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Abstract: Machine learning has been employed successfully as a tool virtually in every scientific and
technological field. In hydrology, machine learning models first appeared as simple feed-forward
networks that were used for short-term forecasting, and have evolved into complex models that can
take into account even the static features of catchments, imitating the hydrological experience. Recent
studies have found machine learning models to be robust and efficient, frequently outperforming
the standard hydrological models (both conceptual and physically based). However, and despite
some recent efforts, the results of the machine learning models require significant effort to interpret
and derive inferences. Furthermore, all successful applications of machine learning in hydrology are
based on networks of fairly complex topology that require significant computational power and CPU
time to train. For these reasons, the value of the standard hydrological models remains indisputable.
In this study, we suggest employing machine learning models not as a substitute for hydrological
models, but as an independent tool to assess their performance. We argue that this approach can
help to unveil the anomalies in catchment data that do not fit in the employed hydrological model
structure or configuration, and to deal with them without compromising the understanding of the
underlying physical processes.

Keywords: machine learning; hydrological modelling; LSTM; recurrent neural networks; residual

error modelling

1. Introduction

It is more than 50 years since the introduction of the multilayer perceptron model [1]
whereas the first applications in hydrology started appearing almost 25 years ago including
rainfall-runoff models [2] and short-term downstream flow forecasting [3]. More partic-
ularly, Minns and Hall [2] were among the first who applied recurrent neural networks
(RNN) [4] in a hydrological application, stating that “antecedent flow ordinates both perform
the same function” (note: distinguish between the rising limb and the recession) “and provide
additional information about the input pattern”. These early data-based models were fairly
simple with at most two hidden layers and up to a dozen of hidden nodes, and seemed very
promising in the dawn of the era of automatic data acquisition. A rainfall-runoff model
could be created and calibrated based only on dynamic data (precipitation, evaporation,
abstractions, etc.) obtained at high sampling frequencies from electronic sensors. However,
these first machine learning (ML) models fell behind in performance compared with the
standard hydrological models, conceptual or physically based.

The continuous increase of the computational power allowed more complex ML net-
works in a variety of hydrological applications especially in situations where the classical
approaches are computationally demanding (for example, prediction of maximum flood
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inundation [5], river flow prediction [6], water resources management [7], stochastic anal-
ysis [8], etc.). A milestone in time-series-related applications was the introduction of the
long short-term memory (LSTM) [9]. LSTM units are used as hidden nodes in RNN and
include, besides the input and output, a forget gate (see Figure 2 in [6]). This offers the
advantage of assigning a dynamic state to each LSTM unit, which serves as a mechanism of
memory. The topology of the LSTM networks is characterized by the number of different
LSTM cells used in each time step (see Figure 1 in [6]) and the sequence length processed
by the LSTM network at each step (see the figure in the section “LSTM Layer Architecture”
in [10], which corresponds to the vertical direction of Figure 1 in [6]).

Machine learning with LSTM has outperformed the standard hydrological approach in
many applications. For example, Ayzel et al. [11] demonstrated that an LSTM based model
with 266,497 parameters achieved a higher generalization capacity than a parsimonious
model for streamflow simulation in Barents, White and Baltic Seas. Kratzert et al. [12]
introduced a modification to LSTM, the Entity-Aware-LSTM, which can take into account
the catchment properties, and achieved better performance not only from the hydrological
models that were calibrated regionally, but also from hydrological models that were cali-
brated for each basin individually. Lees et al. [13] applied LSTM in 669 catchments in Great
Britain, which outperformed a suite of conceptual hydrological models.

This consistent performance superiority of ML in hydrological applications has been
studied by Nearing et al. [14] who concluded that it is the constraints in the structure of the
traditional models that prevents them from fully capturing the information in large-scale
hydrological data sets. However, the efficiency of the LSTM models is not without a cost in
computational complexity. As mentioned above, the model of Ayzel et al. [11] employed
266,497 parameters. Similarly, Lees et al. [13] have reported that it took 10 h to train an
LSTM ensemble on a machine with 188 GB of RAM and a single NVIDIA V100 GPU.

