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Abstract: Among numerous methods that have been developed to estimate potential evapotranspira-
tion (PET), the Food and Agricultural Organization Penman–Monteith model (FAO P–M) is often
recognized as a standard method to estimate PET. This study was conducted to evaluate the applica-
bility of three other PET estimation methods, i.e., Shuttleworth–Wallace (S–W) model, Thornthwaite
(TW) and pan methods, to estimate PET across Sri Lanka with respect to the FAO P–M model. The
meteorological data, i.e., temperature, relative humidity, wind speed, net solar radiation, and pan
evaporation, recorded at 14 meteorologic stations, representing all climate and topographic zones of
Sri Lanka, were obtained from 2009 to 2019. The models’ performances were assessed based on three
statistical indicators: root mean squared error (RMSE), bias, and Pearson correlation coefficient (R).
In comparison with the FAO P–M model estimates, the seasonal and annual estimates of all three
models show great differences. The results suggested that pan and S–W methods perform better in
the dry zone of the country. Both S–W and pan methods underestimated PET over the entire county
in all seasons. TW does not show consistent results over the country, thus being found as the least
reliable alternative. Although S–W is highly correlated with the FAO P–M model, the application of
the model in a data-scarce region is more constrained, as it requires more parameters than the FAO
P–M model. Thus, the study suggests employing alternative methods based on the region of the
country instead of one single method across the entire country.

Keywords: FAO Penman–Monteith model; pan evaporation; potential evapotranspiration;
Shuttleworth–Wallace model; Thornthwaite model; Sri Lanka

1. Introduction

Evapotranspiration (ET) is the loss of surface and soil water to the atmosphere as
water vapour by the combined actions of the two processes: evaporation from surface
water bodies, bare soil and other surfaces that intercept rainwater, and transpiration from
plants [1]. ET plays a significant role in the global water budget; hence, an accurate esti-
mation of ET is essential for water resources management, ecosystem management and
climatological studies. ET is primarily driven by soil condition, plant type, plant devel-
opment stage and weather parameters such as solar radiation, wind speed, humidity and
temperature [1]. Because of the large number of influencing factors and their heterogeneity
over a watershed, accurate estimation of ET is challenging. Thus, estimation of potential
evapotranspiration (PET), the potential amount of water that could evaporate and transpire
from a landscape vegetated with unlimited water supply to the surface [2], or reference
ET (RET), evapotranspiration of a hypothetical reference crop (defined by Allen et al. [3]
as a crop having height of 0.12 m, surface resistance of 70 s.m−1, and an albedo of 0.23)
having unlimited water supply to the surface, have been widely used instead of actual

Hydrology 2022, 9, 206. https://doi.org/10.3390/hydrology9110206 https://www.mdpi.com/journal/hydrology

https://doi.org/10.3390/hydrology9110206
https://doi.org/10.3390/hydrology9110206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/hydrology
https://www.mdpi.com
https://orcid.org/0000-0002-0858-0156
https://orcid.org/0000-0001-7758-8365
https://orcid.org/0000-0002-7341-9078
https://doi.org/10.3390/hydrology9110206
https://www.mdpi.com/journal/hydrology
https://www.mdpi.com/article/10.3390/hydrology9110206?type=check_update&version=2


Hydrology 2022, 9, 206 2 of 26

ET estimation [4,5]. As the vegetated surface is vaguely defined in PET, more narrowly
defined RET has seen more predominant applications [4]. However, currently, PET has
been considered as the same as RET by many literature reports [4–6]. The actual crop
evapotranspiration is then estimated as a product of RET (or PET) and an empirical crop
coefficient (kc), which is given for each vegetation cover [7,8].

There exist a few dozen models and methods for estimation of PET, which can
usually be classified into six groups [8–10]: (1) mass-transfer based methods, e.g., [11];
(2) temperature-based methods, e.g., [12]; (3) radiation-based methods, e.g., [13]; (4) water
budget methods, e.g., [14]; (5) pan evaporation based methods, e.g., [15]; and (6) com-
bination methods based on the aerodynamic principle and energy balance, e.g., [15–17].
Srivastava et al. [7], however, have placed PET models under more broader categories as
(1) fully physically based combination models that account for mass and energy conser-
vation principles; (2) semi-physically based models that deal with either mass or energy
conservation (1–4 groups of the previously mentioned classification come under this); and
(3) black-box models based on artificial neural networks, empirical relationships, and fuzzy
and genetic algorithms (most recent developments utilizing machine learning and satellites
come under this category, e.g., [18]). As different PET models are based on different sets
of assumptions, each model inherits various limitations; hence, the results generated are
highly inconsistent [4]. Furthermore, each model has been originally developed for specific
regions. Therefore, the empirical relationships between evaporation and influencing factors
may not necessarily be the same for other regions [10]. These facts emphasize the necessity
of evaluating the appropriateness of a PET model for a region or climatic zone dissimilar
to that where the original model was developed. The aforementioned limitations make
it difficult to calibrate and establish an optimal PET model. Therefore, several compara-
tive studies and evaluation of several methods have been conducted worldwide [5], and
a summary of such studies suggest that different PET methods produce results that may
vary substantially. Among many PET methods, the Food and Agricultural Organization
(FAO) Penman–Monteith model (hereinafter referred to as FAO P–M) has been used as
the base for many previous comparative analyses [4,5,7,10,19,20], as the model has been
found to be applicable to many regions in the world without any extra adjustment to its
parameters [5,20]. Monteith [16] first developed the Penman–Monteith (P–M) model to esti-
mate evapotranspiration, which accounts for the potential evaporation over water surfaces
and the transpiration process, assuming the vegetation canopy as a single uniform cover or
“big-leaf”. The P–M model was then standardized by the FAO and World Meteorological
Organization [5,10] as FAO-56 (which is referred to as FAO P–M in this study).

Chen et al. [9] contrasted the performances of three PET methods, namely, FAO P–M,
the Thornthwaite (TW) model and the Pan method, across the entirety of China. They
found that the pan method works better than TW compared to FAO P–M. Tabari et al. [10]
evaluated 31 PET methods, among them pan and TW methods, against the FAO P–M
method. This study was executed in Iran, and it was discovered that mass-transfer-based
methods had the worst performances, while the radiation-based and temperature-based
models were best suited for the study area with a humid climate. In addition, they found
that the pan method had been underestimated. The performances of the radiation-based
Priestley–Taylor method and the temperature-based Hargreaves method over a study area
in eastern Africa were evaluated against the FAO P–M method by Ngongondo et al. [19],
and it was found that both methods significantly underestimate FAO P–M. In order to
find a common method to estimate PET in Cape Coast, Ghana, Owusu-Sekyere et al. [20]
compared four methods, including the pan method, with the FAO P–M method considering
the hodological data obtained in seasons. They have concluded that although the pan
method displays a weaker correlation, it can be considered a replacement for the FAO
P–M method due to acceptable least mean absolute and mean absolute percentage errors.
Further, they found that all the methods underestimate the FAO P–M method. Lang et al. [5]
compared eight PET methods with the FAO P–M method. They selected an agricultural
area in southwestern China as the study area representing four different geomorphic units.
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Their study has shown that the better methods to substitute FAO P–M vary from one
geomorphic unit to another; however, in general, radiation-based methods performed
better than temperature-based methods. In contrast to the above studies, Lu et al. [4]
conducted a comparative study in the southeastern United States evaluating six PET
methods, including TW, with respect to actual evapotranspiration estimated by the water
balance method instead of the FAO P–M method. Out of all, TW has been found by them
as the worst performing model. Li et al. [21] compared remote sensing-based PET models
as an alternative to data-rich models. Srivastava et al. [7] evaluated a satellite-based remote
sensing method for a river basin which is rich with paddy lands, in eastern India.

Sri Lanka, an island nation in the Indian ocean, although blessed with heavy tropical
rainfall, which unfortunately has highly uneven spatial distribution, was divided into
three major climatic zones, i.e., the wet zone, intermediate zone and dry zone, based on
the spatial distribution of rainfall. The dry zone of Sri Lanka can be characterized as
a semi-arid region, where as per the literature, ET may have accounted for a loss in total
rainfall ranging from 30% to more than 60% [22]. Hence, ET can be considered to be a
major source of water loss in Sri Lanka’s water budget, as the dry zone is composed of
two-thirds of Sri Lanka (by area as in Figure 1). In addition, the dry zone is extensively
irrigated. Extensive irrigation increases ET significantly, and therefore, the local water
budget will be changed significantly [23]. The island nation’s probable future vulnerability
to climate changes and enhanced future agricultural needs to feed the rapidly growing
population may result in far greater ET, by placing an enormous burden on the country’s
water budget. Thus, accurate quantification of ET over Sri Lanka is paramount for efficient
and sustainable management of the country’s water resources. The most accurate local
ET can be obtained by using lysimeters, which are very costly and are not available in
Sri Lanka. This necessitates identifying alternative PET methods which can estimate ET
over Sri Lanka with greater certainty. No matter how important the ET estimation in Sri
Lanka’s water resources and irrigation management is, the attempts to identify better PET
models are still scant in Sri Lanka.

