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Abstract: Urban flooding is a complex natural hazard, driven by the interaction between several
parameters related to urban development in a context of climate change, which makes it highly
variable in space and time and challenging to predict. In this study, we apply a multivariate analysis
method (PCA) and four machine learning algorithms to investigate and map the variability and
vulnerability of urban floods in the city of Tangier, northern Morocco. Thirteen parameters that could
potentially affect urban flooding were selected and divided into two categories: geo-environmental
parameters and socio-economic parameters. PCA processing allowed identifying and classifying six
principal components (PCs), totaling 73% of the initial information. The scores of the parameters on
the PCs and the spatial distribution of the PCs allow to highlight the interconnection between the
topographic properties and urban characteristics (population density and building density) as the
main source of variability of flooding, followed by the relationship between the drainage (drainage
density and distance to channels) and urban properties. All four machine learning algorithms show
excellent performance in predicting urban flood vulnerability (ROC curve > 0.9). The Classifications
and Regression Tree and Support Vector Machine models show the best prediction performance
(ACC = 91.6%). Urban flood vulnerability maps highlight, on the one hand, low lands with a high
drainage density and recent buildings, and on the other, higher, steep-sloping areas with old buildings
and a high population density, as areas of high to very-high vulnerability.

Keywords: multivariate analysis; machine learning; urban flood; PCA; Morocco

1. Introduction

The year of 2021 was marked by a succession of natural disasters, of which urban
flooding was a major event in several parts of the world, such as the February floods in
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North Africa that affected several cities in northern Morocco, the July floods that devastated
Western Europe (Germany, France, Switzerland, Belgium, Italy, Netherlands, Romania and
United Kingdom) and the flooding caused by Hurricane Ida in New York City in August.
These natural disastrous events demonstrate that in the current climate context, in one way
or another, all cities are vulnerable to urban flooding, and city dwellers are at high risk,
regardless of whether they are in a developed or developing region of the world [1–3]. With
climate change, these catastrophic events will occur more often in the future, which will
have a considerable impact on environments and human life and may result in significant
economic damages and losses [4]. The occurrence of urban flooding is also linked to rapid
urban development, particularly in developing countries, where uncontrolled growth of
urban areas is often accompanied by human encroachment on the active flood channel,
changes in drainage networks morphology and low infiltration or storage capacity during
heavy rainfall [5,6].

To better understand how floods will evolve in urban areas, we first need to under-
stand the sources of flood variability in response to urban development (demographic,
social and economic changes). The variability in flooding in urban areas is largely based
on the site, location and social geography properties, such as the location of residential
areas, type of structure (single-store building, apartment building, villa area, etc.), location
of the land parcel and socio-economic activities [7]. Spatial differences in these charac-
teristics give rise to vulnerabilities to flood threats as well as variations in resilience or
the ability to respond and recover from them [8]. Moreover, identifying the sources of
spatial variability of urban flooding is crucial for the choice of the optimal flood defense
strategy and to provide a more efficient and effective spatial planning policy [9,10]. Yet,
the variability in conditions that influence flood vulnerability in different urban areas has
not been comprehensively examined.

The production of urban flood-vulnerability maps and subsequently the prediction of
flood-prone areas is another aspect of flood risk assessment, as it has become crucial for
urban management and planning, especially for reducing flood damage. The effectiveness
of urban flood-vulnerability assessment and mapping depends strongly on the methodol-
ogy adopted for modelling [11]. Several physical models for flood-risk mapping have been
widely used to assess and predict flood risk in urban areas and have proven to be successful,
such as the Hydrologic Engineering Center—River Analysis System (HEC-RAS) [12] and
AutoRoute [13]. However, running most hydrological models requires detailed spatial and
temporal data (e.g., precipitation and base flows), which are often not easily available. In
addition, these models also require considerable setup and computation time, especially
for high-resolution river networks [6,14]. In recent years, machine learning methods, such
as support vector machine (SVM) [15,16], decision trees [17], logistic regression [18,19] and
linear discriminate analysis (LDA) [20,21], have been widely used for spatial prediction,
vulnerability and susceptibility mapping of natural hazards, given their ability to adapt
and apply in data-scarce environments, especially in developing countries where data
availability remains a major challenge. Moreover, these machine learning methods have
demonstrated better performance when compared to classical models, offering a great
advantage to the decision-maker in identifying and mapping with great accuracy the areas
of high vulnerability and susceptibility. However, the application of machine learning in
urban flood hazard mapping is very limited, because it is a complex process and unlike
other types of natural hazards, it is influenced by specific factors such as community
conditions, the policy of urban authorities, infrastructure quality and settlement conditions.
These factors vary based on location, societal culture, human activities and environmental
characteristics [6,7,22].

