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Abstract: Streamflow forecasting in mountainous catchments is and will continue to be one of the
important hydrological tasks. In recent years machine learning models are increasingly used for such
forecasts. A direct comparison of the use of the three gradient boosting models (XGBoost, LightGBM
and CatBoost) to forecast daily streamflow in mountainous catchment is our main contribution.
As predictors we use daily precipitation, runoff at upstream gauge station and two-day preceding
observations. All three algorithms are simple to implement in Python, fast and robust. Compared
to deep machine learning models (like LSTM), they allow for easy interpretation of the significance
of predictors. All tested models achieved Nash-Sutcliffe model efficiency (NSE) in the range of
0.85–0.89 and RMSE in the range of 6.8–7.8 m3s−1. A minimum of 12 years of training data series is
required for such a result. The XGBoost did not turn out to be the best model for the daily streamflow
forecast, although it is the most popular model. Using default model parameters, the best results were
obtained with CatBoost. By optimizing the hyperparameters, the best forecast results were obtained
by LightGBM. The differences between the model results are much smaller than the differences within
the models themselves when suboptimal hyperparameters are used.

Keywords: streamflow forecasting; machine learning; XGBoost; random forest; multiple linear
regression

1. Introduction
1.1. Streamflow Forecasting

Streamflow forecasting is crucial component of effective flood protection and water
management. A reliable streamflow forecast is still one of the main goals of hydrological
research [1]. Scientists and practitioners are interested in both extreme events, such as
floods and droughts, and medium flows. In practice, however, forecasting models seem
to be used and verified in relation to one specific type of task, such as prediction of low
flows [2] or drought forecasting [3]. Forecasting a wide spectrum of streamflows with one
model is not an easy task and few models have such a wide range of applicability [4].

Mountainous rivers, due to the high flow dynamics, are particularly prone to the risk
of flooding, but flood modeling in such areas is extremely difficult [5]. The source of these
difficulties is complex topography, shorter concentration times of flood waves and the
local nature of extreme rainfall, often limited to only one or several mountain valleys [6].
Traditional physical models describe the individual processes that transform rainfall into
runoff. The streamflow prediction horizon depends on the purpose of the forecast. Violent
phenomena, such as floods, are usually forecasted in a shorter horizon—hours or days.
Long-term forecast of streamflow (days-months) is usually made for the needs of water
management, to balance water resources [7]. The presented analysis is based on daily
runoff and precipitation data. The runoff forecast is also generated on a daily basis. This is
adapted to mountainous catchments where the times to peak in flood waves are shorter
than in lowlands.
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The rapid development of data-driven hydrological models in recent years allows
us to look at streamflow forecasting problem from a different perspective, also in the
area of water management [8]. Physically-based hydrological models capture simplified
representations of the physical processes that underlie streamflow, while data driven
approaches can provide more accurate predictions [9], mainly due to better possibilities of
modeling non-linear dependencies [10]. Although traditional forecasting methods based on
the description of physical processes have many advantages, the scientists are beginning to
see the potential of data-driven models, including Machine Learning (ML) algorithms [11].
Data-driven models may try to replace classical models, but there are also attempts to use
them in conjunction with classical models [12].

1.2. Data-Driven Models

In traditional hydrological models, the role of data is of secondary importance. The
focus is on conceptual or physical representation of the phenomena that use data mainly
for models calibration purposes. In the case of data-driven models, it is the data that
determines the model itself. Machine learning, which has become popular in recent years,
uses the concept of data-driven models and find practical application in many areas of
science, including hydrology [1,13]. Machine learning models are successfully used for
forecasting evapotranspiration [1], precipitation [14], soil moisture [15], groundwater levels
and streamflow [1,16–18]. As found by [16] ensemble model strategies are superior over the
regular (individual) model learning in hydrology. Currently, there are many data-driven
models available, ranging from simple models to models that require significant computing
power. The simplest models are, for example, regression models, while the most advanced
models include deep machine learning models. The best results of streamflow forecasting
are currently obtained from recursive and deep models, such as LSTM [17,18]. However,
this type of deep learning models is typically criticized for a lack of interpretability [19]. In
the pursuit of better models, one of the essential goals of prediction can be lost—model
interpretability. Model interpretability is the ability to correctly interpret a prediction
model’s output [20]. It engenders appropriate user trust, provides insight into how a model
may be improved, and supports understanding of the process being modeled. The SHAP
(SHapley Additive exPlanations) model [20] assigns each feature an importance value for a
particular prediction.

