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Abstract: The prediction of hydrological phenomena using simpler hydrological models requires
less computing power and input data compared to the more complex models. Ordinarily, a more
complex, white-box model would be expected to have better predictive capabilities than a simple
grey box or black-box model. But complexity may not necessarily translate to better prediction
accuracy or might be unfeasible in data scarce areas or when computer power is limited. Therefore,
the shift of hydrological science towards the more process-based models needs to be justified. To
answer this, the paper compares 2 hydrological models: (a) the simpler tank model; and (b) the
more complex TOPMODEL. More precisely, the difference in performance between tank model as a
lumped model and the TOPMODEL concept as a semi-distributed model in Atari River catchment,
in Eastern Uganda was conducted. The objectives were: (1) To calibrate tank model and TOPMODEL;
(2) To validate tank model and TOPMODEL; and (3) To compare the performance of tank model
and TOPMODEL. During calibration, both models exhibited equifinality, with many parameter
sets equally likely to make acceptable hydrological simulations. In calibration, the tank model and
TOPMODEL performances were close in terms of ‘Nash-Sutcliffe efficiency’ and ‘RMSE-observations
standard deviation ratio’ indices. However, during the validation period, TOPMODEL performed
much better than tank model. Owing to TOPMODEL’s better performance during model validation,
it was judged to be better suited for making runoff forecasts in Atari River catchment.

Keywords: lumped model; distributed model; semi-distributed model; tank model; TOPMODEL;
equifinality

1. Introduction

The role of hydrological monitoring and modelling in the quantification of Ecosystem
Service (ES) flows in Paid Ecosystem Service (PES) schemes cannot be overlooked [1,2].
In proposing that PES schemes be built around the ESs flowing from the operation of
irrigation and drainage infrastructure, Okiria et al. [3] emphasised the role of hydrological
models in such schemes. In addition, among other uses, hydro-meteorological data are
indispensable in the design and operation of irrigation and drainage schemes, as well as
other hydraulic infrastructure.

Ideally, hydrological data should be collected by detailed monitoring and observation
of the catchment. However, detailed spatial measurements are prohibitively expensive
and difficult to implement, and in unobserved catchments or in an unobservable future,
data is unavailable [4]. Globally, catchment areas less than 2500 km2 are overwhelmingly
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unmonitored, with efforts to monitor them becoming increasingly difficult [5]. Consistent
with these findings, in Uganda, the majority of the rivers are ungauged [6] and furthermore,
some river flow rating curves were found to be erroneous and in need of updating [7].
In such situations, hydrological modelling can be used as a tool to generate estimates of
hydrological data.

However, hydrological models are built around simplifying assumptions of natural
hydrological systems [8]. In order from the simplest to the most complex, hydrological
models can be divided into black-box (statistical), grey-box (conceptual) or white-box
(physically-based) models. Black-box models lack a description of the underlying hydrolog-
ical processes and are usually expressed as empirical models. Their grey-box counterparts
attempt to describe the underlying physical processes and are based on empirical equations
that are more complex than those seen in black-box models. The white-box model descrip-
tion is more strongly grounded in the physics of the underlying hydrological processes and
has equations that are based on the laws of conservation of mass and energy [4].

Based on the smallest unit of hydrological similarity, hydrological models can also be
categorised as lumped, semi-distributed or distributed. The simplest hydrological models
by scale, the lumped models, assume homogeneity of hydrological response across the
entire catchment. Meanwhile, the more complex distributed models consider the spatial
variability of the catchment physical properties [9]. Semi-distributed models on the other
hand are optimised to benefit from the strengths of both lumped and distributed models.

As hydrology advances towards more complex, process-based models [4], two ques-
tions arise: (1) Does more complexity translate into higher model prediction accuracy?
(2) Within what limits can the simplest models be used? This question is important because:
Simpler hydrological models have the benefits of ease of use, simplicity in interpretation
by non-experts and low demand for computer processing power-a desirable situation. It is
therefore important to confirm the limits within which they are applicable.

To clarify this, this paper compares the performance difference during model calibra-
tion and validation between the ‘simpler’ tank model as a lumped parameter model and
the ‘more complex’ TOPMODEL concept as a semi-distributed model in a catchment in
Eastern Uganda. In this study, the ‘complexity’ of a model was defined based on: (a) the
input data need; (b) the scale of hydrological homogeneity and (c) the extent to which the
model described physical hydrological processes. Compared to tank model, TOPMODEL
required an extra layer of input data: topographic data. Tank model was lumped while
TOPMODEL was semi-distributed. Additionally, the underlying equations of TOPMODEL
are more physically-based than those of tank model.

