where extreme flooding occurs at most
manholes. This manhole has an average NSE of 0.95. A lag is generally present between
the peak of the precipitation event and the moment that flooding of the manholes starts
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to occur. The LSTM is able to predict this lag with high accuracy when compared to the
sewer model output. Furthermore, the LSTM is capable of predicting the general shape of
the flood volume hydrograph accurately, both in terms of the timing that flooding starts to
occur as well as the timing of the peak flood volume. However, again, the slight tendency
of the LSTM to underpredict the peak flood volumes is visible.
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Figure 11. Flood volume time series, for the LSTM network validated on synthetic data, at a manhole
in the centre of the area (NSE = 0.95).

The predicted flood volumes by the sewer model and LSTM for a manhole located
in the southeastern part of the study area are shown in Figure 12. Here, the LSTM has an
average NSE of 0.39. Again, the shape of the flood hydrograph is predicted accurately, even
when a two-peaks event is considered. However, the underprediction of the peak value
is larger in this region of the study area. It seems that the LSTM has more difficulties in
accurately predicting flood volumes in cases of relatively sharp flood volume hydrographs,
with large differences between the flood volumes in two consecutive time steps. The accu-
racy of the LSTM predictions can therefore be improved by reducing the time step of the
training data set such that the change in flood volume within two consecutive time steps
is reduced.
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Figure 12. Flood volume time series, for the LSTM network validated on synthetic data, at a manhole
in the southeast of the area (NSE = 0.39).

5.2. LSTM Evaluation Based on Historic Precipitation Events

To further test the LSTM, three historic precipitation events that caused flooding in the
area were identified. These historic precipitation events were simulated both by the sewer
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model and LSTM network to predict corresponding flood volumes. Again, the performance
of the LSTM model is compared against the sewer model predictions since this model is
used to train the LSTM. For this reason, the LSTM performance is at maximum as good as
the sewer model, and comparing LSTM predictions with field measurements does not give
a proper indication of the LSTM performance.

Also on the historic data set, the LSTM shows the high potential to be used as an early
flood warning system. In 94.4% of the precipitation events, the LSTM predicted correctly if
flooding occurred at one of the manholes (with a threshold of 1 m3). Only in 4.6% of the
precipitation events was a flood predicted by the LSTM, while no flooding occurred during
the sewer model simulation. Only in 1.0% of the precipitation events did the LSTM not
predict a flood while flooding occurred. This shows that the number of false positive and
false negative flood predictions has not increased compared to the validation using the
synthetic data set. Therefore, the ability of the LSTM to predict if a flooding occurs even
holds for scenarios deviating from those used during the training procedure.

Figure 13 shows the predicted flood volumes by the LSTM and sewer model for each
time step of the three historic precipitation events. This figure also shows that the LSTM is
able to predict if flooding occurs accurately. However, the tendency to underpredict flood
volumes is again present and is even more severe compared to the validation results based
on the synthetic data set. On average, the peak flood volumes are underpredicted by 34.3%.

Figure 13. Scatter plot of the predicted and actual flood volumes for the LSTM regressor evaluated
on the historic precipitation data set (R2 = 0.99). Negative flood volume are plotted until −15 m3, no
more false negative or false positive values are observed past this value.

During the validation based on the synthetic data set (Section 5.1), we found that the
average NSE increases if only the manholes that experience flooding are considered. When
we test the LSTM performance on historic precipitation events, we find an average NSE of
0.57 if only the flooded manholes are considered, while an average NSE of 0.61 is found
for all manholes (Table 3). This is probably caused by the low LSTM performance for the
manholes in the southeastern region (Figure 14), where the flood volume time series show
complex behaviours.
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Figure 14. NSE values for each manhole in the case study area that experiences flooding from the
historic data set (mean NSE = 0.57). NSE values have been calculated with the predicted flood
volume time series by the LSTM network and sewer model. The NSE is calculated for each time
series, and a mean is taken for the manholes. Dark grey manholes indicate locations where no
flooding occurs.

Table 3. Performance evaluation for the LSTM tested on historic data.