Therefore, this study was formulated to compare the performances of two PET models,
namely Shuttleworth and Wallace (S–W) and TW, across Sri Lanka with respect to the FAO
P–M method. Following many previous studies, the FAO P–M model was considered to be
the reference model for this comparative study. The pan method is one of the widely used
methods when necessary meteorological data to estimate PET based on other equations
are lacking [10]. Despite being the simplest low-cost technique to estimate PET [10], the
pan method only provides evaporation from an open-water surface without accounting
for transpiration [9]. However, as a general practice, the pan method has been commonly
applied to account for evapotranspiration in hydrological analyses in Sri Lanka, as well
as in some other countries [24–26]. By considering this fact, this study also evaluated the
performance of the pan method, mainly to analyse the correlation of the pan method with
estimated evapotranspiration values and then to investigate whether there is a necessity
for computing coefficients that can bridge pan evaporation and evapotranspiration.

The S–W method, which takes both evaporation and transpiration into account by
assuming two source-based (the crop and the substrate soil) schemes and balancing the
energy exchanged between soil; canopy; air space between soil and canopy; and the
atmosphere above the canopy, was also contrasted against the FAO P–M model. This
attempt is unique to this study, as the data-rich S–W model has not been considered for
previous comparative studies. Selection of the S–W model for the present study was
followed by the study of Senathilake et al. [27], in which the S–W model was evaluated
against pan method values and was found to be applicable to Sri Lanka. Since both FAO
P–M and S–W models are complex with many meteorological parameters that are not easily
obtainable, especially in data-scarce regions, and the pan method can be a tedious and
time-consuming task [26], it was decided to examine the performances of an empirical
equation, which has a minimum data requirement, with the standard method. Thus, the
temperature-based TW method, which was developed by Thornthwaite [12], was evaluated
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in the present study. TW, which was developed for a humid climate, requires only the air
temperature and duration of the site’s daytime to estimate PET. With a lack of parameters
that influence PET, TW estimates may be inaccurate in some regions, especially those
with dissimilar climates to where TW was first established. However, if the TW model is
proven to produce reliable estimates, it would be a better method for data-scarce regions,
as temperature might be the only parameter being measured continuously in such regions.
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Although several comparative studies have been conducted worldwide [4–7,10,19,20],
there appear to be only a few previous studies comparing the performances of different
PET models that were carried out in the tropics, especially across South Asia. Therefore,
not only could this study be employed by the water managers in Sri Lanka to identify the
optimal method for the estimation of PET across Sri Lanka, but it would also contribute to
addressing the aforementioned research gap because of its relevance to (1) many tropical



Hydrology 2022, 9, 206 5 of 26

counties, as Sri Lanka is a tropical country featured by high temperatures, high humidity
and unevenly distributed monsoon rainfall (both temporally and spatially); and (2) most
of south Asia, as Sri Lanka, finds many similarities to the rest of South Asian countries
in terms of tropical climate; environmental aspects; irrigation practices; data scarcity and
socio-economic conditions.

2. Study Area

Sri Lanka (please refer to Figure 1) is a tropical island in the Indian ocean, located
between 5◦ and 10◦ N latitude and 79◦ and 82◦ E longitude, with a total geographical area
of 65,610 km2, comprising 62,705 km2 area of land and 2905 km2 area of water bodies.
These water bodies comprise 103 distinct natural river basins and an extensive network of
tanks and reservoirs (about 13,000). Approximately two-thirds of the country’s landmass is
lowlands with elevations less than 100 m. For highlands, the elevations vary from 100 to
2500 m approximately, with the highest mountain peak of 2525 m located in the country’s
central part [29].

The rainfall distribution is governed by the two major monsoon seasons: southwest
monsoon (SWM) from March to September and northeast monsoon (NEM) from December
to February. The wet zone is separated by the 2000 m annual average rainfall isohyet and
is on the western and southwestern slopes. In the wet zone, rainfall ranges from 2000 to
over 5000 mm, with an annual average rainfall of about 2400 mm. On the other hand,
in the dry zone, the annual average rainfall is about 1450 mm, and rainfall can even be
below 1000 mm. In addition to the two major monsoons and the inter-monsoon rains,
tropical depressions that originate in the Bay of Bengal frequently enter Sri Lanka, resulting
in extreme rainfall events, which sometimes may exceed 500 mm d−1. Nearly 35–45%
of annual rainfall contributes to annual surface runoff. However, in most dry zone river
basins, the runoff percentage is less than 35%, with the rest of the rainfall being lost as
evaporation and groundwater recharge [29].

Mean annual temperature in the lowlands and highlands varies between 26.5 and 28.5
and 14.7–17.1 ◦C, respectively. In addition, the pan evaporation values show considerable
temporal and spatial variations—varying between 795 and 1900 mm/year, with higher
values recorded in the hotter dry zone. The climate of the country is characterised by high
relative humidity, generally ranging between 75 and 95% [29].

The Department of Meteorology of Sri Lanka maintains only 22 main meteorological
stations over the country. The measured meteorological data are expensive in Sri Lanka,
and there is a scarcity of measured data. One of the major limitations was obtaining solar
radiation data, as solar radiation is not measured at all 22 main meteorological stations.
Moreover, some of the stations that were not selected had incomplete data due to various
reasons, including the 30-year civil war (which ended in 2009), instrumental errors, and
logistic errors. Therefore, only 14 stations were selected (refer to Figure 1) so that they
mostly cover all climatic (wet, intermediate and dry) and topographic (hilly areas and
lowlands) zones of the country.

3. Methodology
3.1. PET Estimation Models
3.1.1. The FAO Penman–Monteith Model

The FAO P–M equation for calculating RET can be expressed as follows (Equation (1)) [3].

ETo =
0.408∆(Rn − G) + γ 900

T+273 U2(es − ea)

∆ + γ(1 + 0.34U2)
(1)

where ETo is the total daily RET (mm), ∆ is the slope of saturation vapour pressure curve
(kPa ◦C−1), Rn is the net incoming radiation (kPa), G is the soil heat flux (MJ m−2), γ is
the psychrometric constant (kPa ◦C−1), T is the average daily temperature (◦C), U2 is the
wind speed at 2 m height (ms−1), es and ea are the saturation vapour pressure (kPa) and the
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ambient vapour pressure (kPa), respectively. The equations required to estimate various
parameters are presented in the Appendix B. However, similarly in a few recent studies
(e.g., [5,6].), this study considers RET estimated by the FAO P–M method to be the same as
the PET.

3.1.2. The Shuttleworth–Wallace Model

In the S–W model, total PET is computed as the summation of two major evapotran-
spiration components: soil evapotranspiration and transpiration from the dry canopy. The
S–W model for estimating PET is presented in Equations (2)–(9) [17]:

ETo = CcPMc + CsPMs (2)

PMc =
∆(Rn − G) +

{
24× 3600× ρCpD− ∆rac(Rns − G)

}
/(ra + rac)

∆ + γ
[
1 + rc

ra+rac

] (3)

PMs =
∆(Rn − G) +

{
24× 3600× ρCpD− ∆ras(Rn − Rns)

}
/(ra + ras)

∆ + γ
[
1 + rs

ra+rac

] (4)

Cc =
1

1 + (RcRa)/[Rs(Rc + Ra)]
(5)

Cs =
1

1 + (RsRa)/[Rc(Rs + Ra)]
(6)

Ra = (∆ + γ)ra (7)

Rc = (∆ + γ)rac + γrc (8)

Rs = (∆ + γ)ras + γrs (9)

where λ is the latent heat of vaporisation (MJ kg−1), ETo is the total daily PET (mm), ρ is the air
density (kg m−3), Cp is the specific air heat at constant pressure (= 1.013× 10−3 MJ kg−1 ◦C−1),
D is the water vapour deficit at the reference height (kPa), ras is the aerodynamic resistance
between the soil surface and canopy air space (s m−1), Rns is the net radiation at the
substrate surface (MJ m−2), ra is the aerodynamic resistance between canopy source and
reference level (s m−1), rs is the soil resistance (s m−1), and rac is the bulk boundary-layer
resistance of the canopy (s m−1). The necessary relationships to estimate the parameters of
the S–W model are given in the Appendix B.