The objective of this work is to apply and combine various mathematical approaches
to study the variability and vulnerability of urban flooding in Tangier city, northern Mo-
rocco. A large number of parameters are used to characterize the topographical properties,
drainage network characteristics, land use and urban properties of the study area. The in-
dependent sources of urban flood variability are investigated and mapped using principal
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component analysis (PCA), which concentrates the information into a reduced number of
macro-parameters, namely, the principal components. Urban flood vulnerability mapping
was produced by linear discriminant analysis (LDA), logistic regression (LR), classifica-
tion and regression tree (CART) and support vector machines (SVM). The accuracy and
performance of the four models were evaluated and compared using statistical validation
indexes. To the best of our knowledge, the problem of urban flood-vulnerability mapping
has not been explored in the context of these machine learning methods before.

2. Materials and Methods
2.1. Study Area

Tangier is a city in the northwest of Morocco (between the parallels 35◦47′ north
and meridian 5◦48′ west of Greenwich) (Figure 1), the second largest economical city of
the country, and the capital of the Tangier-Tetouan Al Hoceïma region. Located at the
entrance of the Mediterranean Sea on the Strait of Gibraltar, the city is 15 km from the
Spanish coast. It has a population of 1,065,601 habitants according to the latest census in
2015. The topography shows large areas dominated by hills where the altitude does not
exceed 400 m, dissected by small rivers forming slightly deep valleys. Tangier’s climate is
Mediterranean, tempered by the oceanic influence, with annual precipitation between 600
and 1000 mm per year. The average annual temperature is 17.5 ◦C and the average annual
evapotranspiration is 450 mm. The city is often subject to weather disturbances: from
mid-October to early May, strong winds, violent storms and heavy rainfall. In summer, a
hot wind from the Saharan influence, commonly known as “chergui” in Morocco, raises
the temperature considerably.
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Figure 1. Location of the study area and distribution of flood and non-flood points.

In recent years, Tangier city has been affected by several floods, which have caused
extensive damage to the city and its infrastructure. The most recent and perhaps the most
devastating flood the city has experienced was on 8 February 2021, where 28 people have
died after torrential rains. Most of the victims were women who were working in an illegal
underground textile factory, located in the basement of a house. This incident highlighted
the impact of uncontrolled socio-economic and urban development in one of the country’s
economic hubs on the increase in areas at high risk of flooding. Flood images from 2018 to
2021 in different parts of the city are presented in Figure 2.
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Figure 2. Flooding in Tangier city (2018–2021).

2.2. Urban Flood Inventory Map

In this study, a flood inventory map between 2018 and 2021 was prepared based
on several sources of information (Figure 1), particularly from available documents and
reports (historical flood database) obtained from the Tangier City Authority and multiple
field surveys. We also used information on flooding events published on social media
(Facebook and Tweeter). This latter approach, called “social media crowdsourcing”, is an
additional and novel source of data that has proven to be effective and complementary for
the rapid assessment of natural hazards and for providing information on user-observed
damage levels and their geospatial location [23–29]. A total of 126 points were identified
as flood locations, while 126 non-flooded points were randomly chosen in non-flooded
zones. In order to develop the urban flood vulnerability map, flooded and non-flooded
areas were assigned a code of 1 and 0, respectively.

2.3. Parameter Selection

Given the great complexity of urban flooding, there are currently no conventional
guidelines for selecting the factors that influence urban flooding. However, using remote
sensing and GIS techniques as well as information from previous studies and data available
in the study area, 9 geo-environmental factors and 4 socio-environmental factors effective
to urban flooding were identified.