The selection of appropriate meteorological, hydrological and geomorphological pa-
rameters (called features) for the data-model is extremely important. It is found that ML
models could fail in predicting streamflow from only meteorological variables in the ab-
sence of past values of streamflow due to the lagged relationships between streamflow and
meteorological variables [18]. This is directly related to the interpretability of the model, as
only for models with such a feature can the set of input parameters be appropriately se-
lected.

In this paper, we present an analysis of state-of-the-art data-driven models that are
interpretable. Thus, the models of deep machine learning were omitted, the results of inter-
pretability of which are still in the realm of research by many authors. The simplest models,
such as Multiple Linear Regression (MLR), are often used as reference models [18]. The
MLR and Random Forest (RF) were used as the base models to evaluate streamflow forecast
results. Both are successfully used to model the water cycle elements—precipitation [21],
evaporation [22] and rainfall-runoff modeling [23,24]. Random forests is simple and fast
algorithm with high predictive performance, widely used in hydrological applications. A
detailed research on the use of RF in hydrology has been prepared by [8].

Three popular models were selected for this research: XGBoost, LightGBM and Cat-
Boost. Although the main area of application of the presented models are classification
problems, they are also successfully used for regression tasks, including modeling various
processes related to the water cycle. [25] used XGBoost for predicting ice phenomena in
eight water gauges on the Warta River, Poland. [26] used XGBoost for stream temperature
prediction in the Pacific Northwest and Mid-Atlantic regions.
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Most of the authors found that more advanced models such as Convolutional Neural
Networks (CNN) or Recurrent Neural Networks (RNN), give slightly better flow prediction
results [13,18,27]. One of the most widely used RNN models is the Long Short-Term
Memory (LSTM) [1]. Compared to other types of RNNs, LSTMs do not have a problem
with exploding/vanishing gradients and can learn long-term dependencies between input
and output features. However, there are studies showing that the XGBoost and LSTM
models give similar forecast results [28]. This may mean that result depends on the
features adopted for the construction of the ML model, and perhaps also on a specific
implementation. A comprehensive review of deep learning applications in hydrology
and water resources was prepared by [1]. An extensive and detailed comparison of the
ensemble machine learning algorithms has been published by [16].

The Interpretable Artificial Intelligence (IAI) models are capable of unveiling the
rationale behind the predictions while eXplainable Artificial Intelligence (XAI) models
are capable of discovering new knowledge and justifying results, which are critical for
enhanced accountability of data driven predictions [13]. The tree-based models presented
in this paper are IAI model and can transform into XAI models when they are coupled
with the explanatory methods such as the SHAP [20]. Machine learning models such as
Convolutional Neural Networks (CNN) or Long Short-Term Memory (LSTM), which give
slightly better flow prediction results, however, are not interpretable [13].

1.3. Aim of the Present Study

The aim of the study was to verify popular machine learning methods that are rela-
tively easy to parameterize, interpretable and give results not much worse than state-of-the-
art models. As found by [16], the boosting techniques (e.g., XGBoost, LGBoost) have been
more frequent and successfully implemented in hydrological problems than the bagging
(RF) approaches. The authors were not able to find in the literature a direct comparison
of boosting algorithms to forecast daily streamflows. The most comprehensive compari-
son of decision tree-based models presented by [13] shows that scientists mainly develop
improved versions of individual algorithms by comparing them with baseline versions,
not with each other. The most frequently used model is XGBoost [16,29], but it is also the
oldest model from the presented originating in year 2016. We decided to check whether the
newer algorithms, LGBoost [30] from 2017 and CatBoost [31] from 2018, will provide better
forecasts. While the XGBoost algorithm is still the most popular, CatBoost authors claims
that their solution is not only much faster, but also gives better predictions [32]. The thesis
of CatBoost’s better performance has been confirmed for big data work cases [33].