The bulk of tank model application has been in sub-tropical, Eastern Asia e.g., in [10–14]
to simulate catchment-scale rainfall-runoff responses. Researchers in Eastern Asia also used
tank model to simulate the hydrological response of rice paddy fields [15–18]. Chikita et al. [19]
tested the applicability of tank model to a subarctic catchment in Alaska. In Sugawara [20],
a case for the physical meaning of tank model was argued when it was used to prove the
existence of the separated storage of ground water. In another study, Hong et al. [21] used
tank model to simulate ground water levels in Kumamoto, Japan.

However, literature on the application of tank model in tropical climates is scanty.
In the Horn of Africa, Onyutha [22,23] applied it to the Blue Nile Basin in Ethiopia and
Sudan. In East Africa, tank model was applied to catchments in both Rwanda [24] and
Uganda [25,26]. More specifically, in Eastern Uganda, Okiria et al. [25] used it to simulate
the daily discharge hydrograph of Atari River catchment while Mubialiwo et al. [26]
simulated the flood discharge hydrograph of Malaba River catchment.

There is need for a systematic and extended application of tank model in tropical
climates, with moderate humidity, to elucidate if the underlying model assumptions still
hold in such conditions.

TOPMODEL has been widely applied in humid, temperate climates in Europe, es-
pecially in the United Kingdom, to simulate the rainfall-runoff process at catchment
scale [27–29] and in China [30,31]. From these applications, the model was observed
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to perform well in humid climates with wet and shallow soils. Abou-shanab et al. [32]
tested the validity of the TOPMODEL assumptions in the complex climate and topography
of Nepal, achieving reasonable runoff hydrograph simulations. There is also evidence of its
application to Mediterranean climates [33,34].

Despite this, literature on the application of TOPMODEL in tropical climates, especially
in Africa, is sparse. Some of the applications of TOPMODEL in Africa included in humid,
tropical climates in West Africa [35,36] and in the Horn of Africa, Ethiopia [37,38]. In
East Africa, Okiria et al. [39] used the TOPMODEL concept to predict the daily discharge
hydrograph, and to identify the minimum number of rainfall events required to calibrate
the model in Atari River catchment in Eastern Uganda.

Similarly, a systematic and expanded application of TOPMODEL in tropical climates,
with moderate humidities, is necessary to confirm if the assumptions on which the model
is built still hold.

The requirement for a systematic evaluation of the applicability of the 2 models, as
well as a comparison of the difference in performance between tank model as a lumped
parameter model and TOPMODEL as a semi-distributed model in Eastern Uganda is iden-
tified. Consequently, this study performed a comparative predictive performance analysis
between tank model and TOMODEL in the Atari River catchment in Eastern Uganda. The
objectives were: (1) To calibrate tank model and TOPMODEL; (2) To validate tank model
and TOPMODEL; and (3) To compare the performance of tank model and TOPMODEL.

2. Materials and Methods
2.1. Study Area

The study area is the Atari River catchment in Eastern Uganda, with a drainage
area of 84 km2 at the stream gauging station (Figure 1). Its topography is comprised
of mountainous areas (Mt. Elgon) from where the mainstream (Atari River) originates
and flows to the gently rolling plains. From ASTER GDEM [40], its elevation range is
2389 m. Some 35 km2 (42%) is forest, 28 km2 (33%) is agricultural area and 21 km2 (25%) is
rangeland [41].

Under “the Project on Irrigation Scheme Development in Central and Eastern Uganda”,
hydro-meteorological monitoring equipment were set up in Atari River catchment in 2015,
viz.: a mid-stream rain-gauge to detect catchment rainfall; a downstream meteorological
station to measure weather parameters required for the calculation of evapotranspiration
(ET0) using the FAO Pemman-Montieth method [42], i.e.,: wind speed, air temperature,
humidity, and solar radiation; and a water level sensor at a control section of the Atari
River. In addition, discharge measurements were conducted to obtain the rating curve for
Atari River [7].

2.2. Tank Model

Tank model is a conceptual, lumped model that was proposed and developed by
Sugawara et al. in the 1950s [43]. One version of the model comprises of four tanks laid out
vertically in series, so named tanks 1, 2, 3 and 4 (Figure 2). Rainfall data is inputted to tank
1 while ET0 is subtracted from it. If tank 1 is empty, ET0 is deducted from tank 2. If both
tanks 1 and 2 are empty, then ET0 is subtracted from tank 3 and so on. The side outlets
of tanks 1, 2, 3 and 4 release surface runoff, through flow, sub-base runoff and base flow
respectively. Additionally, tanks 1, 2 and 3 have bottom outlets, through which infiltration
to a lower tank occurs [20].