2.3.1. Geo-Environmental Factors

Elevation: In order to generate high-resolution elevation data over the city of Tangier,
we used the Sentinel 1 radar images based on synthetic aperture radar interferometry
(InSAR). The accuracy of INSAR-DEMs can be significantly offset from conventional DEMs
such as SRTM products. Several studies have found that INSAR-DEMs are suitable for plain
and lowland regions such as our study area, but are not recommended for mountainous
regions [30–32]. This technique uses the phase difference between two complex SAR
images taken from slightly different positions of the sensor and which must meet certain
conditions (the date of acquisition must be close; it is also preferable to have images in
the summer period to ensure obtaining the minimum vegetation cover; and a minimum
baseline of 200 m). Once the phases of the two images are combined and co-registered, an



Hydrology 2021, 8, 182 5 of 18

interferogram can be generated with a phase strongly correlated to the terrain topography,
using a 30-m-resolution SRTEM DEM. Following these procedures, a digital elevation
model (DEM) of the study area (Figure 3a) was generated with a resolution of 12.5 m using
a pair of Sentinel 1 images taken on 3 August 2021 and 9 August 2021. After verification
and validation with the 1:100,000 topographic maps, this DEM was used to produce all the
terrain properties maps used in our study.
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Slope: Flooding is directly related to slope gradient, an important physiographic
feature. Slope directly contributes to surface runoff velocity and vertical percolation and
thus affects vulnerability to floods. The slope map was determined using GIS tools that
calculate for each cell the maximum rate of change in elevation values relative to its
neighbors (Figure 3b) [33].

Exposition: This parameter is defined as the direction of maximum slope of the
land surface (Figure 3c). It indirectly affects floods because it controls microclimate, sun
exposure time, moisture retention, evapotranspiration, weathering, vegetation cover and
denudation processes.

Curvature: It is a factor of runoff and can be useful in detecting susceptibility to
flooding and its occurrence, because the flow of water depends on the curvature of the
land surface. Curvature is divided into three categories: concave surface, convex surface
and flat surface (Figure 3d).
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Topographic Position Index (TPI): It indicates the upper and lower parts of a landscape,
i.e., the difference in elevation in each cell with the average elevation of the surrounding
cells (Figure 3e). Positive values indicate places that are higher than their surround-
ings (ridges), while negative values indicate places that are lower than the surrounding
cells (valleys).

Topographic Wetness Index (TWI): This index shows the amount of water accumula-
tion in any pixel size of the watershed area (Figure 3f). In other words, it provides the effect
of topography on the spatial distribution and zonation of saturation sources to generate
runoff. TWI is also present as the power of the surface runoff, such as flow rate, flow
velocity, transport capacity and potential flow.

Drainage Density: It represents the number or frequency of rivers and streams per
unit area (Figure 3g). Drainage density indicates the permeability of the soil surface and
the rate of infiltration, thus controlling the intensity of the surface runoff, which is directly
related to flooding. In this work, the drainage density was calculated from the drainage
network of the study area using the line density tool of the GIS software.

Distance to channel: It determines the dominant role of the dense river network in
the occurrence of floods. It represents the distance of a flood location from the drainage
channels (Figure 3h). The distance to rivers was calculated from the drainage network
using the Euclidean Distance tool on the GIS software.

Land cover: It is a factor that greatly influences several types of natural hazards and
particularly floods [34,35]. The land cover map of Tangier was obtained from a supervised
classification by the Maximum Likelihood method applied on the Sentinel-2B optical
satellite image with a resolution of 10 m, covering the study area and acquired on 22 March
2021. The Sentinel 2-B image was pre-processed to quantify significant information from
the remote sensing data. Three types of correction were applied: geometric, radiometric
and atmospheric. The Maximum Likelihood method is based on the theory of probability,
which assumes that, when training data, the statistics of the training for each class in each
band are Gaussian distributed. It assigns a pixel to a class if the estimated probability
function for the class is maximum [36]. The output land cover map contains five classes:
vegetation, buildings, roads, water and bare soil (Figure 3i).

2.3.2. Socio-Environmental Factors

There are various socio-environmental factors that influence vulnerability to flooding
in urban areas and their consideration may depend on the data available. In this study,
data on four factors related to urbanization in the city of Tangier were obtained from the
report of the Tangier-Tetouan-Al Houceima Regional Directorate of the High Commission
for Planning of the Kingdom of Morocco: building density, population density, building
type and buildings state [37].