An indirect approach to take advantage of ML in hydrological applications is to
use it as a tool for pre-processing the data or post-processing the results of the standard
hydrological models. For example, lorgulescu and Beven [15] used ML to reveal anomalies
in data sets, i.e., inconsistencies concerning the principal equations of standard models
(e.g., water and energy balances). Solomatine et al. [16] have trained an ML model to
serve as an estimator of the probability distribution of the output of a hydrological model.
Althoff et al. [17] have suggested an elegant method to take advantage of the dropout
technique (a common regularization strategy used in ML) to obtain ensemble predictions
and quantify the uncertainty of hydrological models. Li et al. [18] have used a complex
scheme that includes Box-Cox transformations, an LSTM network, and Bayesian inference
to obtain probabilistic streamflow predictions. Aparicio et al. [19] have employed machine-
learning models to estimate the instantaneous peak flow from the maximum mean daily
obtained from the SWAT model. Noymanee et al. [20] have compared various alternative
statistical and ML techniques for improving the flood forecasting efficiency of hydrological
modeling. Yang et al. [21], have combined a physically-based distributed hydrological
model with networks, computer vision, and a categorization approach.

In this study, inspired by the concepts found in the mentioned above works, we
employ a simple ML network as a tool to assess the performance of hydrological models. A
hydrologist always looks forward to improving the performance of his/her model. The
simple ML network is used to assess a hydrological model and determine whether and
how much it can be further improved. It should be noted that even if the optimization
algorithm has achieved the best possible calibration of the hydrological model, the model
may still not be able to achieve the best feasible fit because it is limited by its structural
characteristics. However, as Beven suggests [22], “If there are consistent anomalies between
the conceptual structure of a hydrological model in a particular catchment and the nature of the
hydrological processes in that catchment, then a deep learning (DL) model might well be able to
capture that behaviour”. Therefore, by comparing the performance of a trained ML model
with that of a calibrated hydrological model, the hydrologist can detect if there is room for
further improvement and how to accomplish it by tuning the configuration and/or the
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structure (e.g., spatial/temporal resolution, modules employed, parameters, etc.) of the
hydrological model.

One could suggest using ML or deep learning approaches, like those in the previously
mentioned studies, for benchmarking the performance of a hydrological model. However,
this would require a significant amount of time, since, as previously mentioned, these mod-
els are notoriously CPU-intensive to train. On the other hand, the ML network employed
in this study is minimalist. We opted for simplicity both to facilitate the applicability (an
existing tool, like MATLAB ntstool, can be directly applied to the available data without
any need for coding) and also to improve the generalization and reliability of this approach.

2. Materials and Methods
2.1. Hydrological Models

Two hydrological models were used for testing the assessment capacity of the sug-
gested ML-based approach, LRHM and HYMOD?2. LRHM [23] employs two simple model
building blocks (direct runoff and soil moisture model) that are linearly combined to simu-
late the observed runoff (an idea related to the genetic programming model building [24]).
HYMOD?2 [25] is a conceptual parsimonious rainfall-runoff model. The schematic diagrams
of these two models are displayed in Figure 1.
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Figure 1. Schematic diagrams of HYMOD?2 (a) and LRHM (b), SM1/2 soil moisture 1/2, DR1/2
direct runoff 1/2.

2.2. Case Studies

LRHM was applied in the case studies of Bakas, Alagonia, and Karveliotis presented
in [23] (all in Nedon River, Greece). The catchment area of Nedon River is 118 km?. The
average annual precipitation depth is 1000 mm. The simulation time step was hourly with
the observations extending from 1 September 2011 01:00 to 1 May 2014 00:00 (23,353 time
steps). Time series of rainfall were obtained from 2 weather stations (distinct LRHM inputs),
one for the higher altitudes of the catchment and one for the lower. Time series of potential
evapotranspiration was obtained with the Penman-Monteith equation method.

In order to test the ability of the ML network to properly assess the performance of a
hydrological model, the parameters of the LRHM in these three case studies were changed
from what had been found as optimum values in [23]. More specifically, in the Bakas
case study the coefficient of the multiple linear regression that corresponds to the first soil
moisture module, which simulates the high flows, was set equal to 0, which results in the
deactivation of this module; in the Alagonia case study, the interflow coefficient of the
second soil moisture module, which simulates the lower flows was increased three orders
of magnitude; in the Karveliotis case study, the coefficient of the multiple linear regression
that corresponds to the first soil moisture module, which simulates the high flows, was set
4 times larger than the calibration value. This resulted in intentionally ill-calibrated models
that exhibited typical hydrological model errors (underestimation/overestimation of high
flows, failure to simulate flow intermittency, etc.) The results of the applications of the
calibrated and ill-calibrated LRHM in the case studies of Bakas, Alagonia, and Karveliotis
are shown in Figures 2—4.
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Figure 2. Application of LRHM in Bakas during its calibration period, corresponding intentionally
ill-calibrated LRHM model and observations.