Performance Indicator Value

NSE (all manholes) 0.61
NSE (flooding manholes) 0.57

R2 0.99

Figures 15 and 16 show the predicted flood volumes by the LSTM and sewer model
for a manhole in the centre (NSE = 0.96) and southeast (NSE = −0.50) of the study area,
respectively. The hydrograph shape, in terms of the timing that flooding starts to occur and
the timing of the peak value, are predicted with high accuracy for the manhole located in
the centre of the study area. This shows that the LSTM performance does not significantly
change compared to the validation results on the synthetic data set for the region, where
the most frequent and severe flooding occurs. On the other hand, the predictive ability
in the southeastern region has decreased (Figure 16). Especially, the peak flood volume is
underpredicted significantly. However, again, the timing that flooding starts to occur and
the timing of the peak value are captured accurately by the LSTM. This shows that, despite
the fact that the total flood volumes are underpredicted, the LSTM still has potential to be
used as an early flood warning system in these regions.

The lower LSTM performance on the historic data set, compared to the synthetic data
set, is probably caused by the fact that the historic precipitation peaks are confined in a
smaller time span, compared to the synthetic training data set. Also in the synthetic training
data set, we already found that the the LSTM’s performance decreases for the manholes
where the flooding occurred in a relatively small time span (Figure 12). Furthermore,
the lower performance of the LSTM on historic rainfall events can be explained by the small
fluctuations and/or noise in the precipitation data. This shows that, in general, the LSTM
performs best when large and smooth precipitation intensities are given as input, resulting
in large flood volume time series and matching the precipitation patterns from the synthetic
training data set.

To increase the predictive ability of the LSTM, two adjustments are proposed: First,
the time step used in this study was 5 min. Due to the sudden nature of extreme precipita-
tion events, this relatively long time step results in a large increase in the flood volumes
in two consecutive time steps. Therefore, we recommend reducing this time step, which
will only increase the computation time of the sewer model used to generate the training
data and barely that of the LSTM. Second, the precipitation statistics were given in patterns
with a time step of 1 h. In this study, this pattern was linearly interpolated. By adjusting
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this interpolation approach, the sharp hydrographs observed in the historic data can be
recreated in the synthetic data set, ensuring that more events with confined peaks are
included in the training data set.
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Figure 15. Flood volume time series, for the LSTM network validated on historic data, at a manhole
in the centre of the area (NSE = 0.96).
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Figure 16. Flood volume time series, for the LSTM network validated on historic data, at a manhole
in the southeast of the area (NSE = −0.50).

6. Discussion

Many studies use historic data to train neural networks (e.g., [5,8,10,15]). However,
in this study, input–output relations of a numerical sewer model were used to train the
LSTM network. Furthermore, synthetic precipitations events were used to create the
training data set, adding two additional levels of abstraction from reality (e.g., [13,30,31]).
Making use of synthetic precipitation events ensures that a wide range of precipitation
characteristics, in terms of precipitation pattern, intensity, and duration, can be included
systematically. Section 5.2 showed that, even though the LSTM was trained on synthetic
precipitation events, it still accurately predicts which manholes will flood. This indicates
that the LSTM is able to respond to precipitation events not present in the training data accu-
rately due to the wide variety of events included in the training data set. This even applies
for precipitation events having higher rainfall intensities than present in the training data.

It must be noted that the developed LSTM only predicts flood volumes at maximum
as accurate as the sewer model used to train the LSTM. This means that errors present
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in the sewer model are inherently also present in the LSTM. Additionally, the LSTM is
only capable of predicting reliable outputs for the conditions it was trained for. For two
historic flood events, not presented in this paper, we found that flooding was observed by
inhabitants of Hooglanderveen while the sewer model, and consequently the LSTM, did
not predict any flooding. During these events, the measured precipitation intensities were
relatively low and would most likely not lead to any flooding in the area under normal
circumstances. Therefore, it might be that the inflow of some manholes was blocked by
leaves during the precipitation event, causing the inundation of the streets. The sewer
model was not designed to model these rare events and hence the LSTM is also not able to
include these processes in the predictions.

The computational costs of the LSTM are extremely low, with forecasting times in the
order of milliseconds for a single event. Due to the inherent variability in extreme flood
events, and the need for ensemble forecasting, many simulations are required. The LSTM
can be applied successfully for this purpose, providing a probability of flood volumes in-
stead of a deterministic forecast. This can be helpful for decision makers in their assessment
of possible damages caused by the extreme precipitation event.