In the case of comparative analyzes, it is important to be able to verify the results for
possibly undisturbed observations that can be easily repeated in other catchments. For this
reason, a mountainous river catchment was selected for the analysis, with a possibly natural
flow regime, not disturbed by, for example, retention reservoirs. As data source we decided
to use only global projects with public data. Daily precipitation was derived from the
ERA5 project [34], and the average daily streamflow observations from The Global Runoff
Data Centre (Koblenz, Germany). Among the most commonly used streamflow predictors,
such as precipitation, temperature, past (lagged) streamflows, evapotranspiration and
vegetation indices, it was decided to use only two key parameters: precipitation and
lagged streamflows. If non-informative predictor variables are included in the model,
the performance of some algorithms (e.g., linear regression) may decrease considerably,
while if too many predictor variables are included, the computational burden may become
prohibitive [29]. Flow forecasts are calculated for gauged cross-sections, but as [35] proved,
presented models can also be successfully used for ungauged catchments.

The subsequent sections of the manuscript are organized as follows. In Section 2 we
present study area, data used and machine learning boosting methods implemented to
predict runoff. Two baseline models named Multiple Linear Regression and Random Forest
are used here as the reference. The Section 3 presents a comparison of daily streamflow
forecasts for five analyzed models and three input data scenarios. An in-depth analysis of
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the results in the context of selected machine learning models is presented in the Section 4.
The last Section 5 summarizes all the works.

2. Materials and Methods
2.1. Study Area

A mountainous Skawa River catchment with little land development, located in the
Polish Carpathians, was selected as the research area. This region of Europe is at risk of both
flooding [6] and drought [36,37]. The Skawa River is one of the most flood-prone mountain
rivers in Polish Carpathians. Mean annual precipitation at Wadowice meteorological
station in the period 1955–2014 was 816 mm [38]. Station in Wadowice recorded one of the
highest number of anomalously high precipitation months in the region [39]. The highest
monthly precipitation at Jordanów meteorological station exceeded 300 mm [40]. The mean
snow cover duration for the period 1950–2018 is about 70 days, but with a tendency to
systematically shorten due to climate change [41].

The Skawa River to Wadowice gauge station has catchment area of 835 km2 (Figure 1).
The mean annual runoff at Wadowice gauge station from years 1961–1997 equals 12.7 m3s−1,
with mean annual flood runoff 242 m3s−1 [42]. This high ratio Qmax : Qmean = 19 confirms
mountainous characteristic of Skawa catchment from hydrological perspective. According
research of [42], in the last century the minimum annual water stage of Skawa River at
Wadowice station has lowered by more than 2 m. It is related to the erosion of the river bed
and should not be understood as a decrease in flows.

Figure 1. Skawa River catchment (red area) with gauge stations used in presented research—Osielec
and Wadowice.

From three gauge stations available in upper part of Skawa River we used two for
this analysis—Osielec and Wadowice. Osielec cross-section located 34 km upstream from
Wadowice (Figure 1) is treated as main source of upstream runoff data. The third gauge
station (Jordanów) is omitted in this study because it is too close to the Osielec station
(about 9 km).
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The mean annual runoff calculated from longer observations used in this research
equals 3.7 m3s−1 for gauge station Osielec (years 1970–2020) and 12.3 m3s−1 for Wadowice
(years 1950–2020).

2.2. Data

All data used in the study come from public databases with a global reach. The
source of the daily streamflow data is The Global Runoff Data Centre (GRDC), 56068
Koblenz, Germany. The GRDC operates under the auspices of the World Meteorological
Organisation (WMO) and is lead by The German Federal Institute of Hydrology. The
Global Runoff Database is a unique collection of river discharge data on a global scale.
It contains time series of daily and monthly river discharge data of currently more than
9800 stations worldwide. The database is continuously updated by national hydrological
services. The daily precipitation data comes from a reanalysis project ERA5 [34]. The data
in this database covers the period from 1950 to 2–3 months before the present and are
generated with a spatial resolution of approximately 9 km.

For model training we used 29 years of daily data from 1981–2009. A fragment of the
data from 1990 is shown in the form of a hyetograph and hydrograph for three stations
in Figure 2. For model evaluation we used 7 years of daily data from years 2010–2017.
The scope of the data was limited to 2017, as the Świnna Poręba dam, located upstream
Wadowice gauge station, was started to be filled in 2018, which had an impact on the course
of hydrographs.

Figure 2. Sample data used in presented research—daily precipitation and daily runoff at three
cross-sections of Skawa River in summer 1990.