According to Figure 2, the ill-calibrated model LRHM simulates only the base flow
and fails to simulate the high values of flows in the Bakas case study. According to Figure 3,
the ill-calibrated model LRHM fails to reproduce the intermittency of flow (the minimum
simulated flow value is not 0) in the Alagonia case study. According to Figure 4, the
ill-calibrated model LRHM overestimates the high flows in the Karveliotis case study.
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Figure 3. Application of LRHM in Alagonia during its calibration period, corresponding intentionally
ill-calibrated LRHM model and observations.

In these three case studies, the training and test periods of the ML network coin-
cide roughly (though this is not necessary) with the calibration and test periods of the
hydrological model. As a general guideline, the training and test periods used in the ML
network should ensure that all response patterns are represented evenly at both periods.
For example, the ratio of the number of time steps with no flow to the steps with flow
should be the same at both periods.
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Figure 4. Application of LRHM in Karveliotis during its calibration, corresponding intentionally
ill-calibrated LRHM model and observations.

In the previous case studies, the hydrological model was intentionally ill-calibrated
to compromise the explanatory capacity of the model. To investigate the ability of the
suggested methodology to detect performance limitations due to structural characteristics
of a model, the suggested methodology was applied to the case study of Nyangores River,
Kenya (obtained from [25]), employing two models, LRHM and HYMOD?2. The catchment
area of Nyangores River basin is 697 km?. The average annual precipitation depth is
1500 mm. The simulation time step is daily. The potential evapotranspiration was obtained
with the Hargreaves equation, whereas a single time series of precipitation was used,
obtained with satellite-based estimations. The available data length is almost three and a
half years, from 2007 to mid-2010.

Nyangores River
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Figure 5. Application of LRHM and HYMOD?2 in Nyangores River. Validation and calibration
periods refer to the corresponding periods of the hydrological models.

The NSE coefficients achieved by LRHM and HYMOD? during the calibration and test
periods were 0.43 and 0.58, and 0.62 and 0.81 respectively [23]. These values indicate that
HYMOD? achieved better performance than LRHM in this case study (probably because
the structure of HYMOD? fits better the specific characteristics of this case study). Another
thing that should be noticed is that both LRHM and HYMOD? achieved better performance
during the validation period than during the calibration period.
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Figure 5 displays the simulation results of the two hydrological models, LRHM and
HYMOD?2, and the corresponding observations. The vertical axis corresponds to the specific
discharge (streamflow divided by the catchment area, which is 697 km?).

2.3. Data Shuffling

The significantly higher performance that the two hydrological models achieved
during the validation period in Nyangores River case study indicates that the calibration
and validation period exhibit different response patterns. For this reason, in this case study,
the data for the training and test of the ML model was not obtained sequentially, as in the
previous case studies. To preserve the basic statistical structure of the data, before splitting
the data into the two sets, the data was fragmented into chunks of equal size. Then, each of
the two sets was formed by concatenating, with random order, the data chunks (Figure 6).
All data chunks are assigned to one of the two sets, and each chunk is assigned to only one
set (training or test).

Step( R1 R2 E Q Chunk Rl R: E Q Chunk
U .87 {4.94 008 013 17 072 13 014
2| .66 {.58 .86 (.36 1 73 024 77 0 2
3 028 423 015 0.5 083 008 .25 .23
4 017 72 013 14 025 096 .83 .92
B .73 24 077 00 2 005 068 .06 .93 9
6 4.83 {08 025 (.23 096 (.66 .73 {LGE
80 4.3l 457 LMW .86 060 07 .50
g .08 4.94 410 073 3 053 089 25 415 8
9 4.92 {4.19 405 .42 - 0.39 042 11 424
22| .86 {460 007 060 .87 094 {498 413
23| 453 489 025 015 3 .66 0558 {86 .36 1
24| 039 442 011 024 026 0.23 {15 {50
25 425 496 {69 .92 .60 031 457 409
26| 005 {468 006 0893 £l 006 094 410 479 3
27 496 {466 {073 0.86 092 013 {405 {442

Figure 6. Example of shuffling data which include time series of rainfall (R1 and R2), evapotranspira-
tion (E), and discharge (Q). R1, R2 and E exemplify the hydrological model inputs and can vary in
number and type from a case study to another. The chunk size of this example is equal to 3 (much
smaller than the actual size used in the case studies for the sake of the figure conciseness).