Tank model is calibrated to determine the value of 16 unknown parameters, i.e.,:
Co-efficient of the top side out let of tank 1 (A1); co-efficient of the lower side outlet of
tank 1 (A2); co-efficient of the side outlet of tank 2 (B1); co-efficient of the side outlet of
tank 3 (C1); co-efficient of the side outlet of tank 4 (D1); co-efficient of the bottom outlet of
tank 1 (A0); co-efficient of the bottom outlet of tank 2 (B0); co-efficient of the bottom outlet
of tank 3 (C0); height of the top side outlet of tank 1 (AH1); height of the lower side outlet
of tank 1 (AH2); height of the side outlet of tank 2 (BH); height of the side outlet of tank 3
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(CH); initial height of water in tank 1 (SA0); initial height of water in tank 2 (SB0); initial
height of water in tank 3 (SC0); and the initial height of water in tank 4 (SD0), as in Figure 2.
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The parameters of tank model are not directly physical in nature. Rather, they can
be related to some physical catchment characteristics: the co-efficients of the side and
bottom outlets can be related to soil permeability in the horizontal and vertical directions
respectively while the levels of the tanks from top to bottom are analogous to various
depths within the soil layer.

The simulated river discharge is the sum of runoff from all the side outlets. Details of
tank model are in [20].

2.3. TOPMODEL

TOPMODEL is a conceptual, semi-distributed model concept that was suggested by
Beven and Kirkby [44]. Although a conceptual model, its formulation has some ‘physically-
meaningful’ parameters [35,44]. The model separates the soil layer into a root zone, an
unsaturated zone and a saturated zone. The analysis of the root zone and the unsaturated
zone is done at grid-scale-the spatial resolution of the Digital Elevation Model (DEM)-,
accounting for the spatial variability in catchment physical properties. Meanwhile, the
saturated zone is computed at a lumped scale, with no consideration for the spatial vari-
ability of catchment physical properties. TOPMODEL evaluates the propensity of a soil to
generate surface runoff from the Topographical Index (TI). The TI can be derived from a
contour map or like in this study, a DEM [40]. A histogram of the TI distribution of Atari
River catchment is shown in Figure 3.

TI = ln
ai

tanβi
(1)

where ai is the upstream contributing area per unit contour length, tanβi is the local slope
and i is the grid number.
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TOPMODEL tracks the water balance in the root zone, the saturated zone and the
unsaturated zone. The model was calibrated to find the values of 5 unknown parameters,
i.e.,: exponential decay parameter (m); downslope saturated transmissivity (Te); delay time
constant (td); maximum root zone storage deficit (SRZmax) and the initial root zone storage
deficit (SRZinitial).

The parameters of TOPMODEL are more directly related to the physical environment
and could be obtained by measurement or calculation. Parameter m could be estimated by
analysing the baseflow recession curve [35], while Te can be measured [45].

A schematic of the TOPMODEL concept is shown in Figure 4. The TOPMODEL
version described in Mukae et al. [46] was applied in this study. Details of TOPMODEL are
in Beven, Beven and Kirkby and Mukae et al. [8,44,46,47].
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mum rootzone storage deficit); Si (local storage deficit); SUZi (storage in the unsaturated zone); UZi

(drainage flux); Qsim (simulated discharge); Qover (overland flow); Qsub (subsurface flow).

2.4. Data Requirement for Tank Model and TOPMODEL

The input data for the models was observed rainfall, observed stream discharge and
ET0. Satellite data products have the potential to provide finer spatial resolutions of rainfall.
Indeed, Kobayashi et al. [48] have explored the accuracy of ‘Global Satellite Mapping
of Precipitation (GSMaP)’ satellite rainfall data products in Eastern Uganda and found
their detection accuracy to be promising. However, Takido et al. [49] raised the concern
of the inaccuracies of satellite rainfall products in high-elevation areas. Recognising that
Atari River catchment has high-elevation areas, the study by Kobayashi et al. [48] needs
furthering to include the verification of the accuracy of GSMaP satellite rainfall products in
the higher elevation areas of Eastern Uganda.