Regarding the set-up of the LSTM, it was decided to develop a single LSTM network
for the entire Hooglanderveen sewer system. This has as advantage that flood volumes
at all manholes are computed based on a single input precipitation event. However,
setting up an LSTM network for the entire system increases the complexity of the network
significantly, compared to having a separate LSTM for each manhole. Consequently, the
training time is also significantly higher. Kratzert et al. [8] analysed the effect of setting
up a single LSTM to predict rainfall runoff for multiple catchments compared to using
multiple regional LSTMs each trained for a single catchment. They found that using a
single LSTM network to predict the runoff for multiple catchments results in slightly more
accurate predictions, especially in cases with a strong correlation in the predicted output at
the various catchments. Furthermore, they suggest that using a single LSTM for an entire
network reduces the risk of overfitting compared to setting up an LSTM network for each
desired output location [8]. For these reasons, setting up a single LSTM network to predict
all manholes in a sewer system is recommended despite the long training times involved.

7. Conclusions

The objective of this research was to construct an LSTM neural network that can pre-
dict location-based flooding due to extreme precipitation in an urban environment. For the
first time, such an LSTM was developed for a large sewer system covering many manholes.
Because insufficient measured data of extreme precipitation events were available, a numer-
ical sewer model was used to generate the training data covering a wide variety of synthetic
precipitation events in terms of precipitation intensities and patterns. The LSTM was set up
for the whole area of Hooglanderveen in Amersfoort containing 230 manholes. The trained
LSTM, having 636 neurons, predicted the flood volume time-series of all flooded manholes
with high accuracy, resulting in an average NSE of 0.92. Furthermore, the temporal aspects
of the flood wave, in terms of the duration of the flooding, as well as the timing of the
peak flood volume, were accurately predicted by the LSTM. Especially the locations with
frequent and severe flooding are predicted with high accuracy. Therefore, we conclude
that the behaviour of the existing numerical sewer model and its characteristics were
successfully reproduced by the LSTM.

Testing of the LSTM on observed historic data shows that the LSTM can also accurately
predict the temporal aspects of the flooding for historic precipitation events. Using a large
variety of synthetic precipitation events in the training data set ensured that the trained
LSTM was able to generalise, even though the historic precipitation patterns differ from
the synthetic data since the historic precipitation events are confined to a relatively short
interval with high-intensity precipitation. However, it was found that the LSTM tends to
underpredict flood volumes, especially for the relatively sharp flood volume hydrographs,
with large differences between the flood volumes in two consecutive time steps. In this
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study, a relatively large time step of five minutes was used to train the LSTM. Therefore,
the accuracy of the LSTM predictions can easily be improved by reducing this time step
such that the change in flood volume within two consecutive time steps is reduced.

The computational costs of forecasting a single event is exceptionally low, reducing
the forecasting time to the order of milliseconds, making the LSTM highly functional as an
early flood warning system. Furthermore, this extremely low computational cost makes it
possible to compute ensemble forecasts of pluvial flooding, using stochastic precipitation
forecasts instead of a single deterministic time series.

Author Contributions: Conceptualization, R.A.H.K., A.B. and K.M.W.; methodology, R.A.H.K. and
A.B.; software, R.A.H.K.; validation, R.A.H.K.; data curation, R.A.H.K.; writing—original draft
preparation, R.A.H.K. and A.B.; writing—review and editing, R.A.H.K. and A.B.; visualization,
R.A.H.K.; supervision, A.B. and K.M.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This project has received funding from the European Union’s Horizon 2020 Research and
Innovation Programme under grant agreement no. 820751.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of the input data. The results
of the synthetic validation data can be viewed on the following website: https://hooglanderveen-
riolering-opti.herokuapp.com/, accessed on 5 May 2022. The results of the historic data test can be
viewed on the following website: https://hooglanderveen-riolering-hist.herokuapp.com/, accessed
on 5 May 2022.