The daily streamflow in the Wadowice cross-section was the forecast value based on
three scenarios, presented in Table 1. In Scenario 1, only current and historical precipitation
data in the catchment area were used. In Scenario 2, only the current and historical data
for the streamflow in the Osielec cross-section, located upstream from Wadowice, were
used (Figure 1). The last scenario assumed the use of the previously mentioned data and,
additionally, historical data from the Wadowice cross-section. Historical data should be
understood as daily data from the previous day (named as lag1) and two days before (lag2)
(Table 1).
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Table 1. The predictor variables used in subsequent scenarios (indicated by X). Lag1 and lag2 are
observations from n antecedent days.

Predictor Scenario 1 Scenario 2 Scenario 3

Precipitation X X
Precipitation lag1 X X
Precipitation lag2 X X
Runoff upstream

(Osielec) X X

Runoff upstream lag1 X X
Runoff upstream lag2 X X

Runoff lag1 (Wadowice) X
Runoff lag2 X

2.3. Baseline Models

One linear regression model (Multiple Linear Regression) and one bagging-based
model (Random Forest) were selected as benchmark algorithms.

2.3.1. Multiple Linear Regression (MLR)

The MLR approach predicts values of a dependent variable y when independent
variables (x1, x2, . . . , xn) are given [43]. The MLR equation takes the following form:

y = a + b1x1 + b2x2 + . . . + bnxn, (1)

where y is the dependent variable, a is the constant value or intercept of the regression
line and y axis, bi is the amount the response variable y changes by the independent
variables x1, x2, . . . , xn.

2.3.2. Random Forest (RF)

Random Forest is an ensemble of unpruned classification or regression trees created
by using bootstrap samples of the training data and random feature selection in tree induc-
tion [44]. Prediction is made by aggregating (majority vote or averaging) the predictions of
the ensemble. In the bagging algorithms, the decision trees run in parallel independently
and do not interact with each other [13]. The bagging algorithms (including RT) are most
suitable for problems with small training datasets [16].

2.4. Boosting Models

Gradient boosting models are an ensemble of weak classifiers or regressors (e.g., a
decision tree model) where multiple weaker models are combined to produce a stronger
model [13]. In the boosting algorithm, multiple trees are grown sequentially using the
information from the existing trees. A new decision tree is generated by improving the
performance of the tree generated in the previous iteration. All presented boosting models
are implementations of Gradient Boosted Decision Tree (GBDT).

2.4.1. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (also known as XGBoost) is a method based on gradient
boosting proposed by [45]. In this technique, the decision trees classifier is commonly used
as a weak model [16]. The predictions are created from weak learners that continuously
improve the former learners. The XGBoost introduces the regularization term in the
objective function to prevent overfitting

O =
n

∑
i=1

(L(yi, F(xi)) +
t

∑
k=1

R( fk) + C, (2)
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where O is objective function, R( fk) denotes the regularization term at the k iteration time,
and C is a constant. The regularization term is expressed as

R( fk) = αH +
1
2

η
H

∑
j=1

w2
j , (3)

where α denotes complexity of leaves, H represents the number of leaves, η denotes the
penalty parameter, and wi is the output of each leaf node. The XGBoost splits the trees
depth-wise or level-wise. Each tree (decision) computes the feature and corresponding
threshold along with the best branch effect. Consecutive splits are performed to grow the
tree structures.

Among all boosting algorithms, it is the XGBoost model that is probably most often
used, also for streamflow forecasting in gauged catchments [1,16,29], but not exclusively.
Laimighofer et al. [2] proposes XGBoost model for predicting monthly low flow in un-
gauged catchments.

2.4.2. Light Gradient Boosting Machine (LGBoost)

Light Gradient Boosting Machine (LightGBM or LGBoost) was proposed by [30]. This
histogram-based algorithm increases the training speed and reduces memory consumption
by trees leaf-wise growth strategy with a maximum depth limit. According to the level-wise
growth strategy, the leaves on the same layer are simultaneously split. Leaves on same layer
are indiscriminately treated, whereas they have different information gain. Information
gain indicates the expected reduction in entropy caused by splitting the nodes based on
attributes [46]

IG(B, V) = En(B)− ∑
ν∈(V)

|Bν|
B

En(Bν) (4)

En(B) =
D

∑
d=1
−pd log2 pd, (5)

where En(B) is the information entropy of the collection B, pd is the ration of B pertaining
to category d, D is the number of categories, ν is the value of attribute V, and Bν is the
subset of B for which attribute has value ν.