Tropical rainfall is highly localised, and there is a need for multiple spatially distributed
rain gauge networks to get more meaningful representations of catchment rainfall [50].
However, given the acceptable response of the observed downstream discharge to the
rainfall recorded by the midstream-elevation rain gauge [7], it (mid-elevation rain gauge),
at an elevation of 1961 m above sea level, was used to represent catchment-scale rainfall.

Rainfall was measured for each event and other hydro-meteorological parameters were
recorded at 10-min logging intervals, with the daily averages being used for computation.
ET0 was calculated by inputting the weather parameters from the downstream rain gauge
into the FAO Penman equation [51].

Sorooshian et al. [52] found 1-year data to be sufficient for the calibration of the soil
moisture accounting model of the U.S. National Weather Service’s river forecast system
(SMA-NWSRFS). Further, because of a reduction in the marginal benefit of longer data
periods, 2 or 3 years of the right kind of data were thought to be sufficient for the cali-
bration period [53]. In Yapo et al. [54], about 8 years of data were required to calibrate a
flood forecasting model. Since the study required the forecasting of a continuous runoff
hydrograph, about 1 year of calibration data was considered sufficient.

Observed data for 1 March 2015 to 31 December 2015, and 1 January 2016 to 29 June
2016 were used for model calibration and validation respectively. Correspondingly, the
total amount of rainfall, evapotranspiration and river discharge during the observation
period in each year were 1655 mm; 1376 mm; and 534 for the year 2015 and 752 mm; 747
mm and 312 mm for the year 2016.
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2.5. Calibration, Validation and Evaluation of Tank Model and TOPMODEL Efficiency

Stefnisdóttir et al. [55] evaluated the values of 3 metaheuristics for the calibration of
the Hydrologiska Byråns Vattenbalansavdelning (HBV) model, namely: Monte Carlo (MC),
Simulated Annealing, and Genetic Algorithm. Due to its simplicity and ability to identify
good parameter sets with sufficient model iterations [55], the MC calibration procedure,
performed using the Python Programming Language, was used for this study.

Calibration by the MC method was done by randomly selecting parameter values
fitting within predefined maximum and minimum bounds following a uniform distribu-
tion. The parameters values were then ranked based on the Nash and Sutcliffe Efficiency
(NSE) [56]. Foglia et al. [57] classified NSE values as: insufficient; sufficient; good; very
good and excellent for NSE values of: <0.2; 0.2–0.4; 0.4–0.6; 0.6–0.8; and >0.8 respectively.

An additional objective function, ‘the RMSE-observations standard deviation ratio
(RSR)’ [58], was used. RSR standardises the Root Mean Square Error (RMSE) value, enabling
the judgement on the non-rejection or rejection of hydrological model simulations. Moriasi
et al. [58] classified RSR values in the ranges of: 0.00 < RSR < 0.50; 0.50 < RSR < 0.60;
0.60 < RSR < 0.70 and RSR > 0.70 as very good; good; satisfactory and unsatisfactory
respectively. In Kastridis et al. [59], RSR values close to 0.5 were taken to represent an
acceptable model prediction.

NSE = 1 −
(

∑n
1 (observed value − simulated value)2

∑n
1 (observed value − mean observed value)2

)
(2)

RMSE =

√
∑n

1 (observed value − simulated value)2

n
(3)

STDobs =

√
∑n

1 (observed value − mean of observed values)2

n
(4)

RSR =
RMSE
STDobs

(5)

where n is the number of observation days and STDobs is the standard deviation of the
observed discharge.

To test the ability of the models to predict hydrographs, validation was carried out in
the year 2016.

3. Results
3.1. MC Calibration Procedure

Using the MC calibration procedure; 10,000,000 iterations yielded the best performing
parameter sets for both tank model and TOPMODEL: the 10,000,000 iterations were the
maximum possible considering computer constraints. Therefore, all the parameter sets
discussed below are drawn from 10,000,000 model iterations.

3.2. TOPMODEL

The best performing parameter sets from model calibration—see Table 1—were classi-
fied as ‘very good’ and ‘satisfactory’ in terms of NSE and RSR values respectively.

Table 1. The best performing parameter sets of the Atari River catchment during the calibration period.

Year m (mm) Te × 109

(mm2/day)
td

(day/mm)
SRZinitial

(mm)
SRZmax
(mm) NSE RSR

2015 30 9.510 0.008 0.100 0.020 0.631 0.608
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Table 2 shows that during model calibration, there was variability among parameter
sets: equifinality within a similar calibration period. This dynamic nature of the parameters
caused uncertainty about their physical meaning.