The concept of breaking the data into chunks and shuffling is similar to the concept
of stochastic optimization, in which minibatches are employed [26]. The reason we didn’t
use stochastic minibatch (which is offered as a feature by the majority of the modern ML
toolboxes) was that we needed to have control over the shuffled data set in order to be able
to obtain the corresponding objective function value of the hydrological model. According
to Wilson and Martinez [27] smaller minibatch sizes improve the regularization. However,
the smaller the minibatch size gets, the denser the temporal discontinuities of the input
time series, hence, the more blurred their statistical structure (compared to the structure
of the original, sequential, data). Therefore, there is an optimal minibatch size (we prefer
the term ‘chunk’ over the term ‘minibatch’ because we employ batch training, i.e., the
whole data set is processed at one step during each epoch), which should be used. After a
preliminary study, this optimal size was found to be close to 10 times the sequence length
of the employed ML network approximator.

After training the ML network a single time, it was applied multiple times on data
sets formed from the original set with shuffling. The corresponding values of the loss
function were recorded and their mean and variance were calculated. This technique is
similar to cross-validation, which is frequently used in ML applications as an estimator of
generalization performance. According to Cawley and Talbot [28], a low variance of the loss
function of the ML is equally important with a low average value in avoiding overfitting.
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2.4. Performance Assessment

According to Smith et al. [29] the relationship between hydrological model residuals
and observations at a specific time step can be represented with the following formula:

Yo = Ym(2;0) + Ye (1)

where y, is the observed value, ym(z; 8) is the model output, 6 is the vector with the model
parameters, z is the vector with the dynamic input data, and ye is the residual.

If we denote with f the function that describes the consistent anomalies between the
observations and model results, then the residual can be written as:

Ve = f(x;0)+€ )

where x is a vector including a combination of the dynamic input data z and the model
results ym(z; 0), and € is the uncorrelated, homoscedastic, and zero-inflated model error.
Equations (1) and (2) can be combined into a single equation:

Yo = (ym(z0) + f(x;0)) + € 3)

The definition of the best feasible model ®(x) achievable with the available data can
be obtained from Equation (3) (note that z C x):

®(x) = ym(z;argmin [ye[) + f(x;arg min [ye|) )
0 0

B(x) = yo - ¢ ©)

Equation (4) describes how the best feasible model can be obtained from the assessed
hydrological model, and Equation (5) gives the definition of the best feasible model, a
model of which the residual is uncorrelated, homoscedastic, and zero-inflated.

An ML model can be employed to obtain the approximation ®(x) of the best model
®(x) by fitting the ML network to y, — €, or, since € is uncorrelated, directly to y,. Substi-
tuting ®(x) in Equation (5) and solving for the error & it is obtained that:

&=y, — D(x) (6)
If é is similar to ye, then from Equation (1) it can be inferred that:

D(x) & Ym(z arg min Yel) @)

This means that the approximator of the best feasible model coincides with the assessed
model. If Equation (7) is substituted into Equation (4), it is obtained that:

f(x;argmin |ye|) — 0 (8)
0

which means that if € ~ ye, the assessed model does not exhibit consistent anomalies
(the model error is uncorrelated, homoscedastic, and zero-inflated), i.e., the deterministic
relationship between inputs and outputs is fully described, therefore no further improve-
ment of performance is achievable. On the contrary, if € is lower than ye, i.e., the ML
approximator accomplishes a better performance than the hydrological model, then there
is some information in the data which the structure or setup of the hydrological model is
not taking into account.

To increase the confidence in the results, two alternative methods were used to prepare
the ML network serving as the approximator ®(x). In the first method, Cortexsys (a deep
learning toolbox for MATLAB and GNU Octave) was employed to prepare a standard
RNN. In the second method, Cortexsys was employed to prepare a recurrent network
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with LSTM cells. Both ML networks were trained with the gradient descent algorithm
ADADELTA [30]. A z-score normalization was used for input data (minmax normalization
was also tested without any benefit), no minibach or dropout techniques were used. The
network topology is shown in Figure 7.

RelLU

/\ w;eR®
( LReLU
\_/ W, e R@x@

Input

(a) (b)

Figure 7. Example of an ML approximator ®(x) of the best feasible model ®(x). Left panel (a)
displays the activation functions (LReLU and ReLu), the dimensions of the weight matrices and
the recurrent (indicated with a blue ellipse) hidden layer. Right panel (b) displays the inputs and
outputs of the employed ML approximator. The assessed hydrological model has three inputs
(precipitations R1 and R2, and evapotranspiration E) and one output (Qh). These are the four inputs
of the ML approximator. If the ML approximator output, Qml, is closer to the observations than the
hydrological model output, Qh, then there is some information in the data that the structure or setup
of the hydrological model is not taking into account.