Acknowledgments: The authors would like to thank Hydrologic for their guidance and expert
advice during the research. The authors would also like to thank the Municipality of Amersfoort for
providing the data related to the observed historical precipitation events. Furthermore, the authors
would like to thank Arcadis for providing the input–output data of the sewer model used to train the
LSTM network in this study.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of Open Access Journals
LSTM Long term-short term neural network
ML Machine learning
ANN Artificial neural networks
RRN Recurrent neural networks

References
1. Szöllösi-Nagy, A.; Zevenbergen, C. Urban Flood Management; CRC Press: Boca Raton, FL, USA, 2004.
2. May, W. Potential future changes in the characteristics of daily precipitation in Europe simulated by the HIRHAM regional

climate model. Clim. Dyn. 2008, 30, 581–603. [CrossRef]
3. Min, S.K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature 2011,

470, 378–381. [CrossRef] [PubMed]
4. Ayazpour, Z.; Bakhshipour, A.E.; Dittmer, U. Combined Sewer Flow Prediction Using Hybrid Wavelet Artificial Neural Network

Model. In Proceedings of the New Trends in Urban Drainage Modelling; Mannina, G., Ed.; Springer International Publishing: Cham,
Switzerland, 2019; pp. 693–698.

5. Mounce, S.R.; Shepherd, W.; Sailor, G.; Shucksmith, J.; Saul, A.J. Predicting combined sewer overflows chamber depth using
artificial neural networks with rainfall radar data. Water Sci. Technol. 2014, 69, 1326–1333. [CrossRef]

6. Razavi, S.; Tolson, B.A.; Burn, D.H. Review of surrogate modeling in water resources. Water Resour. Res. 2012, 48, 1–32. [CrossRef]
7. Sit, M.; Demiray, B.Z.; Xiang, Z.; Ewing, G.J.; Sermet, Y.; Demir, I. A comprehensive review of deep learning applications in

hydrology and water resources. Water Sci. Technol. 2020, 82, 2635–2670. [CrossRef] [PubMed]

https://hooglanderveen-riolering-opti.herokuapp.com/
https://hooglanderveen-riolering-opti.herokuapp.com/
https://hooglanderveen-riolering-hist.herokuapp.com/
http://doi.org/10.1007/s00382-007-0309-y
http://dx.doi.org/10.1038/nature09763
http://www.ncbi.nlm.nih.gov/pubmed/21331039
http://dx.doi.org/10.2166/wst.2014.024
http://dx.doi.org/10.1029/2011WR011527
http://dx.doi.org/10.2166/wst.2020.369
http://www.ncbi.nlm.nih.gov/pubmed/33341760


Hydrology 2022, 9, 105 18 of 18

8. Kratzert, F.; Klotz, D.; Brenner, C.; Schulz, K.; Herrnegger, M. Rainfall–runoff modelling using Long Short-Term Memory (LSTM)
networks. Hydrol. Earth Syst. Sci. 2018, 22, 6005–6022. [CrossRef]

9. Bomers, A.; van der Meulen, B.; Schielen, R.M.J.; Hulscher, S.J.M.H. Historic flood reconstruction with the use of an Artificial
Neural Network. Water Resour. Res. 2019, 55, 9673–9688. [CrossRef]

10. Liu, P.; Wang, J.; Sangaiah, A.K.; Xie, Y.; Yin, X. Analysis and Prediction of Water Quality Using LSTM Deep Neural Networks in
IoT Environment. Sustainability 2019, 11, 2058. [CrossRef]

11. Poornima, S.; Pushpalatha, M. Prediction of Rainfall Using Intensified LSTM Based Recurrent Neural Network with Weighted
Linear Units. Atmosphere 2019, 10, 668. [CrossRef]

12. Zou, R.; Lung, W.S.; Wu, J. An adaptive neural network embedded genetic algorithm approach for inverse water quality modeling.
Water Resour. Res. 2007, 43, 8. [CrossRef]

13. Bomers, A. Predicting Outflow Hydrographs of Potential Dike Breaches in a Bifurcating River System Using NARX Neural
Networks. Hydrology 2021, 8, 87. [CrossRef]

14. Rjeily, Y.A.; Abbas, O.; Sadek, M.; Shahrour, I.; Chehader, F.H. Flood forecasting within urban drainage systems using NARX
neural network. Water Sci. Technol. 2017, 76, 2401–2412. [CrossRef] [PubMed]

15. Zhang, D.; Lindholm, G.; Ratnaweera, H. Use long short-term memory to enhance Internet of Things for combined sewer
overflow monitoring. J. Hydrol. 2018, 556, 409–418. [CrossRef]

16. Rajaee, T.; Ebrahimi, H.; Nourani, V. A review of the artificial intelligence methods in groundwater level modeling. J. Hydrol.
2019, 572, 336–351. [CrossRef]

17. Rioned, S. Kennisbank. Available online: https://www.riool.net/kennisbank (accessed on 27 November 2020).
18. Henonin, J.; Russo, B.; Mark, O.; Gourbesville, P. Real-time urban flood forecasting and modelling—A state of the art. J.