Table 2. Descriptive statistics of TOPMODEL parameter sets that were obtained during model
calibration. Only parameter sets with an NSE of at least 0.5 were considered.

Year m (mm) Te × 109

(mm2/day)
td

(day/mm)
SRZinitial

(mm)
SRZmax
(mm)

2015

Maximum 50 10.000 0.020 0.100 0.100
Minimum 20 0.002 0.004 0.100 0.002

Mean 32 4.790 0.009 0.100 0.051
STD + 8 2.920 0.003 0.000 0.028

Cov * (%) 25.361 60.969 33.718 0.000 54.992
+ Standard deviation; * Co-efficient of variance.

The validation of TOPMODEL yielded an NSE value of 0.677 (classified as very
good) and an RSR of 0.568 (classified as good): Table 3. The model better reproduced the
hydrograph for 2016 than that for 2015.

Table 3. A comparative performance of tank model and TOPMODEL during model calibration and
validation periods. Years 2015 and 2016 were used for model calibration and validation respectively.

Tank Model TOPMODEL

Calibration Validation Calibration Validation

Year NSE RSR NSE RSR NSE RSR NSE RSR

2015 0.737 0.513 0.631 0.608
2016 0.396 0.778 0.677 0.568

Generally, there was a similar trend between the observed and simulated hydrographs,
with an observable response of the simulated hydrograph to rainfall input (refer to Figure 5).
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Figure 5. Observed rainfall, observed hydrograph and the hydrographs simulated by TOPMODEL.
(a) Observed rainfall in 2015; (b) Observed rainfall in 2016; (c) Observed hydrograph and the hydro-
graph simulated during model calibration in 2015; (d) Observed hydrograph and the hydrograph
simulated during model validation in 2016; (e) Hydrograph separation in 2015 during model cali-
bration. Note that the overland flow was too small to be represented on this graph; (f) Hydrograph
separation in 2016 during model validation. Note again that the overland flow was too small to
be detected on this graph; (g) Overland flow prediction in 2015 during model calibration; and
(h) Overland flow prediction in 2016 during the model validation period. Qobs (observed discharge);
Qsim (simulated discharge); Qover (overland flow); Qsub (subsurface flow).

From Figure 6, all parameters–except m and td–showed good (and bad) simulations
over the whole range of the parameter space. As the NSE value increased, m and td occupied
a narrower zone in the parameter space.

3.3. Tank Model

The best performing parameter sets following model calibration were classified as
‘very good’ and ‘good’ in terms of NSE and RSR objective functions respectively (Table 4).
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Model validation yielded an NSE value of 0.396 (classified as a good fit) and an RSR of
0.778 (classified as unsatisfactory): Table 3.
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Table 4. The best performing tank model parameter sets for Atari River catchment during model
calibration in 2015.

Year A1 A2 A0 B1 B0 C1 C0 D1
SA0
(mm)

SB0
(mm)

SC0
(mm)

SD0
(mm)

AH1
(mm)

AH2
(mm)

BH
(mm)

CH
(mm) NSE RSR

2015 0.026 0.020 0.011 0.017 0.003 0.014 0.001 0.003 79 926 100 19 508 26 3880 392 0.737 0.513

From Table 5, it was evident that during the calibration period, there was variability
among parameter sets: same calibration period equifinality. This caused uncertainty about
the physical meaning of the parameters.

Table 5. Descriptive statistics for tank model parameter sets that were obtained from model calibra-
tion. Only parameter sets with an NSE of at least 0.5 were considered.

Year A1 A2 A0 B1 B0 C1 C0 D1
SA0

(mm)
SB0

(mm)
SC0

(mm)
SD0

(mm)
AH1

(mm)
AH2

(mm)
BH

(mm)
CH

(mm)

2015

Maximum 0.100 0.075 0.064 0.069 0.054 0.060 0.027 0.042 100 1000 100 100 1000 100 10000 10000
Minimum 0.007 0.006 0.003 0.001 0.001 0.001 0.000 0.000 10 192 100 0 1.587 0.002 166 0.641
Average 0.055 0.027 0.019 0.016 0.011 0.009 0.007 0.005 55 740 100 47 564 40 5290 5060

STD 0.022 0.009 0.008 0.008 0.005 0.005 0.003 0.003 26 175 0 29 253 24 2718 2855
CoV (%) 41 34 42 51 46 61 51 61 46 24 0 60 45 59 51 56
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Like TOPMODEL, there was generally a similar trend between the observed and the
simulated hydrograph during the wet season. However, the hydrograph response was not
sensitive to the small rainfall events after a dry spell (refer to Figure 7).