The suggested number of hidden nodes/cells is equal to the number of ML inputs.
This means 4 hidden nodes/cells for the Bakas, Alagonia, and Karveliotis case studies and
3 nodes/cells for the Nyangores River case study. The activation functions were LReLU for
the hidden, and ReLU for the output layers [31]. The total number of parameters for the
standard RNN with four inputs was 4 x 4 + 4 weights and 4 4 1 biases. The sequence length
is a hyperparameter that should be tuned individually for each case study. For the Bakas,
Alagonia, and Karveliotis case studies the sequence length was 4 whereas for the Nyangores
River case study was 2. The ML model inputs were the dynamic inputs of the hydrological
model, i.e., precipitation (2 time series for Bakas, Alagonia, and Karveliotis, and 1 for
Nyangores River) and evapotranspiration, and the simulated flow by the hydrological
model. The loss function was the mean squared error (MSE). This was also the objective
function employed in the hydrological models.

3. Results
3.1. Example of llI-Calibrated Model—Fuailing in High Flows

Figure 8 displays the simulated discharge by the intentionally ill-calibrated hydro-
logical model LRHM and the approximation of the best model that can be obtained with
the available data in the Bakas case study (Figure 8a,b corresponds to LSTM and RNN).
According to this figure, a significantly better model can be achieved with the available
data, especially concerning the simulation of the higher flows.
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Figure 8. Assessment of the ill-calibrated hydrological model LRHM in Bakas. LSTM (a) and RNN
(b) employed to approximate the best model that can be obtained with the available data during the
test period.

Table 1 displays the improvement of the performance of the ML approximators over
the calibrated and ill-calibrated hydrological model LRHM in the Bakas case study. Both
ML approximators (LSTM and RNN networks) achieved significant improvement over
the ill-calibrated model both in the training and test, which indicates, as expected, that
the ill-calibrated hydrological model does not capture well the relationship between the
model inputs and output. Furthermore, the ML approximators achieved a slightly better
performance than the calibrated model, which indicates that the strength (or the complexity)
of the hydrological model LRHM marginally suffice to describe the hydrological response
at the location of Bakas.

Table 1. Percentage improvement of the performance of the ML approximator over the calibrated
and ill-calibrated LRHM hydrological model in the Bakas case study.

Train Test
LSTM RNN LSTM RNN

Calibrated LRHM MSE 1.87 3.59
ML approximator MSE 1.22 1.29 3.45 3.10
Improvement 35% 31% 1% 14%

Ill-calibrated LRHM MSE 5.34 7.18
ML approximator MSE 2.76 3.25 4.89 3.61
Improvement 48% 39% 32% 50%

3.2. Example of 1ll-Calibrated Model—Ouverestimating Low Flows

Figure 9 displays the simulated discharge by the intentionally ill-calibrated hydrologi-
cal model LRHM and the approximation of the best model that can be obtained with the
available data in the Alagonia case study:.

Comparing the results of the ML approximator (Figure 9a,b corresponds to LSTM and
RNN) with that of the intentionally ill-calibrated hydrological model, it can be inferred that
the latter introduces a bias during low-flow periods (non-zero-inflated residual) and more
steep recession curves.

Table 2 displays the improvement of the performance of the ML approximators over
the calibrated and ill-calibrated hydrological model LRHM in the Alagonia case study. Both
ML approximators (LSTM and RNN) achieved significant improvement of the ill-calibrated
model both in the calibration and the test period, as expected. The ML approximators
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achieved a rather better performance than the calibrated model also, which indicates that
the strength (or the complexity) of the hydrological model marginally suffice to describe
the hydrological response at the location of Alagonia.
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Figure 9. Assessment of the ill-calibrated hydrological model LRHM in Alagonia. LSTM (a) and RNN
(b) employed to approximate the best model that can be obtained with the available data during the
test period.

Table 2. Percentage improvement of the performance of the ML approximator over the calibrated

and ill-calibrated LRHM hydrological model in the Alagonia case study.

Train Test
LSTM RNN LSTM RNN
Calibrated LRHM MSE 0.37 0.42
ML approximator MSE 0.33 0.33 0.38 0.38
Improvement 11% 10% 9% 9%
Ill-calibrated LRHM MSE 0.72 0.59
ML approximator MSE 0.48 0.53 0.50 0.46
Improvement 33% 26% 15% 22%

3.3. Example of llI-Calibrated Model—Owverestimating High Flows

Figure 10 displays the simulated discharge by the intentionally ill-calibrated hydro-
logical model LRHM and the approximation of the best model that can be obtained with
the available data in the Karveliotis case study (Figure 10a,b corresponds to LSTM and
RNN). Comparing the results of the ML approximator with that of the intentionally ill-
calibrated hydrological model, it can be inferred that the latter introduces overestimates at
the high flows.