3.1.3. The Thornthwaite Model

The Thornthwaite [12] model is based on the length of daytime and monthly mean air
temperature and is presented in Equation (10).

ETo = 1.6 Ld

(
10Tm

I

)a
(10)

where ETo is the total monthly PET (cm), Ld is the daytime length, Tm is the monthly mean
air temperature (◦C), I is the annual heat index computed using Equation (11), whereas a is
computed using Equation (12).

I =
12

∑
j=1

(Tj

5

)1.514

(11)

where Tj is the mean temperature (◦C) for the month j (j = 1, 2, . . . ,12).

a = 6.75× 10−7 I3 − 7.71× 10−5 I2 + 0.01791I + 0.49239 (12)
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Daytime length is the time from sunrise to sunset in multiples of 12 h. Being a tropical
country throughout the year, the sunrise to sunset duration can be taken as an average of
12 h, which gives Ld = 1 for all months in this study.

3.1.4. Data Acquisition

The study requires both meteorological and spatial data (Table 1). The meteorological
data, i.e., time series data of maximum and minimum daily temperatures, relative humidity
(day and night), solar net radiation, wind speed, and pan evaporation measured at the
selected meteorological stations from 2009 to 2019 were purchased from the Department of
Meteorology of Sri Lanka.

Table 1. Summary of data including data types, sources, resolutions and period.

Type Data Source
Resolution

Period
Raw Data Processed Data

M
et

eo
ro

lo
gi

c
D

at
a

Maximum Temperature

Department of
Meteorology Sri Lanka

Daily Monthly

2009–2019

Minimum Temperature Daily Monthly
Relative humidity (day) Daily Monthly
Relative humidity (night) Daily Monthly
Net Solar Radiation Monthly Monthly
Wind Speed Daily Monthly
Pan evaporation (Class A) Daily Monthly
Rainfall Monthly Monthly

Sp
at

ia
lD

at
a

Elevation (DEM)
Department of Survey,
Sri Lanka

30 × 30 m 6 × 6 km
Land Use Map N/A (Vector) 6 × 6 km
Soil type map N/A (Vector) 6 × 6 km

NDVI US Geological Survey
Earth Explorer 30 × 30 m (Monthly) 6 × 6 km (Monthly) 2009–2019

Soil Moisture NASA Earth Data 30 × 30 m (Monthly) 6 × 6 km (Monthly) 2009–2019
Land cover threshold
parameters (Table A1) Zhou et al. [26]

Spatial data were obtained from various sources as described below. Elevation data are
required for the S–W model to calculate the atmospheric pressure (please see Equation (A4)
in the Appendix B), which is then used to compute ρ (Equation (A3) in the Appendix B).
Elevation values were extracted from a digital elevation model (DEM) with a spatial
resolution of 6× 6 km, which was obtained from the Department of Survey, Sri Lanka.
The land-use and soil maps of Sri Lanka, which were originally in vector format, were
obtained from the Department of Survey, Sri Lanka, and then were transformed to raster
data layers with each having a resolution of 6× 6 km. In addition, the NDVI values (with
a resolution of 6× 6 km) were computed using remotely sensed Landsat images from
2009 to 2019, acquired from the United States Geological Survey Earth Explorer website.
Furthermore, the monthly root zone soil moisture values were retrieved from the NASA
Earth Data website (https://earthdata.nasa.gov/, accessed on 16 October 2020 from 2009
to 2019, and similar for the other data, these were converted to a grid of 6× 6 km. The land
cover threshold parameters required by the S–W model were gathered from Zhou et al. [30]
and are given in the Appendix B (please refer to Table A1).

3.2. Overall Methodology
3.2.1. Model Building

Firstly, as required, the values of spatial data layers were extracted at the 14 selected
stations. Then, all three models were developed in the Microsoft Excel office package, so
that the models estimated monthly (for all 10 years) point PET at 14 selected stations.

https://earthdata.nasa.gov/
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Secondly, an attempt was made to develop spatial distributions of PET over the
country, as estimated by each method. For this purpose, the entire country was represented
by a 6× 6 km grid. Since the selected 14 meteorological stations are located one dozen
kilometres apart, having a grid with a finer resolution would not necessarily have improved
the model’s performance. Furthermore, a coarser resolution than the selected could not
cover the entire country, with a substantial amount of square kilometres missing in the
coastal areas. However, the selected grid can still be seen as a finer grid compared to the
spatial distribution of meteorological stations, which must be noted as one of the major
limitations of this attempt. Owing to this limitation, more reliable results can be expected
near the stations, and further away from a station, any model may have to be applied with
lesser confidence.

Since the meteorological data were point data, as the first step in spatial modelling,
thematic layers (having grid size of 6× 6 km) of each required meteorological data were
prepared in ArcGIS 10.5. The thematic layers were prepared based on the average monthly
data (averaged from 2009–2019) at 14 selected stations, as there are 12 (for each month)
thematic layers of each meteorologic parameter. The thematic layers of temperature,
relative humidity and evaporation were generated by inverse distance-weighted (IDW)
interpolation [27]. The Universal Kriging interpolation method was used to obtain the
spatial distribution of solar net radiation and wind speed [27]. Thematic layers of mete-
orological data for June (a mid-year month was selected for visualization) are shown in
Figure 2.

Each and every grid cell value of all the required parameters were extracted into
spreadsheets to create a spatial database, and all three models were again developed
considering the spatial base. This process generated monthly PET (only for an average year)
for each grid cell. Then, the outputs of all three methods were again exported to ArcGIS
10.5 in order to generate final PET distribution maps. Thus, the generated PET distribution
layers also contain grids of 6× 6 km spatial resolution covering the entire country. Then,
these estimations and pan evaporations were compared with each other.

3.2.2. Performance Evaluation

To evaluate the performances of other PET methods in comparison to FAO P–M, three
statistical indicators, namely, root mean squared error (RMSE), bias, and Pearson correlation
coefficient (R), were calculated. Only the mean monthly point PET values at the 14 stations
were considered under statistical performance evaluation. The governing equations for
RMSE and bias are given in Equations (13) and (14), respectively.

RMSE =

√
∑n

i=1(PETo−PETPM)2

n
PETPM

(13)

bias = ∑n
i=1(PETPM − PETo)

∑n
i=1(PETPM)

× 100 (14)

where n is the number of PET estimates, PETo is the PET estimated by the other three
methods (mm), PETPM is the PET estimated by FAO P–M. Pearson correlation coefficients
were computed in R statistical programming language.

A sensitivity analysis was carried out to assess the influence of each parameter on
FAO P–M model estimates by increasing each parameter by 5%, 10%, 15%, 20% and 25%,
one at a time, while others were kept at original values and computing per cent error. Due
to the complexity of the S–W model, no sensitivity analysis was performed on the model.
All the models were developed in MS Excel, and all performance evaluations except for
Pearson correlation were also carried out in MS Excel.
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Figure 2. Thematic layers of meteorological data in June (averaged from 2009 to 2019) and spatial
data: (a) elevation (m); (b) mean temperature (◦C); (c) wind speed (km/h); (d) net solar radiation
(MJ/m2); (e) relative humidity (%); (f) rainfall (mm).