Hydrology 2022, 9, x FOR PEER REVIEW 11 of 19 
 

 

  
(c) (d) 

Figure 6. Scatter plots of NSE values versus the corresponding parameter values for TOPMODEL 
parameter sets that were got during the model calibration period. Each dot represents a separate 
parameter value from a given parameter set. Only simulations with an NSE value of at least 0.5 are 
shown. (a) A scatter plot of NSE versus values of parameter m; (b) A scatter plot of NSE versus 
values of parameter Te; (c) A scatter plot of NSE versus values of parameter td; (d) A scatter plot of 
NSE versus values of parameter SRZmax. 

3.3. Tank Model 
The best performing parameter sets following model calibration were classified as 

‘very good’ and ‘good’ in terms of NSE and RSR objective functions respectively (Table 
4). Model validation yielded an NSE value of 0.396 (classified as a good fit) and an RSR of 
0.778 (classified as unsatisfactory): Table 3. 

Table 4. The best performing tank model parameter sets for Atari River catchment during model 
calibration in 2015. 

Year A1 A2 A0 B1 B0 C1 C0 D1 
SA0 

(mm) 
SB0 

(mm) 
SC0 

(mm) 
SD0 

(mm) 
AH1 

(mm) 
AH2 

(mm) 
BH 

(mm) 
CH 

(mm) 
NSE RSR 

2015 0.026 0.020 0.011 0.017 0.003 0.014 0.001 0.003 79 926 100 19 508 26 3880 392 0.737 0.513 

From Table 5, it was evident that during the calibration period, there was variability 
among parameter sets: same calibration period equifinality. This caused uncertainty about 
the physical meaning of the parameters. 

Table 5. Descriptive statistics for tank model parameter sets that were obtained from model 
calibration. Only parameter sets with an NSE of at least 0.5 were considered. 

Year  A1 A2 A0 B1 B0 C1 C0 D1 
SA0 

(mm) 
SB0 

(mm) 
SC0 

(mm) 
SD0 

(mm) 
AH1 

(mm) 
AH2 

(mm) 
BH 

(mm)  
CH 

(mm) 

2015 

Maximum 0.100 0.075 0.064 0.069 0.054 0.060 0.027 0.042 100 1000 100 100 1000 100 10,000 10,000 
Minimum 0.007 0.006 0.003 0.001 0.001 0.001 0.000 0.000 10 192 100 0 1.587 0.002 166 0.641 
Average 0.055 0.027 0.019 0.016 0.011 0.009 0.007 0.005 55 740 100 47 564 40 5290 5060 

STD 0.022 0.009 0.008 0.008 0.005 0.005 0.003 0.003 26 175 0 29 253 24 2718 2855 
CoV (%) 41 34 42 51 46 61 51 61 46 24 0 60 45 59 51 56 

Like TOPMODEL, there was generally a similar trend between the observed and the 
simulated hydrograph during the wet season. However, the hydrograph response was  

 
(a) 

Hydrology 2022, 9, x FOR PEER REVIEW 12 of 19 
 

 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 7. Observed rainfall, observed hydrograph and the hydrographs simulated by tank model. 
(a) Observed rainfall in 2015; (b) Observed rainfall in 2016; (c) Observed hydrograph and the 
hydrograph simulated during model calibration in 2015; (d) Observed hydrograph and the 
hydrograph simulated during model validation in 2016; (e) Hydrograph separation in 2015 during 
model calibration; (f) Hydrograph separation in 2016 during model validation. Qobs (observed 
discharge); Qsim (simulated discharge); Qover (overland flow); Qsub (subsurface flow). 

From Figure 8, as the NSE value increased, all the parameters-except A1; AH1; BH and 
CH–occupied a narrower zone in the parameter space. 