Table 3 displays the improvement of the performance of the ML approximators over
the calibrated and ill-calibrated hydrological model LRHM in the Karveliotis case study.
Both ML approximators (LSTM and RNN) achieved a huge improvement over the ill-
calibrated model both in the calibration and the test period, which indicates that the
ill-calibrated hydrological model falls far behind the best achievable model. The ML
approximators achieved equivalent performance with the calibrated model, which indicates
that the calibrated hydrological model LRHM has, most probably, achieved the best possible
performance with the available data.



Hydrology 2022, 9, 5 11 of 17

10 T T 10 T T
+ Observations + Observations
LSTM RNN
LRHM illcalibr. LRHM illcalibr.

8 1 8r 1

(m’s")

N

I
u WM"‘*'
{g.......,iL\LL_‘L“ 0 | W_LL

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

time step (h) time step (h)
(a) (b)

Figure 10. Assessment of the ill-calibrated hydrological model LRHM in Karveliotis. LSTM (a) and
RNN (b) employed to approximate the best model that can be obtained with the available data
employed during the test period.

Table 3. Percentage improvement of the performance of the ML approximator over the calibrated
and ill-calibrated LRHM hydrological model in the Karveliotis case study.

Train Test
LSTM RNN LSTM RNN

Calibrated LRHM MSE 0.038 0.140
ML approximator MSE 0.036 0.038 0.136 0.137

Improvement 7% 0% 3% 2%

Ill-calibrated LRHM MSE 1.008 0.672
ML approximator MSE 0.037 0.039 0.157 0.149
Improvement 96% 96% 77% 78%

3.4. Example of Structural Insufficiency

In the Nyangores River case study, two hydrological models were assessed, the model
LRHM, and the model HYMOD?2. Both models were assessed with the optimum parameters
obtained after their calibration (see [23,25]). HYMOD?2 achieved better performance than
LRHM. Therefore, it is expected from the ML approximator to detect that the LRHM
performance is not the best that can be obtained.

The ML approximator in this case study was trained and validated with the shuffling
approach. To accomplish this, the ML approximators of the two hydrological models were
trained once, but applied multiple times, each time with a different data set obtained after
shuffling the original data set. The single data set used for training was selected to have a
similar loss function value of the ML network in the training and test. The mean value of
the loss function and its variance (LSTM and RNN were employed, like in the previous
case studies, but their results were averaged) were compared against the corresponding
values of the hydrological models (LRHM and HYMOD?2).

It should be noted that the hydrological models were not run multiple times, like the
ML approximators, only their outputs were shuffled and compared against the correspond-
ing observations to obtain performance values (the hydrological models are constrained by
the continuity equations; shuffling the input data and applying the hydrological models
would create unrealistic artefacts, e.g., recession curves at every time-stamp jump due to
the shuffling). The statistics of these performance values are compared against the statistics
of the corresponding ML approximators (see Tables 4 and 5).
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Table 4. Mean value and variance of the ML approximator loss function and LRHM performance
metric in the Nyangores River case study.

ML Approximator LRHM
Train Test Train Test
Mean 0.33 0.33 0.37 0.38
Variance 0.001 0.011 0.002 0.020

Table 5. Mean value and variance of the ML approximator loss function and HYMOD2 performance
metric in the Nyangores River case study.

ML Approximator HYMOD2
Train Test Train Test
Mean 0.26 0.28 0.27 0.29
Variance 0.001 0.008 0.001 0.010

Comparing the values of Tables 4 and 5, it can be obtained the percentage reductions
of the mean value and variance achieved by the ML approximator over the hydrological
models LRHM and HYMOD?2. These values are presented in Table 6. According to
this table, the improvement the ML approximator achieved over LRHM is much greater
than the improvement over HYMOD?2, as was expected. However, Table 6 indicates that
a model even better than HYMOD? is achievable. In addition, the lower variance of
the ML approximator indicates that this anticipated better hydrological model will also
regularize better.

Table 6. Percentage reduction of the mean value and variance of the ML approximator over the
hydrological models LRHM and HYMOD2.