4. Results and Discussion

Due to the unavailability of long-term data, especially solar radiation, calibration of
the FAO P–M model was not carried out. As per the literature, the FAO P–M method
is considered to be the standard RET (PET as considered by this study) method, since
the FAO P–M can be used globally without any need for extra adjustments to model
parameters [4]. The same reason negates the need for calibration of the FAO P–M model
for different study areas. Therefore, as a general practice, many previous comparative
studies [5,6,10,18,19] compared the performances of various PET models with respect to the
FAO P–M model, taking the FAO P–M model as the standard method without calibrating.
Furthermore, the range of PET values estimated by the FAO P–M model, 4.0–6.5 mm d−1,
was within the range of RET (2.9 to 10.8 mm d−1) obtained in Tamil Nadu, India, by
Subburayan [31]. Although Tamil Nadu is characterized by similar climatology as in
Sri Lanka, (as per Subburayan [31]) the range of (max to min) temperature and humidity
are respectively greater and lower than those of Sri Lanka. Furthermore, the wind speed,
which is 7.7 ms−1 [31], is significantly larger than in Sri Lanka. Most importantly, average
number of sunshine hours is 7.8 h [31], whereas in Sri Lanka, it is around 12 h. Hence, the
net solar radiation in Tamil Nadu is probably lower than in Sri Lanka. All above mentioned
variations in Tamil Nadu could be the reason for a wider range of RET estimated by
Subburayan [31]. However, another study, Bapuji Rao et al. [32], which also utilized FAO
P–M to estimate PET across India, have found that the annual PET ranges between 1700
and 1950 mm in southern India. The annual PET by FAO P–M across Sri Lanka varies
between 1460 and 2380 mm, which is wider than in southern India as estimated by Bapuji
Rao et al. [32]. However, as the boundaries of the Sri Lankan PET (as estimated by FAO
P–M) range are associated with extremes such as in Nuwara Eliya (which is discussed
later), the average PET range in Sri Lanka is well within this South Indian PET range.
Furthermore, Owusu-Sekyere et al. [20] found that in Cape Coast, Ghana (located between
5◦ and 6◦ N latitude), RET ranges between 3.5 and 4.42 mm d−1. This range is similar to
the current study’s FAO P–M model estimates near the Sri Lankan southwest coast, which
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is located in between the same latitudes as Cape Cost. As given by FAO [33], annual RET
across Sri Lanka varies approximately from 1000 to 2000 mm. As this study estimated, PET
at only three locations falls outside of the annual RET range of Sri Lanka, which is given by
FAO as a range from 1000 to 2000 mm. Therefore, with minor deviations at the two ends of
the range, PET estimated by the FAO P–M model in Sri Lanka agrees with previous studies
conducted in similar study areas, confirming the correctness of the FAO P–M model results
of this study.

The results of the sensitivity analysis are shown in Figure 3. Table 2 summarises the
Pearson correlation coefficients calculated by two correlation tests, which were performed to
compare how each meteorological parameter affects the FAO P–M and S–W estimates. The
FAO P–M shows the least sensitivity to the wind speed, which shows the least correlation to
PET estimated by the FAO P–M. This suggests that wind speed has a comparatively small
impact on FAO P–M estimates. This observation is in agreement with previous studies,
such as Ngongondo et al. [19] and Nandagiri and Kovoor [34]. Similar to the FAO P–M
model, the least correlation with the S–W model estimates are shown by the wind speed.
The p values prove that despite the models’ least sensitivities to wind speed, the correlation
of the parameter with PET estimates is significant in both FAO P–M and S–W models. All
the climatic parameters in the FAO P–M model were found to be significantly correlated
with the model’s estimates in all climatic zones in India as well [34].
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Table 2. Pearson correlation coefficient (R) between PET estimates (from FAO P–M and S–W models)
and models’ meteorological parameters, and p values.

FAO P–M Estimates S–W Estimates

R p Value R p Value

Net Radiation 0.88 0.6791 0.09 0.7498
Wind Speed 0.16 0.5892 0.16 0.5963
Temperature −0.44 0.1188 0.30 0.2898
Relative Humidity −0.23 0.4359 −0.23 0.4232

The key role played by the net solar radiation in PET estimation by the FAO P–M
model is reflected by the model’s highest sensitivity (Figure 3) and correlation (Table 2)
to the net solar radiation. Thus, in other words, net solar radiation is the major driving
factor in the FAO P–M model in the Sri Lankan context. Solar radiation is hardly measured
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at weather stations, even in developed countries such as the USA [35]; thus, obtaining
directly measured solar radiation data in data-scarce regions is exceptionally challenging. A
similar fact, i.e., the FAO P–M model is highly sensitive to the most challenging parameter
to measure, has been mentioned by Owusu-Sekyere et al. [20], confirming the current
study’s findings. Although not as high as in Sri Lanka, FAO P–M has shown the highest
sensitivity to solar radiation in the Yanhe River Basin, China [6]. This high sensitivity
basically limits the application of the FAO P–M model with high confidence, especially in
data-scarce regions.

Nevertheless, there are several empirical methods suggested by previous studies
(e.g., [30,34]) to estimate solar radiation rather than relying on direct measurements; some
of the other parameters required by these methods are also difficult to obtain. Contrary
to the FAO P–M model results, the S–W model shows, although positive, a minimum
correlation with the net solar radiation (Table 2), indicating that net solar radiation is not the
primary mechanism driving the S–W model estimates. The FAO P–M model shows second
and third higher sensitivities to relative humidity and temperature (Figure 3). Contrary
to the present study’s findings, Nandagiri and Kovoor [34] discovered that the maximum
temperature significantly impacts FAO P–M model output; however, solar radiation was
not incorporated in the factor correlation study of Nandagiri and Kovoor [34].

The FAO P–M model estimates are positively correlated with net radiation and wind
speed (Table 2), which is in agreement with Luo et al. [6], indicating a proportionate
relationship between said parameters and the model estimates. Generally, an inverse
relationship between relative humidity and PET is expected, and has been found by
previous researchers (e.g., [6]). The negative correlation coefficients demonstrated by this
study confirmed that the said expected relationship is valid for both the FAO P–M and
S–W models. The average temperature was found to have a negative correlation with the
FAO P–M model estimates, which has also been observed in a few locations across India by
Nandagiri and Kovoor [34].

4.1. Comparison of PET Estimates at the Selected Weather Stations

Averaged (from 2009–2019) monthly PET estimates (by all four methods) were summed
up annually and seasonally (two monsoon seasons) at fourteen meteorological stations
and are shown in Table 3. Spatial distributions of average annual PET estimates (by all
four methods) are displayed in Figure 4. Table 4 tabulates all three performance indicators:
RMSE, bias and R—computed based on monthly PET estimates. A cross-comparison of
the four methods was performed by finding the correlation coefficient of the monthly PET
estimated by each method, (1) over the entire country, (2) for the wet zone, (3) for the dry
zone and (4) for the intermediate zone. Hence, as in Table 4, the results of cross-comparison
reveal the degree to which each model agrees with each other in different regions. All
these statistical analyses were carried out only at meteorological stations, where input data
are more accurate, hence lessening the error resulting from interpolation, as explained in
Section 3.2.1. Performance statistics (Table 4) and spatial distributions (Figure 4) seem to be
contradicting each other at some regions, as the first ones were derived from monthly series
of PET, whereas the latter was derived from annual average series. Hence, Table 4 should
be referred to obtain more accurate results, while Figure 4 is used to mainly qualitatively
observe the spatial distribution of average annual PET.

A relatively higher influence of solar radiation on FAO P–M model estimates is re-
flected by the estimates showing a spatial variation similar to net solar radiation across
Sri Lanka. Despite a few exceptions, i.e., Jaffna, Nuwara Eliya, and Colombo, dry zone esti-
mates are the highest and wet zone ones are the lowest, while intermediate zone estimates
range from mid to high (Table 3). Nuwara Eliya, which is characterised by comparatively
(with the rest of the country) higher relative humidity throughout the year (Figure 2),
shows the maximum annual (2349.1 mm) PET predicted by the FAO P–M model (Table 3)
controverting to the expected low PET. These unexpected results can be explained by
observing the net solar radiation and temperature. Nuwara Eliya records the highest net
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solar radiation in Sri Lanka throughout the year (Figure 2). Thus, solar radiation is the most
influential parameter in the model with positive correlation results in larger PET estimates
in Nuwara Eliya. When altitudes of weather stations are considered, Nuwera Eliya station
is the highest (Figure 2); hence, the lowest mean annual temperature is recorded at Nuwera
Eliya station. As the temperature inversely affects the model estimates (Table 2), the lowest
temperature also has contributed to the significant deviation of the FAO P–M at Nuwera
Eliya from the expected—lower than the rest of the country (Figure 4). Furthermore, as
wind speed’s effect on ET increases as the temperature decreases [1], higher PET estimates
of the FAO P–M model can be supported by comparatively high wind speed recorded in
Nuwera Eliya (Figure 2). The viability of this reason was supported by Owusu-Sekyere [20].
This study identified relatively low wind speed to maybe be the reason for low PET range es-
timated for a hot and humid study area in Ghana versus PET estimated by Subburayan [31]
for a similar climate in India with higher wind speed. Galle has the lowest annual PET
value predicted by the FAO P–M model (15,020.1 mm, Table 3), which can be attributed to
the lowest mean annual net radiation and highest mean annual relative humidity (Figure 2).

Table 3. Two monsoonal (SWM and NEM) and annual PET estimated by FAO P–M, S–W, TW
and Pan methods (monthly estimates from 2009 to 2019 were averaged and summed up annually
and seasonally).