Few implementations of LGBoost model for streamflow prediction are published,
confirming its effectiveness [47,48]. Improved version of LGBoost, named SSA–LightGBM,
significantly outperforms state-of-the-art deep learning LSTM model [48].

2.4.3. Categorical Boosting (CatBoost)

Categorical Boosting (also known as CatBoost) is a permutation-driven alternative to
the classic algorithm, and an innovative algorithm for processing categorical features [31,32].
There are two new concepts in the proposed method: ordered target statistics and ordered
boosting. An in-depth analysis of this algorithm in terms of classification and regression
for different tasks was published by [33].

The use of CatBoost for regression problems in earth sciences (mainly meteorology)
has been published [33], but we could not find a single example of a use for streamflow pre-
diction.

2.5. Models Implementation

All selected ML models are implemented in the Python 3.10.4 language. The Scikit-
learn 1.1.2 library [49] was used as the base library. Two models from this library were used
as benchmark—LinearRegression and RandomForestRegressor. The following regressors
were compared as part of the analysis: XGBRegressor 1.6.2 [45], LGBMRegressor 3.3.3 [30]
and CatBoostRegressor 1.1 [31].

The modules of the Scikit-learn library were used for data preprocessing: transforma-
tion using the MinMaxScaler normalization function and the TimeSeriesSplit function for
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data split specific for time series. For model training we used 29 years of daily data from
1981–2009, which means 10,585 observations. For model evaluation we used 7 years of
daily data from years 2010–2017, that is 2920 observations.

The baseline model comparison assumed the use of default hyperparameters. This
was done for the three scenarios presented in Table 1, each with a different data set. In
Scenario 1, only current and 1, 2 days lag precipitation data were used. In Scenario 2, only
the current and lag data for the streamflow in the Osielec cross-section, located upstream
from Wadowice, were used. The last Scenario 3 we used of data from Scenarios 1–2 and,
additionally, lag data from the Wadowice cross-section.

The XGBoost model has 6 global, 22 tree booster and 5 learning hyperparameters to
optimize. The LGBoost has 19 and CatBoost has 9 parameters to tune. In order to compare
the models with each other, two common and most frequently used hyperparameters were
optimized in grid-search. The number of trees in the ensemble (n_estimators) was opti-
mized in the range [200, 500, 1000, 2000, 5000, 10,000]. The learning speed (learning_rate)
was optimized in the range [0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 0.7, 0.9, 1].

2.6. Evaluation Metrics

In order to assess model performance two absolute error measure are calculated: root
mean square error (RMSE) and mean absolute error (MAE):

RMSE =

√
∑n

i=1(yi − ŷi)2

n
, (6)

MAE =
∑n

i=1|yi − ŷi|
n

, (7)

where yi is the observed data, ŷ represents the predicted values and n number of observa-
tions. A perfect model would have a RMSE and MAE equal zero. Both errors are given in
the same units as the modeled quantities.

Additionally, the Nash-Sutcliffe model Efficiency (NSE), a widely used metric to
evaluate the performance of hydrologic models, is calculated [50]:

NSE = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳi)2 , (8)

where ȳi is the mean of observed data. Nash-Sutcliffe Efficiency can range from −∞ to 1.
A value of 1 corresponds to perfectly fitted model and all values above 0 are viewed as
acceptable levels of performance [51]. The NSE value below 0 indicates that the mean
observed value is a better predictor than the simulated value, which indicates unaccept-
able performance.

Importance of the predictors was estimated using permutation_importance function
from Scikit-learn library.

3. Results

A summary of the model evaluation metrics for three scenarios with default parame-
ters is provided in Table 2. Considering only precipitation as input data in the first scenario
the best forecast results are generated by RF and LGBoost models. The worst results are
generated for CatBoost and MLR. With only upstream runoff data as input in the second
scenario, the best results are generated by XGBoost model and the worst by CatBoost and
MLR. Using all parameters (precipitation, upstream runoff and lag runoff) the best results
are generated by CatBoost mode and the worst by XGBoost and MLR.
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Table 2. Streamflow forecast model performance with default parameters. The best results for each
scenario are underlined, the worst are in italic.