LRHM HYMOD2
Train Test Train Test
Mean 8% 10% 6% 5%
Variance 36% 28% 21% 27%

Finally, it is noted that the direct application of the ML approximator, as it was em-
ployed in the previous case studies (Bakas, Alagonia, and Karveliotis), did not achieve
improvement over the hydrological models, as it was hampered by the much better per-
formance of the hydrological models during the test period. However, it was found that
this difficulty could be circumvented if the ML approximators were trained with shuffled
data sets of which the hydrological models” performance during the training and test
were equivalent. Then, these ML approximators can be applied to the original, sequential,
data and give a more reliable assessment than the direct application. Table 7 displays this
improvement of the performance of the ML approximators, trained with shuffled data sets
but applied with the original, sequential data, over the LRHM and HYMOD?2 hydrological
models in the Nyangores River case study.

Table 7. Percentage improvement of the performance of the ML approximators over the LRHM and
HYMOD?2 hydrological models in the Nyangores River case study (sequential data).

Train Test
LSTM RNN LSTM RNN
LRHM 11% 3% 16% 3%
HYMOD2 3% 8% 5% —10%

Figure 11 displays the simulated discharge by the hydrological model LRHM and the
approximation of the best model that can be obtained with the available data (Figure 11a,b
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corresponds to LSTM and RNN). Comparing the results of the LSTM ML approximator

with that of LRHM hydrological model, it can be inferred that the former, as it is indicated
also in Table 7, achieved better performance.

5 . . . . .
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Figure 11. Assessment of the LRHM model in the Nyangores River. LSTM (a) and RNN (b) employed
to approximate the best model that can be obtained with the available data during the LRHM
test period.
Figure 12 displays the simulated discharge by the hydrological model HYMOD2
and the approximation of the best model that can be obtained with the available data
(Figure 12a,b corresponds to LSTM and RNN). Comparing the results of the ML approx-
imators with that of the hydrological model HYMOD?2, it can be inferred that it did not
achieve a better performance.
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Figure 12. Assessment of the HYMOD2 model in the Nyangores River. LSTM (a) and RNN (b)

employed to approximate the best model that can be obtained with the available data during the
HYMOD?2 test period.

4. Discussion

On closer inspection, the outputs of the ML approximators exhibit some unrealistic
characteristics (e.g., large spikes, unjustified oscillations, etc.). It should be noted that
similar behaviour is typical in plain RNNs. For example, Bao et al. compared various ML
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models to predict stock indexes. They found that LSTM and RNN have large variations
and distances to the actual data (see Figure 8 in [32]). To improve the performance, they
combined an LSTM network with wavelet transforms (WT) and stacked autoencoders.
Other researchers have reported similar behaviour while employing RNN to perform sensor
fusion for an inertial measurement unit [33]. The suggested solution was to use Fourier
Transformation and remove high-frequency signal components. As was mentioned in the
introduction section, ML can achieve superior performance in hydrological applications,
but only after paying the price of increased computational complexity. However, the
ML approximator is not intended for hydrological simulations, but for the assessment of
hydrological models. To make the assessment procedure practical, the ML approximator
was designed to be as simple as possible, hence the oscillations and spikes. Nevertheless,
these artefacts should not be a source of concern. If the ML approximator achieves better
performance, despite any high-frequency oscillations (but not because of), then a better
hydrological model is achievable.

The comparison of a hydrological model against the simulation of the ML approxima-
tor can give clear indications of the performance sufferings that can be addressed. Similar
conclusions cannot be obtained after a comparison of the model directly with the obser-
vations because it cannot be guaranteed that improving an obvious failure of the model
to reproduce a specific characteristic of the response will not deteriorate the reproduction
of another characteristic. For example, this comparison in Figure 8 (ill-calibrated LRHM
against RNN and LSTM) indicates that a better model in Bakas can be obtained to simulate
more accurately both the high and low flows; on the other hand, the comparison in Figure 9
indicates that only the performance during the low-flow periods can be improved.

In the case study of Nyangores River, the significant difference in the performance
of the hydrological models between calibration and validation periods made difficult the
direct approach employed in the other case studies. The shuffling approach, inspired by
the cross-validation technique, allowed the study of the variance of the loss function of the
ML approximator and the variance of the performance metric of the hydrological model.
In the Nyangores River case study, the ML approximator demonstrated lower variance for
both assessed hydrological models, LRHM and HYMOD2. To further study the importance
of the variance, the shuffling approach was tried in the Karveliotis case study, at a second
round, this time only for the calibrated LRHM, for which the direct application of the ML
approximator achieved only a marginal performance improvement. The variance of the ML
approximator, obtained after the shuffling and the repeated applications, was slightly larger
than the variance of the calibrated LRHM suggesting that the performance improvement, in
this case, is not only marginal but also does not generalize, which increases the credibility
of the indication obtained with the direct application (see Section 3.3) that a better model
performance than that already achieved by LRHM is not feasible.