Figure 7. Observed rainfall, observed hydrograph and the hydrographs simulated by tank model.
(a) Observed rainfall in 2015; (b) Observed rainfall in 2016; (c) Observed hydrograph and the hydro-
graph simulated during model calibration in 2015; (d) Observed hydrograph and the hydrograph
simulated during model validation in 2016; (e) Hydrograph separation in 2015 during model calibra-
tion; (f) Hydrograph separation in 2016 during model validation. Qobs (observed discharge); Qsim

(simulated discharge); Qover (overland flow); Qsub (subsurface flow).
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From Figure 8, as the NSE value increased, all the parameters-except A1; AH1; BH and
CH–occupied a narrower zone in the parameter space.
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Figure 8. Scatter plots of NSE values versus the corresponding parameter values for tank model
parameter sets that were got during model calibration. Each dot represents a separate parameter
value from a given parameter set. Only simulations with an NSE value of at least 0.5 are shown.
(a) A scatter plot of NSE versus values of parameter A1; (b) A scatter plot of NSE versus values of
parameter A2; (c) A scatter plot of NSE versus values of parameter A0; (d) A scatter plot of NSE
versus values of parameter B1; (e) A scatter plot of NSE versus values of parameter B0; (f) A scatter
plot of NSE versus values of parameter C1; (g) A scatter plot of NSE versus values of parameter C0;
(h) A scatter plot of NSE versus values of parameter D1; (i) A scatter plot of NSE versus values of
parameter AH1; (j) A scatter plot of NSE versus values of parameter AH2; (k) A scatter plot of NSE
versus values of parameter BH; (l) A scatter plot of NSE versus values of parameter CH.

3.4. Comparison between Tank Model and TOPMODEL

From Table 3, it was apparent that during the calibration period, both models had ‘very
good’ performances in terms of the NSE objective function values. In terms of RSR values,
tank model and TOPMODEL had ‘good’ and ‘satisfactory’ performances respectively. It
follows that tank model had a better objective value performance than TOPMODEL during
the calibration period.

However, during validation, TOPMODEL outperformed tank model, with TOP-
MODEL having a ‘very good’ NSE performance, and a ‘good’ RSR performance while tank
model had a ‘sufficient’ NSE performance and an ‘unsatisfactory’ RSR performance.

As depicted in Figures 6 and 8, during model calibration, equifinality in the same
calibration period was observed. Given the dynamic nature of the parameters, uncertainty
in the physical meaning of the TOPMODEL and tank model parameters crept in.

From Figures 5 and 7, the response of the simulated hydrographs was generally in
tandem with that of the observed hydrograph, albeit with under estimation or some-
times overestimation of discharge. However, during a low rainfall period-e.g., between
September and November of 2015-the simulated hydrograph pattern due to tank model
did not mirror that of the observed hydrograph. On the other hand, in the same period,
TOPMODEL fared better in mirroring the observed hydrograph pattern.

During a rainfall event(s), much of the runoff predicted by TOPMODEL was subsur-
face flow while tank model predicted most of the flow as overland flow.
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4. Discussion

With increased computing power, it was possible to run up to 10,000,000 model it-
erations during calibration. As the number of iterations increased, so did the chances of
getting parameter sets with high calibration efficiency performances. However, this height-
ened equifinality, with many different parameter sets having equal predictive performance
based on an objective function. This then calls on the modeler to ‘optimise’ parameter set
decisions based on experience, perceived responses of the catchment and the shape of the
baseflow curve.

The value of meaningful observed data in the rejection of competing parameter sets
cannot be overlooked [60]. Thanks to equifinality, the modeler is reminded of the need to
have a personal perception of the physical world, especially through field investigations,
prompting a return to classical hydrology, as the search for parameter sets that ought to be
rejected continues.

Satellite rainfall products offer gridded, finer spatial resolution data for running hydro-
logical models. Kobayashi et al. [48] found as acceptable the detection accuracy of GSMaP
satellite rainfall products in Eastern Uganda. However, their research focussed on the low
to mid-elevation areas. Indeed, satellite rainfall products have been found to be inaccu-
rate in the higher elevation areas [49]. Therefore, the study by Kobayashi et al. [48] needs
furthering to include the verification of the accuracy of GSMaP satellite rainfall products
in higher elevation areas in Eastern Uganda. When this is clarified, then satellite rainfall
products would be considered as input data for hydrological models in Eastern Uganda.

It is hypothesised that tank model had a more pronounced equifinality than TOP-
MODEL. This premise is based on the reasoning that because of its greater number of
calibrated parameters (16), their (parameter) interdependence was greater than that among
the 5 TOPMODEL parameters. If this were the case, then it can be further argued that
compared to tank model, TOPMODEL parameters had a stronger relationship with the
physical characteristics of the catchment.

In being able to respond to the low rainfall events during/after a dry period, TOP-
MODEL showed a more robust performance especially in the wetting up phase after the
localisation and disconnection of saturated areas. This robustness could be attributed to the
fact that TOPMODEL is built on the ‘variable source area’ concept [44]. On the other hand,
tank model, which assumes a lumped rainfall-runoff response, was unable to respond
meaningfully during the wetting up phase following disconnection of saturated areas. The
challenges of model response when localisation and separation of saturated areas occurs
are elucidated in [61].