Station Climate Zone
FAO P–M S–W

SWM NEM Annual SWM NEM Annual

Jaffna

Dry Zone

827.4 305.2 1579.7 740.9 270.5 1408.7
Vavuniya 914.7 345.6 1829.4 598.0 262.0 1302.6
Anuradhapura 1011.8 412.9 2084.3 679.9 318.4 1486.4
Puttalam 815.9 373.7 1783.4 774.4 368.7 1734.8
Polonnaruwa 1059.5 312.3 2027.4 823.7 295.1 1648.1
Hamabantota 852.4 453.1 2003.0 751.0 419.5 1827.8
Kurunegala

Intermediate Zone
718.5 399.4 1713.3 641.2 356.9 1530.9

Badulla 848.9 401.9 1885.3 561.7 302.8 1291.9
Bandarawela 816.4 344.1 1714.3 467.2 240.4 1080.8
Katugastota

Wet Zone

649.2 368.3 1575.5 461.4 286.9 1216.2
Nuwara Eliya 923.3 591.6 2349.1 444.8 364.8 1338.3
Colombo 773.9 442.9 1858.5 350.7 313.6 1028.2
Rathnapura 655.3 420.9 1642.7 538.1 368.1 1375.0
Galle 672.5 312.4 1520.1 414.6 245.2 1044.8

Station Climate Zone
TW Pan

SWM NEM Annual SWM NEM Annual

Jaffna

Dry Zone

1092.7 339.2 2133.4 713.8 259.3 1394.3
Vavuniya 1060.8 343.4 2085.1 653.1 214.0 1234.9
Anuradhapura 1020.6 374.7 2113.0 633.1 219.9 1232.3
Puttalam 957.7 368.9 1978.3 742.5 271.6 1482.3
Polonnaruwa 894.2 329.1 1827.2 804.8 233.1 1466.0
Hamabantota 862.2 455.7 1989.3 663.6 348.2 1503.8
Kurunegala

Intermediate Zone
831.1 395.9 1879.7 469.9 287.1 1132.5

Badulla 545.3 219.6 1148.7 387.2 197.3 855.6
Bandarawela 448.2 192.9 949.8 455.7 209.6 969.3
Katugastota

Wet Zone

588.8 291.2 1361.9 440.5 309.8 1130.2
Nuwara Eliya 314.5 167.5 731.4 338.2 242.2 880.5
Colombo 868.9 443.6 1976.3 537.1 332.1 1302.9
Rathnapura 762.3 441.5 1851.1 363.3 234.3 910.0
Galle 761.5 416.0 1808.3 385.3 236.3 951.2
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Table 4. Seasonal and annual performance indicators: RMSE, bias and R of PET estimates from S–W,
TW and pan methods compared to the FAO P–M method.

RMSE Bias R

SW TW Pan SW TW Pan SW TW Pan

Jaffna SWM 0.10 0.32 0.14 10.45 −32.07 13.73 0.99 −0.22 0.72
NEM 0.11 0.11 0.15 11.38 −11.14 15.06 0.13 0.61 0.87
Annual 0.11 0.35 0.12 10.82 −35.05 11.74 0.98 0.71 0.81

Vavuniya SWM 0.35 0.16 0.29 34.62 −15.97 28.60 0.89 0.76 0.76
NEM 0.24 0.01 0.38 24.17 0.62 38.08 0.92 0.21 0.93
Annual 0.29 0.14 0.32 28.80 −13.98 32.50 0.89 0.91 0.98

Anuradhapura SWM 0.33 0.01 0.37 32.81 −0.86 37.43 0.81 0.14 0.94
NEM 0.23 0.09 0.47 22.88 9.25 46.74 0.81 0.51 0.96
Annual 0.29 0.01 0.41 28.68 −1.38 40.88 0.85 0.90 0.98

Puttalam SWM 0.05 0.17 0.09 5.08 −17.37 9.00 0.95 0.13 0.37
NEM 0.01 0.01 0.27 1.34 1.29 27.31 1.00 −0.17 0.91
Annual 0.03 0.11 0.17 2.73 −10.93 16.88 0.99 0.81 0.94

Polonnaruwa SWM 0.22 0.16 0.24 22.26 15.60 24.04 −0.05 −0.61 0.66
NEM 0.05 0.05 0.25 5.49 −5.39 25.34 1.00 0.19 1.00
Annual 0.19 0.10 0.28 18.71 9.88 27.69 0.97 0.90 0.94

Kurunegala SWM 0.11 0.16 0.35 10.75 −15.68 34.59 0.89 0.12 0.86
NEM 0.11 0.01 0.28 10.64 0.86 28.11 0.96 0.64 0.98
Annual 0.11 0.10 0.34 10.65 −9.71 33.90 0.90 0.76 0.88

Katugastota SWM 0.29 0.09 0.32 28.93 9.30 32.14 0.91 0.62 0.59
NEM 0.22 0.21 0.16 22.10 20.94 15.89 0.99 −0.11 0.96
Annual 0.23 0.14 0.28 22.81 13.56 28.27 0.84 0.64 0.71

Nuwara Eliya SWM 0.52 0.66 0.63 51.83 65.93 63.37 0.93 0.89 0.96
NEM 0.38 0.72 0.59 38.33 71.69 59.05 1.00 −0.50 0.77
Annual 0.43 0.69 0.63 43.03 68.86 62.52 0.81 0.22 0.82

Badulla SWM 0.34 0.36 0.54 33.84 35.77 54.39 0.48 0.95 −0.04
NEM 0.25 0.45 0.51 24.66 45.36 50.91 1.00 0.55 0.98
Annual 0.31 0.39 0.55 31.48 39.07 54.62 0.89 0.77 0.81

Colombo SWM 0.55 0.12 0.31 54.68 −12.28 30.60 0.20 −0.38 0.80
NEM 0.29 0.00 0.25 29.19 −0.15 25.00 −0.80 0.40 0.96
Annual 0.45 0.06 0.30 44.68 −6.34 29.89 −0.07 0.55 0.83

Bandarawela SWM 0.43 0.45 0.44 42.78 45.10 44.18 0.45 0.21 0.35
NEM 0.30 0.44 0.39 30.13 43.95 39.09 0.96 0.18 0.99
Annual 0.37 0.45 0.43 36.95 44.60 43.46 0.83 0.83 0.92

Rathnapura SWM 0.18 0.16 0.45 17.89 −16.33 44.56 0.81 −0.95 0.02
NEM 0.13 0.05 0.44 12.54 −4.91 44.32 0.98 0.65 0.93
Annual 0.16 0.13 0.45 16.29 −12.69 44.60 0.89 0.59 0.92

Hamabantota SWM 0.12 0.01 0.22 11.89 −1.15 22.14 −0.69 0.96 −0.05
NEM 0.07 0.01 0.23 7.43 −0.57 23.15 −0.14 0.48 0.76
Annual 0.09 0.01 0.25 8.75 0.69 24.92 0.47 0.79 0.78

Galle SWM 0.38 0.13 0.43 38.34 −13.24 42.71 0.86 −0.33 −0.72
NEM 0.22 0.33 0.24 21.51 −33.13 24.37 0.22 0.66 0.92
Annual 0.31 0.19 0.37 31.26 −18.97 37.42 0.72 0.53 0.05

Compared to the FAO P–M model estimates, the seasonal and annual estimates of the
S–W model show great differences (Table 3). As explained before, no sensitivity analysis
was carried out for the S–W model; furthermore, the correlation between model results and
land use/vegetation parameters was not analysed. Thus, the answer to the question “which
parameter/s the S–W model is sensitive to the most?” was deducted based on a former
study and qualitative observations in Figure 4b. Senathilake et al. [27] observed that the
annual PET values estimated by the S–W model follow a pattern similar to the annual crop
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growth pattern, both temporarily and spatially, especially in extensively irrigated areas,
such as Polonnaruwa, and no apparent similarities with the temporal or spatial distributions
of other parameters were identified. Figure 4 also provides proof of S–W model estimates’
closer relationship with the spatial distribution of cultivation in the country, as the highest
mean annual PET values are distributed across a belt covering extensively cultivated
areas (e.g., Anuradhapura and Polonnaruwa). Based on Senathilake et al.’s [27] study and
Figure 4b, it was concluded that the S–W model estimates must have a higher correlation
with land use/vegetation parameters, which can be employed to explain the vast difference
between the estimates of S–W and FAO P–M models. As per Table 2, the S–W model
results are also highly correlated with the average temperature. However, by observing
Table 3 and temperature records at the weather stations, a somewhat proportionate pattern
between temperatures and the estimates can be detected. For example, the highest annual
and NEM PET values are simulated in Hambantota and Puttalam (Table 3), generally the
hottest areas in Sri Lanka.