Model
Only Precipitation Only Upstream Runoff All Parameters

NSE RMSE MAE NSE RMSE MAE NSE RMSE MAE

MLR 0.460 14.798 8.500 0.748 10.104 4.784 0.848 7.850 3.142
RF 0.533 13.765 8.385 0.773 9.595 4.073 0.848 7.841 2.606

XGBoost 0.467 14.692 8.364 0.777 9.506 3.958 0.839 8.082 2.633
LGBoost 0.524 13.888 8.224 0.759 9.885 3.960 0.876 7.077 2.508
CatBoost 0.436 15.120 8.343 0.739 10.274 4.041 0.886 6.800 2.400

In the case of using only precipitation as streamflow predictor the relative difference
of NSE was 22%, with 0.533 for the best (RF) and the worst 0.436 (CatBoost). The difference
in RMSE was equal 10% corresponding to 13.765 and 15.120 m3s−1 for the same models.
The difference in MAE was equal 3% with best result of 8.224 m3s−1 for LGBoost. Thus,
the benchmark model (RF) turned out to be the best model for this scenario, and CatBoost
the worst.

For scenario with only upstream runoff the results are much better and differences
smaller: 5% for NSE, 8% for RMSE and 21% for MAE. For this scenario, the XGBoost with
NSE of 0.777 and RMSE of 9.506 m3s−1 turned out to be the best model. The CatBoost
model reported the worst metrics.

For scenario with all the parameters the NSE results are improved by 0.109 and RMSE
is decreased by 2.706 m3s−1. The CatBoost with NSE of 0.886 and RMSE of 6.800 m3s−1

turned out to be the best model, while XGBoost the worst. Therefore, it can be assumed that
the scope of the input data used had a significant impact on the improvement of the results.

A graphical comparison of the forecast results with the observations for the test data
is shown in Figure 3. Benchmark models are characterized by a slightly larger spread of
values, especially in the area of low flows.

Figure 3. Scatterplot of observed and predicted streamflow with default model parameters for all
data scenario (precipitation, upstream and lag runoff).

Predictor significance analysis is one of the big advantages of the presented models
over the deep learning models. The most important predictor turned out to be the runoff
in the upstream cross-section (Osielec) (Figure 4). Other significant features were the
information from the previous day: runoff in the tested cross-section, precipitation and
runoff in the upstream cross-section.
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Figure 4. The XGBoost model built-in feature importance. Lag1 suffix corresponds to information
from previous day, lag2 from two days ago. Runoff features are for Wadowice cross-section, while
runoff-upstream for Osielec cross-section.

Table 3 shows the results of the individual models after the optimization of the
hyperparameters. The differences between the individual models are slight, although
the best results were obtained for the LGBoost model. The resulting NSE is 0.886 and the
RMSE is 6.785 m3s−1.

Table 3. Streamflow forecast model performance after hyperparameters optimization. The best
results are underlined, the worst are in italic.

Model NSE RMSE MAE n_estimators learning_rate

XGBoost 0.850 7.798 2.598 500–10,000 0.1
LGBoost 0.886 6.785 2.696 200–10,000 0.5
CatBoost 0.878 7.024 2.462 1000–10,000 0.1

Regardless of the model, these statistics are constant for a wide range of parameter
n_estimators and similar learning_rate.

4. Discussion

In the first of the analyzed scenarios, the streamflow predictive models would be
given only precipitation as input (Figure 5). Given the complexity of such rainfall-runoff
models and the relatively low resolution of the precipitation field from the ERA5 project in
relation to the size of the catchment area, the poor results visible on the scatterplot should
not be surprising. The range of predicted streamflows for each of the models used is much
smaller than the range of observed data. Paradoxically, for this data set, the best results
were obtained using the reference model—RF. The CatBoost model was the worst. It can be
concluded that for this catchment basing only on the precipitation does not give satisfactory
results of streamflow forecasts.

In the second scenario, only the upstream runoff data from the Osielec cross-section
was used. The Figure 6 shows a significant improvement, except for the MLR model, which
significantly increases the values for low flows. This is consistent with the observation
of [52] that XGBoost outperforms SVM model not only in forecasting low flows, but also in
high flows in terms of MARE, NSE and R.
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Figure 5. Forecast with default parameters based only on precipitation data.

Figure 6. Forecast with default parameters based only on runoff data.