Hydroinform. 2013, 15, 717–736. [CrossRef]
19. Beersma, J.; Hakvoort, H.; Jilderda, R.; Overeem, A.; Versteeg, R. Neerslagstatistiek en Reeksen Voor Het Waterbeheer; Stichting

Toegepast Onderzoek Waterbeheer: Amersfoort, The Netherlands, 2019.
20. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
21. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput.

2019, 31, 1235–1270._a_01199. [CrossRef]
22. Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Volume 1.
23. Elman, J.L. Finding Structure in Time. Cogn. Sci. 1990, 14, 179–211._1. [CrossRef]
24. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw.

1994, 5, 157–166. [CrossRef]
25. Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 15 November 2020).
26. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 15 November
2020).

27. Bowden, G.J.; Maier, H.R.; Dandy, G.C. Optimal division of data for neural network models in water resources applications.
Water Resour. Res. 2002, 38, 2-1–2-11. [CrossRef]

28. Mathevet, T.; Michel, C.; Andréassian, V.; Perrin, C. A bounded version of the Nash-Sutcliffe criterion for better model assessment
on large sets of basins. IAHS Publ. 2006, 307, 211–219.

29. Zhou, Y.; Guo, S.; Xu, C.Y.; Chang, F.J.; Yin, J. Improving the Reliability of Probabilistic Multi-Step-Ahead Flood Forecasting by
Fusing Unscented Kalman Filter with Recurrent Neural Network. Water 2020, 12, 578. [CrossRef]

30. Kabir, S.; Patidar, S.; Xia, X.; Liang, Q.; Neal, J.; Pender, G. A deep convolutional neural network model for rapid prediction of
fluvial flood inundation. J. Hydrol. 2020, 590, 125481. [CrossRef]

31. Lin, Q.; Leandro, J.; Wu, W.; Bhola, P.; Disse, M. Prediction of Maximum Flood Inundation Extents With Resilient Backpropagation
Neural Network: Case Study of Kulmbach. Front. Earth Sci. 2020, 8, 332. [CrossRef]

http://dx.doi.org/10.5194/hess-22-6005-2018
http://dx.doi.org/10.1029/2019WR025656
http://dx.doi.org/10.3390/su11072058
http://dx.doi.org/10.3390/atmos10110668
http://dx.doi.org/10.1029/2006WR005158
http://dx.doi.org/10.3390/hydrology8020087
http://dx.doi.org/10.2166/wst.2017.409
http://www.ncbi.nlm.nih.gov/pubmed/29144298
http://dx.doi.org/10.1016/j.jhydrol.2017.11.018
http://dx.doi.org/10.1016/j.jhydrol.2018.12.037
https://www.riool.net/kennisbank
http://dx.doi.org/10.2166/hydro.2013.132
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco_a_01199
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1109/72.279181
https://github.com/fchollet/keras
tensorflow.org
http://dx.doi.org/10.1029/2001WR000266
http://dx.doi.org/10.3390/w12020578
http://dx.doi.org/10.1016/j.jhydrol.2020.125481
http://dx.doi.org/10.3389/feart.2020.00332

	Introduction
	Case Study and the Numerical Sewer Model
	Training and Testing Data
	The Synthetic Precipitation Events
	Interpolation of Precipitation Patterns
	Historic Data

	Construction of the Long Short-Term Memory (LSTM) Neural Network
	The Concept of Neural Networks
	The LSTM Set-Up
	The Performance Indicators

	Results
	LSTM Validation Based on Synthetic Precipitation Events
	LSTM Evaluation Based on Historic Precipitation Events

	Discussion
	Conclusions
	References