The positive bias suggests that the S–W model underestimates PET values across the
entire county annually and seasonally. The annual estimates show the least bias, 2.73% in
Puttalam, followed by Hambantota, Jaffna, Kurunegala, Rathnapura, and Polonnaruwa,
having positive biases of 8.75%, 10.65%, 10.82%, 16.29%, and 18.71%, respectively. The S–W
model generates lower PET values by approximately 20–50% than the FAO P–M model for
the rest of the country. This underestimation can be attributed to the smaller correlation of
the S–W model estimates to net solar radiation. Annual RMSE values (Table 4) in Puttalam,
Jaffna, Kurunegala, Hambantota, Rathnapura, and Polonnaruwa are less than 0.2. Pearson
correlations (R) in all the areas mentioned above, except in Hambantota, are greater than 0.9.
These statistics imply that the S–W model better fits the FAO P–M model in the areas above.
When the spatial distribution of those is considered, it can be concluded that PET yield by
the S–W model is closer to FAO P–M in the northwest of the country. This conclusion is
further confirmed by the correlation coefficients in Table 5, according to which the S–W
model and the FAO P–M model are highly correlated in the dry zone, as the north-western
part of the country falls into the dry zone. The S–W model estimates being closer to FAO
P–M estimates in the northwest is also valid for SWM and NWM, except for one significant
discrepancy (R = 0.13) in Jaffna during NWM, for which no proper explanation can be
found. Except for Colombo (which in Table 3 displays the overall highest annual bias and
the highest annual RMSE), the annual highest bias and highest annual RMSE values are
in the central hilly area of the country, suggesting that the S –W model would be the least
reliable in this region when the FAO P–M model is considered as the standard model. The
R value of the S–W model (0.49) computed for the wet zone in the region-wise analysis
(Table 5), which is the second least correlation (second only to the intermediate zone, where
R = 0.48) between the S–W model and the standard method, further supported the above
judgement as nearly two-thirds of the upcountry belongs in the wet zone, and nearly
one-third of the wet zone comprises hilly areas. As discussed earlier, the S–W method is
mainly affected by vegetation cover but not solar radiation as in the FAO P–M method.
Therefore, as the wet zone is rich with vegetation said weaker correlation between S–W
and FAO P–M methods could be expected.

The TW model estimates do not have consistency in calculated bias values (Table 4);
thus, it was concluded that the TW method could not capture the spatial distribution of
FAO P–M model estimates. When comparing Table 4 with Table 5, it is apparent that the
TW model overestimates annual PET in the regions where the annual average tempera-
ture is greater than 25 ◦C, with two exceptions in Hambantota and Polonnaruwa, which
have recorded average annual temperature values greater than 27 ◦C, but with positive
biases. Annual PET values are underestimated in Nuwara Eliya, Badulla, Bandarawela and
Katugastota and hence in the central hilly areas, where the average annual temperature
is lower than 25◦C. Generally, in the lowlands of Sri Lanka, mean annual temperatures
vary between 25 and 32 ◦C, and in hilly regions mean annual temperatures drop below
25 ◦C. Thus, a conclusion was drawn that the TW model overestimates annual PET in
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lowlands and underestimates PET values in high lands. This inconsistency may be affected
by the altitude. Many previous comparative studies, such as Chen et al. [9], Trajkovic and
Kolakovic, [36] and Trajkovic et al. [37], have also observed inconsistent spatial bias in
the TW model with respect to FAO P–M, but most researchers have identified no specific
reason. Calculated statistics suggest that the PET estimate by TW for SWM follows a spatial
distribution similar to the model’s annual PET, with a minor anomaly in Hambantota. The
TW model’s PET predictions for NWM are highly irregular and do not seem to follow
similar spatial patterns as the annual or SWM PET values. During the NWM, there is very
little correlation between the TW and FAO P–M. The reason for this observation may be
because of the possible superior influence of the SWM on the annual patterns than that of
NWM, which could be attributed to several facts, such as the SWM season is longer than
the NWM, brings in the most of annual rainfall and is the major cultivation season. This
observation on the other hand implies that the TW estimates do not follow the temporal
distribution of FAO P–M model estimates, which is not limited to the study area, but which
has also been detected in other regions by previous studies [9,36,37]. Further, it can be
seen that PET is overestimated in the SWM in the lowlands and is overestimated in the
hills. Valle Júnior [8] claimed that the TW model was highly overestimated during the wet
season—to which the present study agrees in the lowlands and during the SWM, the main
wet season in Sri Lanka. The reason for the higher overestimation in wet seasons may be
because the TW model does not consider humidity [8]. Chen et al. [9] also mentioned that
inconsistent results (both spatial and temporal) derived from TW may be from the TW
method’s inability to account for any other PET driving factors, such as wind speed and
humidity, which also reports vast variations spatially and temporally.

Table 5. Pearson correlation coefficients among four PET methods in different regions: entire county,
dry zone, wet zone and intermediate zone. PM, FAO P–M model; SW, S–W model; TW, TW model;
Pan, pan method.

Entire Country Dry Zone

PM SW TW Pan PM SW TW Pan

PM PM
SW 0.61 SW 0.76
TW 0.20 0.44 TW 0.67 0.47
Pan 0.55 0.67 0.69 Pan 0.78 0.76 0.73

Wet Zone Intermediate Zone

PM SW TW Pan PM SW TW Pan

PM PM
SW 0.49 SM 0.48
TW −0.48 −0.30 TW 0.21 0.84
Pan 0.16 0.00 0.37 Pan 0.54 0.67 0.59

Among all three methods, the pan method displays the most significant deviations
from the FAO P–M estimates (Table 4), giving the lowest PET values (Table 3). The pan
evaporation values have a consistent positive bias (Table 4) over all the locations and
all seasons, indicating underestimations of PET. This finding does not agree with many
literature studies (e.g., [38]), which claim that actual (or potential) evapotranspiration
is less than pan evapotranspiration. However, similar to the current study’s findings,
Tabari et al. [10], Nandagiri and Kovoor [34] and Xing et al. [39] also observed that the
pan method underestimated the FAO P–M model consistently over their respective study
areas in Iran, India, and Canada. Eagleman [40], explains the possibility of both under-
and overestimations observed by different researchers in different regions. As upper
plant leaves absorb more energy, they evaporate more water, and this amount should
be approximately the same, as the evaporation from shaded leaves is limited by lesser
energy. However, with the presence of advected heat, lower leaves are supplied with more
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energy; thus, higher evapotranspiration (than evaporation from water surface) is possible
in extensively vegetated areas. As the majority of the land mass of Sri Lanka is covered with
vegetation, and advection heat transfer is also possible, as mentioned by Eagleman [40],
an underestimation can be expected in Sri Lanka. Generally, said underestimations range
from 10 to 20%, whereas in this study, the underestimations varied from 11 to 40% with
two extremes of around 60% and 55% in Nuwera Eliya and Badulla, respectively. However,
these larger underestimations were unsurprising when compared with the findings of
a comparative study conducted in several humid and arid areas in southern India by
Nandagiri and Kovoor [34] who found that the pan method produced extremely low PET
compared to FAO P–M. In three southern states of India (namely Kerala, Andhra Pradesh
and Karnataka), mean daily PET values by FAO P–M and pan methods respectively varied
between 4.7–5.1 and 2.8–3.9 md−1. In the present study, those values varied between 4.0–6.5
and 2.4–4.2 md−1. These overlapping ranges of PET values by the two methods in the
two countries clearly indicate that underestimations by the pan method are also within the
same range of percentages. Looking at the possible unacceptance of the higher percentages
of underestimation by the pan method, Nandagiri and Kovoor [34] suggested reassessing
the pan coefficients for India. Based on extremely high underestimation by the pan method,
this study also suggests re-evaluation of pan coefficients in the Sri Lankan context.