In the last stage of the analysis, optimization of hyperparameters was carried out.
Selection of the appropriate hyperparameters of by grid-search and cross validation is
time-consuming process [52]. As practice shows, with such a large number of parameters
as in the XGBoost model, it may turn out that the obtained results are worse than those
generated using the default parameters. It is clearly visible on the attached heatmaps
(Figure 7), where for certain combinations of parameters the results are significantly worse
than the results before optimization.

Figure 7. NSE values in hyperparameters optimization for (a) XGBoost, (b) LGBoost and (c) CatBoost.

As shown by the analysis of hyperparameters (Figure 7), learning rate turned out to be
key in optimization. The change in the number of estimators, although having an impact,
was not the key optimization direction. Other authors confirm potential problems with the
optimization of the XGBoost model, related to the large number of parameters requiring
optimization. Ref [52] notes that although the XGBoost shows better capability to deal with
overfitting problems than other tree-based models, the hyper-parameters in XGBoost need
to be carefully tuned to attain satisfactory forecasts and better generalization capability.
The analysis of Figure 7 shows that much more important than the selection of the model is
its proper tuning. The differences between the best model results are much smaller than the
differences within the models themselves when the wrong parameters are used. When time
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cannot be spent optimizing hyperparameters, the use of the default regressor parameters
may be a better solution to the regression problem for predicting streamflows.

Compared to similar analyzes, we managed to obtain slightly better forecast results.
The reason may be a very long time series used for training, consisting of 29 years of
daily observations. It was successful despite the use of only a few simple characteristics
(precipitation and runoff) with historical data going back only two days. All our tested
models achieved NSE in the range of 0.85–0.89 and RMSE in the range of 6.8–7.8 m3s−1.

In [17] study the LSTM model achieved NSE equal 0.68 for daily streamflow prediction
based on precipitation, temperature, dew point, wind speed and potential evapotranspi-
ration. Ref [52] for monthly streamflow forecast using XGBoost in two Chinese rivers
reported NSE equal about 0.78. For forecast based only on meteorological data using
XGBoost [18] achieved NSE of 0.67 and 0.61. [53] reported for deep learning models of
monthly streamflow forecast NSE equal 0.75 and 0.76, for CNN and LSTM respectively.
Ref [27] compared EA-LSTM with XGBoost, achieving much better results using LSTM for
nine years of training data and 531 catchments in US. The meadian NSE score for XGBoost
was 0.66, while for LSTM 0.74. Most authors use the oldest and most popular XGBoost
model, but our analysis shows that this model is the worst at predicting daily streamflows
in mountainous catchments.

An analysis of the hydrographs predicted by individual models can provide many
interesting observations, since the model success metrics only provide aggregate statistics.
The following paragraphs are devoted to the analysis of selected hydrographs for the test
data from years 2010–2017. Due to the high dynamics of streamflows in this catchment, all
of the presented graphs show hydrographs in logarithmic scale, as it will make it much
easier to see the differences between the models.

Low flows are usually overestimated for all the models. The LGBoost predictions are
the highest and stand out from other models and observations. This is clearly visible at the
turn of August and September 2012 (Figure 8). This is not the only such case, so it can be
concluded that models of this type are not suitable for forecasting low flows.

Figure 8. Daily runoff forecast for Wadowice on Skawa River in year 2012—low flows case.

High flows are usually underestimated by all models. With the XGBoost model, the
greatest deviations from the observations can be noticed. The tested models have similar
problems with mapping some events, e.g., the beginning and middle of 2017 (Figure 9). For
unknown reasons, the flow predicted by XGBoost is overestimated here for high flows and
underestimated for low flows. The middle of August 2017 is particularly interesting, where
the XGBoost forecast is very different from the other models.
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Figure 9. Daily runoff forecast for Wadowice on Skawa River in year 2017—high flows case.

The models usually behave similarly, but there is a difference in the XGBoost forecasts
(Figure 10). The plot shows one of the largest flood waves from 2014. The XGBoost model
significantly overestimated the flow forecast compared to the other models. You can also
see serious problems of all models with the projection of the forecast after the culmination
of the wave has passed.

Figure 10. Daily runoff forecast for Wadowice on Skawa River—XGBoost performance problems.