The ‘over-prediction’ of flow as subsurface flow and the subsequent ‘under-prediction’
of overland flow by TOPMODEL following a rainfall event(s) could be attributed to the
large value of the Te parameter. This could point to the existence of the ‘preferential’ flow
pathways in the catchment that are described in Beven [61]. The differing behaviour of
both models in hydrograph separation during rain season(s) requires further investigation,
e.g., through hydrograph separation experiments, etc., to affirm the more realistic flow
separation curves. Or perhaps the details of hydrograph separation are not important for
irrigation planning?

Cases of under prediction of peak discharge could be attributed to localised rainfall
events that were missed by the rain gauge. Indeed, Sugawara [50] reported that tropical
rainfall was highly localised, requiring multiple spatially distributed rain gauge networks
to get a more meaningful representation of catchment rainfall. When the shortcomings of
GSMaP rainfall products identified by Takido et al. [49] are clarified, they (GSMaP products)
could complement ground observed data, offering finer spatial resolutions.

The superior performance of TOPMODEL during validation could be attributed to
the fact that TOPMODEL parameters were more physically meaningful than those of tank
model. Indeed, some TOPMODEL parameters like m, and Te can be indirectly calculated or
measured directly: an estimation of parameter m, for example, can be found by the analysis
of the baseflow recession curve [35] while parameter Te can be measured directly [45].
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Additionally, cognisant of the equifinality phenomenon, it is possible that we were ‘lucky’
enough to find a TOPMODEL parameter set that performed well both in calibration and
validation, and that of tank model is hidden somewhere in the parameter space, waiting to
be found.

Based on acceptable NSE and RSR values during model calibration, both tank model
and TOPMODEL were applicable to Atari River catchment for the simulation of daily river
discharge for irrigation and drainage planning. However, owing to its better performance
during the validation period, TOPMODEL was found to be a more robust model for run-
off forecasting in Atari River catchment. This showed that TOPMODEL, with its more
complex model formulation, and the more physically meaningful parameters, was superior
in predicting discharge during a ‘data-less’ period. This then justified, to an extent, the
recent drive towards the more process-based models.

However, in no way was this an endorsement of TOPMODEL’s superiority over tank
model, but rather an admission that the authors were able to find a TOPMODEL parameter
set that performed well both in calibration and validation: a tank model parameter set that
could match or even exceed TOPMODEL’s validation performance could exist somewhere
in the parameter space, waiting to be discovered. Indeed, owing to its larger number
of unknown parameters (16), equifinality in tank model might be exacerbated, going by
Beven’s reasoning [60].

TOPMODEL also had the added benefit of having fewer parameters (5 parameters)
that required calibration than tank model (16 parameters). Moreover, TOPMODEL could
represent the soil moisture content at a spatially distributed scale which can have important
applications in irrigation scheduling or drainage design. Okiria et al. [39] also reported
the possibility of using a well calibrated TOPMODEL as a tool to detect errors in observed
hydro-meteorological data, given the physical meaning of its parameters. Nevertheless, the
challenge of estimating the initial conditions of TOPMODEL must be addressed to ensure
its successful application for irrigation system design and operation.

5. Conclusions

Cognisant of the recent drive towards the more complex, process-based models, there
ought to be a justification for preferring complexity over simplicity. This study attempted
to tackle this issue by comparing the simpler tank model as a lumped model with the
more complex TOPMODEL as a semi-distributed model. The study was done for the Atari
River catchment, in Eastern Uganda. During model calibration, the performance of both
models was closely matched in terms of NSE and RSR values. Owing to TOPMODEL’s
better performance during model validation (a ‘very good’ NSE value and a ‘good’ RSR
value for TOPMODEL compared to a ‘sufficient’ NSE value and an ‘unsatisfactory’ RSR
value for tank model), TOPMODEL was judged to be better at forecasting hydrographs in
Atari River catchment. This showed that the more complex model formulation, with the
more physically meaningful parameters–TOPMODEL–showed robustness in predicting
discharge during a ‘data-less’ period. This then justified the recent drive towards the more
process-based models. TOPMODEL’s strengths can be further enhanced by addressing
the challenges of estimating the initial conditions. Going forward, more meaningful data–
observed rainfall and discharge, etc.-, a more rigorous calibration regime, and an expanded
study, are needed to confirm the findings herein.
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