The shuffling of the data, though introducing some additional workload, offered a
twofold benefit in the application of the ML approximator. First, it facilitated the ML model
training in situations where the training and test periods presented different response
patterns. Second, it allowed the evaluation of the variance of the loss function, as was
mentioned in the previous paragraph. This beneficial technique is not applicable in hydro-
logical models because it violates the continuity equations, the cornerstone of these models.
Shuffling carefully the data (to preserve the important correlation characteristics) offers an
important advantage to ML models over standard approaches, which should be considered
in hydrological applications.

As mentioned previously, the ML approximator helps to identify whether there is
some information in the data that the structure or setup of the hydrological model is not
taking into account. In most cases, this happens because of some deficit or weakness of the
hydrological model. An interesting situation is when the observations are obtained by a
sensor that introduces systematic error. In this case, the ML approximator will yield a better
fit than the hydrological model, which is restricted by the water balance equation. Yet,
in this case, the hydrological model predictions will be closer to reality. Though modern
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sensors are reliable and tested in laboratories to ensure no systematic errors, the possibility
of such an untoward event cannot be excluded. At this point, we need to acknowledge the
agnostic nature of any kind of model. If the observations are found at some point to suffer
from systematic errors, the model should be run again with the new, closer to reality, data.
If no error can be proven in the available data, then the reality for the model is the data.

Finally, it is worth noticing that the ML approximator ®(x) did achieve better perfor-
mance than the ill-calibrated models in Nedon and the less efficient hydrological model
in the Nyangores River case study, indicating the potentials to improve the model perfor-
mance. However, this performance improvement did not exceed the performance of the
corresponding calibrated models and the more efficient hydrological model (e.g., compare
the values of the ML approximator in Table 4 and HYMOD?2 in Table 5). This means
that the ML approximator ®(x) actually gives a better model than ym, (z; 8), but not the
best feasible model ®(x). Apart from what has been mentioned in the beginning of this
section, another reason is the assumption that there is a function f(x; 0) such that € in
Equation (2) is uncorrelated, homoscedastic, and zero-inflated. Since the complexity of
f(x; 0) is equivalent to the complexity of the approximator ®(x), which in the proposed
methodology is kept minimal, the aforementioned assumption may not be feasible for
every assessed model structure and configuration. The alternative to bypass this restriction
would be to allow a function f(x; 0) of arbitrary complexity, which in the end would result
in ML applications similar to that appearing in various recent publications. Consequently,
any advantage regarding the time required to train (the time required on an AMD EPYC
dual-core processor was less than 2 minutes for LSTM and less than 1 minute for RNN)
and to apply the ML approximators would be lost.

5. Conclusions

In this study, we developed an approach to help a hydrologist to answer the question
“Can my model perform any better with the available data?”. To answer this question, we
suggest employing a simple machine learning network that can be easily prepared and
trained. The network inputs are the inputs and outputs of the hydrological model. If the
machine learning model achieves better performance, then there is some information in the
data that the structure or setup of the hydrological model is not taking into account.

The proposed methodology can be applied with simple ML tools that are straight-
forward and require no coding or data curation. However, this direct simple approach is
reliable only when the assessed hydrological model performs almost equivalently during
the training and test. A large difference in performance between these two periods indi-
cates that important response patterns are not evenly represented in the data sets of the
training and test. In these cases, a more sophisticated approach that includes data cura-
tion (shuffling carefully to preserve the statistical structure) is required to have a reliable
model assessment.

When assessing a model with data shuffling (a method similar to cross-validation)
the variance of the loss function is a metric of how well the model generalizes. If the
machine learning achieves lower variance than the hydrological model, this is an additional
indication that a better model can be prepared with the available hydrological data. This
was confirmed by the application of the shuffling method into two case studies (Nyangores
River and Karveliotis). In the former case study, the mean loss function and its variance of
the machine learning model were lower than that of the hydrological model, indicating the
potentials of a better model, whereas in the latter the mean loss function was marginally
lower but the variance was higher, indicating that the best feasible model has already
been achieved.

The suggested methodology could be used as a filter to improve the efficiency of
hydrological models. However, as mentioned previously, it is not guaranteed that the
improved performance after the filtering is the best that can be obtained with the available
data. For this reason, it is recommended to be used principally as an assessment tool for
crafting hydrological models, either by improving the calibration or by adding/modifying
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physical/conceptual assumptions to the model. Finally, it should be noticed that the
suggested methodology is generic. It can be used with any model, e.g., hydraulic, even
a financial model, to evaluate the capacity of the assessed model to fully describe the
deterministic relationship between the model inputs and outputs.
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