When the pan method is considered, the highest annual average PET values (pan
method, Table 3) are in Hambantota, Puttalam, Polonnaruwa, Jaffna and Colombo (in the
decreasing order)—stations in the hottest and driest areas of the country—while the lowest
PET values are observed in Nuwera Eliya, Badulla, Rathnapura, Galle and Bandarawela
(in the increasing order)—stations representing colder and humid climates of Sri Lanka.
Therefore, it can be seen that the pan method undoubtedly reflects the temperature and
humidity distribution of the country. Chen et al. [9] observed the pan method to reflect
on different humidity conditions even across China [9]. The highest bias values ranging
from 63% to 45%, are observed in the stations located in the mountainous region (Table 4):
Nuwera Eliya (62.52%), Badulla (54.62%), Bandarawela (43.46%), and Rathnapura (44.60%).
At low elevations, pan evaporation was underestimated compared to the FAO P–M model
by lesser percentages ranging from 9% to 40%. When the stations are ranked from high to
low based on the calculated bias (pan method, Table 3), it is clear that stations are in the
reverse order of the rank based on annual average PET. At low elevations (except for Jaffna
and Puttalam), the annual RMSE values are greater than 0.2 and less than 0.4, whereas
the annual RMSE values vary between 0.4 and 0.63 at higher elevations. These results
indicate that the deviations from the FAO P–M model are fairly systematic over the country,
and the pan method performs better in lowlands. R values in Table 4 further confirm that
pan evaporation values and the FAO P–M model outputs have a fairly good correlation
in low elevations and a poor correlation in higher elevations. This is reinforced by the
cross-comparison of the four methods (Table 5), which produced an R value of 0.78 in the
dry zone, demonstrating a high correlation between the pan and FAO P–M methods. To
further elaborate on PET values and biases, we can confidently state that the pan method
works satisfactorily in hotter and drier environments. Temperature and humidity have
more distinct variations in high and lowlands compared to other parameters in the FAO
P–M model. Thus, those two could be identified as the parameters that determine the
distinctive greater and lower correlations in the high and lowlands, respectively. However,
within the scope of this study, no attempt was made to identify the dominant parameter.
Weerasinghe [41] conducted a study to find how pan method PET values correlate with
climatic parameters that could possibly influence PET, and a weaker correlation between
temperature and pan evaporations was found, as well as the strongest correlation between
humidity and pan evaporations. As the study was conducted in one of the hottest and
driest areas of the country, it can be assumed that humidity is the leading parameter.

Although the PET observed via the pan method is a representation of the combined
actions of solar radiation, wind, temperature, and humidity on evaporation, no clear
relationship can be identified between the other parameters and pan evaporations, mainly
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because those parameters do not display a systematic distinct spatial distribution over the
country, as temperature and humidity do.

Disregarding the Pearson correlation coefficient in Galle, the pan method has the
largest annual R values, which are greater than 0.7, all over the country. The high corre-
lations coupled with systematic deviations and greater correlation coefficients make the
pan method a better substitute for the FAO P–M model. However, it is recommended to
reassess the pan coefficients to establish appropriate zonal and seasonal corrections to the
pan method errors to enhance performance. It seems that the requirement to adjust pan
coefficients at regular intervals, probably more frequently due to rapid climatic changes,
has been identified by many former studies worldwide (e.g., [9,35]).

4.2. Cross Comparison of Four PET Methods

This study classifies the performances of each PET method with respect to the FAO
P–M model in different regions based on the R values as very good if R ≥ 0.90, good if
0.70 ≤ R < 0.90, moderate if 0.50 ≤ R < 0.70, low 0.30 ≤ R < 0.50 and poor if R < 0.30 (as
per classification given by Mukaka [42]). The classifications are shown in Table 5. In the
wet zone, the highest correlation of 0.49 with the FAO P–M has been exhibited by the S–W
method; however, the highest correlation itself is weak. TW has a minus correlation in the
wet zone, whereas the pan method shows a minimal positive correlation. Therefore, none
of the methods can be considered a suitable replacement for FAO P–M in the wet zone.
Even if all possible pairs of PET models were considered without limiting the comparison
to FAO P–M, none of the methods show any strong relationship with each other in the
wet zone. In the dry zone, the pan method has the strongest correlation (R = 0.78) with
FAO P–M, which was labelled as good performance with respect to FAO P–M. As the S–W
method is also highly correlated with the standard model, with an R value of 0.76, S–W
was also identified as a good estimator of PET (Table 6). Having a moderate correlation
(R = 0.67), the TW method can be categorised as a moderate performer, which can be
employed instead of the standard method. These better correlations were showcased by
considering only six stations spread over the dry zone, which account for nearly two-thirds
of the country. Although the better correlations in the dry zone compared to other regions
seem questionable with only six stations, given the data scarcity, the study has to rely on the
obtained results. In the intermediate zone, the highest correlation with FAO P–M is shown
by the pan method. Although not a stronger correlation, the correlation is still stronger than
any correlations in the wet zone. Thus, it can be deduced that the pan method performs
moderately in the intermediate zone (Table 6). Although it is not clear why some deviations
exist among different models, it is plausible since these PET models have been developed
for various climatic conditions and not for the Sri Lankan context. Thus, it is evident that
the calibration of PET models is required [8] but may be hindered by data scarcity [30].

Table 6. Performances of each method with respect to the FAO P–M model in different regions.
Ranked from the best to worst, in decreasing order. SW, S–W model; TW, TW model; Pan, pan method.

Classification of Regions
Classification of Performances

Very Good Good Moderate Low Poor

For entire country - - SW, Pan - TW

For the dry zone - Pan, SW TW -

For the wet zone - - SW, TW Pan

For the intermediate zone - - Pan SW TW

When considering the entire country, the TW model has the weakest correlation
(R = 0.22) with the standard model. As region-wise correlation analyses revealed, the TW
model performs the worst with respect to FAO P–M, except in the dry zone. These analyses
indicate that the TW model would not be a good substitute for the FAO P–M model in
Sri Lanka. Previous studies conducted in different parts of the world [4,9,37] have come to
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a similar conclusion—that the TW model performed worst. The poorest performances of
TW may be because TW uses a local thermal index established for the east-central USA,
where the model was developed [36], and that the index may be applicable to the climatic
conditions of Sri Lanka. Thus, the TW model should not apply as is but must be calibrated
to fit the local climate. Considering the entire country, the highest correlation (0.61) with
the FAO P–M model is shown by the S–W model, which is the second strongest correlation
the S–W model has with other models (Table 5) and seconds only to its correlation with
the pan method (R = 0.67). Thus, performances of S–W against both the pan and FAO
P–M methods were identified as moderate under this study. Therefore, the S–W was
identified as a possible alternative in the Sri Lankan context. However, with S–W being
the most complex method, the reliability of results depends on several variables, which
are not easily obtainable; hence again, it cannot be recommended as a good alternative.
As per the classification adhered to in this study, the pan method shows a moderate
correlation of 0.55 with the FAO P–M method over the entire country. However, Lu et al. [4].
Considered that an R value of 0.57 indicates high correlation. Thus, considering both
the classification mentioned above and the results tabulated in Tables 3–5, it would be
reasonable to recommend the pan method as a better estimator—but not the best method.
Furthermore, its performance can be enhanced by adjusting the pan coefficients [9,34].

Since the general practice in Sri Lanka is to employ pan measurements in hydrolog-
ical analyses, the applicability of the other methods instead of the pan method was also
evaluated in this study (Table 5). Over the entire country, among all the possible pairs of
PET models, the TW and pan methods have the highest correlation (R = 0.69). The reason
for this correlation may be that the pan method tends to follow temperature patterns (as
explained before), which is the only parameter in the TW method. Despite the higher
correlation between the TW and pan methods, given the underestimations by the pan
method with respect to the standard method, the study suggests employing the FAO P–M
method as the general practice in Sri Lanka whenever possible. This suggestion is because
the three methods exhibit great differences compared to the FAO P–M method, making it
difficult to agree on the best substitute for the FAO P–M. If the radiation data are uncertain,
following Chiew et al. [43], the study recommends establishing appropriate zonal and
seasonal corrections to the errors in the pan method at the meteorological stations so that
the computed pan coefficient could be applicable to the zone in which the station belongs
to. However, as this study pointed out, selecting a model that performs well in the region
of focus is always good practice.

5. Conclusions

FAO P–M estimates showed the highest correlation with net solar radiation with a
higher Pearson correlation coefficient value (R = 0.88), and the model is highly sensitive
to net solar radiation. The TW model generated inconsistent results with minimal cor-
relations; thus, it was identified as the least reliable method to use in place of the FAO
P–M model. Both S–W and pan methods have shown consistent positive bias, indicating
underestimation of PET over the entire county in all seasons. In low elevations, especially
in the dry zone, all three models performed well compared to the models’ performances in
the central hilly area. No model was found to be strongly correlated with the FAO P–M
model or each other in the wet zone. The pan measures were found to have the strongest
correlation with the FAO P–M in the dry zone. In different parts of the country, different
methods seem to produce a better correlation with the FAO P–M model; thus, the study
recommends selecting different alternative methods depending on the focused area of
the country instead of recommending a single alternative for the FAO P–M. In the case of
island-wide hydrological analysis requirements, the S–W model can be recommended, as
the S–W model showed the highest correlation with the FAO P–M over the entire country.
Nevertheless, the S–W model, being a complex one, which requires a large number of
meteorological data, some of which are not readily available in data-scarce regions, limits
the application of the S–W model with certainty. Further, the study suggests replacing
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the pan method, which is the widely used method to estimate PET in Sri Lanka, with the
standard FAO P–M model.
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Appendix A. Terminology

Ra —specific gas constant (= 0.287 kJ kg−1K−1)
Tk —mean temperature in Kelvin (= 273 + T) (K)
z —elevation above sea level (m)

Rnc —net radiation absorbed by the canopy (MJ m−2)
Rns —net radiation absorbed by the soil (MJ m−2)
Cr —extinction coefficient of the vegetation for net radiation = 0.5 (22, 24).