Usually the wave peak time is well predicted, but there are episodes where all models
have problems. On average flows from the summer of 2014, individual models generate
forecasts that differ from the observational data (Figure 11). The individual waves will
appear, but they are shifted in time. The forecasted rising wave from the end of July has
completely different dynamics than the observed wave.
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Figure 11. Daily runoff forecast for Wadowice on Skawa River—problem with flood wave peak time.

It should be noted that the summer period is in Skawa River catchment the time of
the most intense precipitation, often with a small spatial extent but high intensity. In this
particular period, when precipitation data with sufficiently high spatial resolution is not
available, all forecasts are burdened with a considerable error.

Sometimes the models give the signal of the flood wave in advance of the observation.
This can be seen, for example, in the wave from the beginning of April 2017 (Figure 12).
It is not easy to explain. This may be due to the fact that the models do not take into
account factors such as the catchment retention, which is important in the spring. This
may also explain the wave forecast in mid-June 2017 (Figure 12), while water probably
from the rainfall may have infiltrated. The analyzed models also lack information about
the air temperature and snow cover melting, which is usually used for forecasts. In the
analyzed mountain area, water retention in the snow cover affects the water balance in
winter and spring.

Figure 12. Daily runoff forecast for Wadowice on Skawa River—problem with forecast in advance.

In the presented analysis, only the most important predictors of streamflow were
taken into account. Their selection can be examined in detail thanks to the fact that all
of the tested models belong to the Explainable Artificial Intelligence category [54]. This
factor determines the advantage of models such as XGBoost, LGBoost or CatBoost over
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recursive models of the LSTM type, which give slightly better forecasts, but still are difficult
to interpret due to their black-box nature.

The feature importance ranking showed in our case that the key information is data on
streamflows at the Osielec cross-section located 34 km upstream from Wadowice. Adding
information from the last two days on precipitation and streamflows made it possible to
obtain results that were slightly better than other authors who used the XGBoost model.
Wang et al. [55] identified precipitation as the most important feature, but they did not
completely use runoff data as input data. Our forecasts, apart from using the flows on the
upstream cross-sections, were probably also possible thanks to the very long measurement
series used to learn the model.

For three years of training data (Figure 13) NSE is in the range between 0.60 and 0.74
for LGBoost and XGBoost respectively. For the CatBoost and LGBoost models, you can see
a significant and consistent improvement in performance, with NSE approaching 0.90. The
XGBoost model is the fastest to get good results, but beyond five years of training data,
its NSE is virtually unchanged. We can clearly see the deterioration of the performance
of all models at 10 years and then a significant deterioration of the performance of the
LGBoost model at 19 years of data. This means that the models, and LGBoost in particular,
are sensitive to training data. After exceeding 12 years of training data, the models behave
relatively stable. It can therefore be assumed that in the case of such forecasts, this would
be the recommended minimum period for model training.

Figure 13. Nash-Sutcliffe model efficiency as function of training dataset legth (years of daily
observations).

5. Conclusions

Streamflow forecasting is and will continue to be one of the important hydrological
tasks. Machine learning models are increasingly used for such predictions. A direct com-
parison of the use of the three main gradient boosting models (XGBoost, LightGBM and
CatBoost) to forecast daily streamflow is our main contribution. We present models perfor-
mance comparison for mountainous Skawa River catchment, Poland. For this research we
use daily precipitation and runoff data from 1981–2017. The conclusions of the analysis are
as follows:

1. The gradient boosting algorithms used in models such as XGBoost, LightGBM and
CatBoost are simple to implement, fast and robust. Compared to deep machine



Hydrology 2022, 9, 226 16 of 18

learning models (eg LSTM), they allow for easy interpretation of the significance of
predictors.

2. The gradient boosting algorithms provide a good streamflow prediction in mountain-
ous rivers. All tested models achieved Nash-Sutcliffe model efficiency (NSE) in the
range of 0.85–0.89 and RMSE in the range of 6.8–7.8 m3s−1.

3. In order to obtain an NSE above 0.8, the recommended period of training data should
be not less than 12 years.

4. The XGBoost did not turn out to be the best model for the daily flow forecast, although
it is the most used model. Assuming the use of models with their default parameters,
the best results were obtained with CatBoost. By optimizing the hyperparameters, the
best forecast results were obtained by LightGBM.

5. The differences between the model results are much smaller than the differences
within the models themselves when suboptimal hyperparameters are used.

6. The predictions of the lowest streamflows are overestimated by all analyzed models.
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