LAI —Leaf Area Index (dimensionless)
SR —simple ratio of hemispheric reflectance for near-infrared light to that for visible light

NDVI —Normalised Difference Vegetation Index
FPAR —fraction of photo-synthetically active radiation

Fcl —fraction of clumped vegetation (Table A1).
Rh —relative humidity
k —von Karman’s constant (k = 0.41)

u∗ —friction velocity (m s−1)
za —reference height (m)
d0 —zero-plane displacement of the canopy (m)
hc —the canopy height (m) (see Table A1)
η —eddy diffusivity decay constant of the vegetation

Kh —eddy diffusion coefficient at the top of the canopy (m2 s−1)
Z0 —“preferred” roughness length (m)
dp —“preferred” zero plane displacement
ua —wind speed at the reference height (m s−1)
zo —roughness length of the canopy (m)
zoc —roughness length of the closed canopy (m)
Cd —mean drag coefficient for individual leaves
zog —roughness length of ground (m) (see Table A1)
l —canopy characteristic leaf width (m)

uh —wind speed at the top of the canopy (m s−1)
u∗ —shear velocity (m s−1)

rst min —minimum stomatal resistance (s m−1) (see Table A1)
LAIe —effective LAI

θ —soil moisture
θw —plant permanent wilting point
θc —critical soil moisture at which transpiration is stressed

Appendix B. Set of Equations

Estimation of λ, ∆, ρ and γ
Chow et al. [44]

λ = 2.501− 0.002361 T (A1)
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∆ =
4098

(237.3 + T)2 × 0.611× exp
(

17.27 T
237.3 + T

)
(A2)

ρ =
P

RaTk
(A3)

γ =
CpP

0.622 λ
(A4)

Zhou et al. [30]

P = 101.3
(

293− 0.0065z
293

)5.26
(A5)

Estimation of radiation terms
Shuttleworth and Wallace [16]

Rn = Rnc + Rns (A6)

Rns = Rn exp(−CrLAI) (A7)

Mo et al. [35]; Zhou et al. [30]—Cr = 0.5
Zhou et al. [30]

SR =
1 + NDVI
1− NDVI

(A8)

FPAR = FPARmin + (FPARmax − FPARmin)
(SR− SRmin)

(SRmax − SRmin)
(A9)

LAI = (1− Fcl).LAImax
ln(1− FPAR)

ln(1− FPARmax)
+ (Fcl).LAImax

FPAR
FPARmax

(A10)

FPARmin = 0.001, FPARmax = 0.95, SRmin is the SR estimated for NDVI at 5% vegeta-
tion population (NDVI at 5% = 0.039 globally), SRmax is the SR estimated for NDVI at 95%
vegetation population (NDVI at 95%; see Table A1). LAImax values for different vegetation
types are given in Table A1.

Estimation of the water vapour deficit at the reference height
Zhou et al. [30]

D = es − ea (A11)

Chow et al. [44]

es = 0.611× exp
(

17.27 T
237.3 + T

)
(A12)

ea = Rhes (A13)

Estimation of ra —the aerodynamic resistance between canopy source and reference level
Shuttleworth and Gurney [45]

ra =
1

ku∗
ln
(

za − d0

hc − d0

)
+

hc

ηKh

[
exp
{

η
(
1− (Z0 + dp)/hc

)}
− 1
]

(A14)

hc =

{
0− 2 222223333 LAImax = 0
hc min + (hc max − hc min)

LAI
LAImax

LAImax 6= 0 (A15)

u∗ =
kua

ln((za − d0)/zo)
(A16)

d0 =

{
hc − zoc/0.3 LAI ≥ 4
1.1hcln

[
1 + (CdLAI)0.25

]
LAI < 4

(A17)

η =


2.5 hc ≤ 1
2.036 + 0.194hc 1 < hc < 10
4.25 hc ≥ 10

(A18)
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Kh = ku∗(hc − d0) (A19)

Z0 = 0.13hl (A20)

dp = 0.63hl (A21)

z0 =

{
0.3(hc − d0)− 2222223333 0 < CdLAI < 0.2
zog + 0.3hc(CdLAI)0.5 0.2 < CdLAI < 1.5

(A22)

zoc =


0.13hc hc ≤ 1
0.139hc − 0.009h2

c 1 < hc < 10
0.05hc hc ≥ 10

(A23)

Cd =

{
1.4× 10−3 22222222222222 hc = 0
[−1 + exp(0.909− 3.03zoc/hc]

4/4 hc > 0
(A24)

Estimation of rac—the bulk boundary-layer resistance of the canopy
Shuttleworth and Gurney [45]

rac =
100
η

.

√(
l

uh

)
.
[

1− exp
−η

2

]−1
.

1
2LAI

(A25)

Chow et al. [44]
uh
u∗

=
1
k

ln
(

hc

z0

)
(A26)

l =
{

lmax , f or perennial vegetation
lmax[1− exp(−0.6LAI)], f or annual vegetation

(A27)

Estimation of ras—the aerodynamic resistance between the soil surface and canopy
air space

Zhou et al. [30]

ra =
hc exp(η)

ηKh

[
exp

(−ηzog

hc

)
− exp

(
−η
(
Z0 + dp

)
hc

)]
(A28)

Estimation of rc—the canopy resistance
Zhou et al. [30]

rc =
rst min

LAIe [ f (Rn) f (Tk) f (D) f (θ)]
(A29)

Li et al. [46]

LAIe =


LAI , LAI ≤ 2
2 , 2 < LAI ≤ 4
0.5LAI, LAI ≥ 4

(A30)

Zhou et al. [30]

f (Rn) =
dRn

c + Rn
(A31)

c and d are constants, which are defined as d = 1/(1 + c), c = 100 for forests and 400
for crops

f (D) =

{
1− 0.409D, f or short vegetation
1− 0.238D, f or tall vegetation

(A32)

f (Tk) =

{
1− 1.6× 10−3(298− Tm), Tk ≥ 298
1− 1.6× 10−3(298− Tk), 273 < Tk < 298

(A33)
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Noilhan and Planton [47]

f (θ) =


1− 1, θ ≥ θc
θ−θw
θc−θw

, θw ≤ θ < θc

0− 1, θ < θw

(A34)

θc is equal to 0.75 times the saturated soil moisture
Estimation of rs —the soil resistance
Shuttleworth and Wallace [17]

rs = 0 sm−1 at saturation point

rs = 2000 sm−1 at wilting point

Estimation of G—the soil heat flux
From Mo et al. [35].

G = 0.183 Rn exp(−0.299LAI)

Table A1. Landuse and vegetation parameters for S–W model.

Code Land Use Type LAImax
hc

(m)
lmax
(m) Fcl

rst min
(sm−1)

NDVI98%
zog
(m)

1 Coconut 5.5 17 0.001 1 150 0.689 0.02
2 Rubber 7 30 0.05 0 150 0.611 0.02
3 Forest—Unclassified 5.7 20 0.04 0.5 150 0.721 0.02
4 Homesteads/Garden 3 1 0.01 1 100 0.674 0.02
5 Shrublands 3 1 0.01 1 100 0.674 0.02
6 Tea 3 1 0.01 1 100 0.674 0.02
7 Grasslands 1.8 0.8 0.01 0 115 0.674 0.01
8 Marshy Lands 6 1 0.01 0 65 0.674 0.01
9 Chena 7 0.6 0.01 0 90 0.674 0.05
10 Other cultivations 7 0.6 0.01 0 90 0.674 0.05
11 Paddy 7 0.6 0.01 0 90 0.674 0.05
12 Urban and built-up 0 0 0 0 0 0.674 0.02
13 Barren land 0.3 0.05 0.01 1 120 0.674 0.01
14 Water bodies 0 0 0 0 0 0.674 0.001

Source: Zhou et al. [30]. Tall vegetation, 1 to 3; rest short vegetation.
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