Building density: The building density of Tangier city was subdivided into four
classes (very low, low, medium and high) (Figure 4a). Population density: The population
density of the city of Tangier was subdivided into four classes (low, medium, high and
very high) (Figure 4b). Buildings type: Seven types of building areas were identified in
the city of Tangier: apartments, industrial zone, natural reserve, house, villas, building
zone and projected zone (Figure 4c). Building state: The buildings in the city of Tangier
were divided into three classes: recent (building completed for more than six years at least
and fifteen years at most), old (building that has been completed for more than fifteen
years (>15 years)) and ‘other’, which are buildings whose condition has not been defined
(Figure 4d).
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2.4. Data Analysis and Modelling

Several mathematical and statistical methods were combined for the analysis and
modelling of urban flood variability and vulnerability in the city of Tangier. All of these
methods defined below represent the state-of-the-art methods widely used in several fields
of research, but their applications for monitoring and managing the risk of urban flooding
is to our knowledge still limited.

2.4.1. Principal Components Analysis

Principal component analysis (PCA) was performed by diagonalization of the corre-
lation matrix from the urban flood database (126 flood points × 13 variables), in order to
reduce the volume of redundant information; to identify, quantify and rank the different
independent sources of variability; and to explore the underlying processes responsible
for the variability in urban flooding [38]. The PCA treatment makes it possible to discern
the relationships between the different parameters and to rank the independent sources
of variability of the information contained in the urban flood database. The procedure in-
cludes the variables’ mean cantering, thus sidestepping problems arising from the variable
numerical ranges and units used by automatically autoscaling all variables to the mean
zero and variance unit.

2.4.2. Flood Vulnerability Prediction

Urban flood prediction was done using the flood and non-flood locations (as the
dependent variable) and 13 predictor variables shown as independent variables and input
data. We used four machine learning models, namely, linear discriminant analysis (LDA),
logistic regression (LR), classification and regression tree (CART), and support vector
machine (SVM) for urban flood vulnerability modelling. The dataset was divided into
training and validation data (80% for training and 20% for validation). The models used
are described as follows:
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Linear Discriminant Analysis (LDA)

Linear discriminant analysis is a conventionally and widely used tool to study groups
of observations that may have different characteristics [39]. Linear discriminant analysis
(LDA) is a linear algebra method frequently used in statistics, dimensionality reduction
and machine learning to discriminate multiple sets characterized by multiple parameters
in a data set. It is based on the looking for variables in a linear combination, called
discriminant functions, to ensure the best distinction between the classes and to reduce
the dimensionality between before and after the classification. LDA has shown very good
performance for classification and modelling in several hydrological studies [38,40–42].

Logistic Regression (LR)

Logistic regression is a statistical model that can describe the relationship between the
probability of a binary response variable and a set of corresponding explanatory variables.
It is a generalized linear model using a logistic function as a link function [18,43]. In this
study the logistic regression model has been used to predict the probability of an urban
flood occurring (value = 1) or not (value = 0) based on the optimization of the regression
coefficients. This result always varies between 0 and 1. When the predicted value is above
a threshold, the event is likely to occur, while when the predicted value is below the same
threshold, it is not.

Classification and Regression Tree (CART)

Classification and regression tree is an effective decision tree based method, which
has proven to be a powerful technique for handling classification problems. The CART
generates a sequence of sub-trees for classification problems by growing a large tree
instead of using stopping rules. Therefore, it is able to construct complex trees for solving
complicated problems with large dataset [18]. CART has been widely used in many studies
of natural hazards such as landslides and subsidence [16–18]. However, in this study it will
be applied for the first time to the prediction of urban flooding. The application of CART
for urban flooding follows a four-step procedure: 1—building the tree; 2—stopping the
building of the tree; 3—pruning the tree; and 4—selecting the optimal tree for classifying
landslide or no landslide classes [16,44].

Support Vector Machine (SVM)

SVM has proven to be very successful in natural hazard modelling, showing a very
good performance in identifying risk areas compared to several other machine learning
methods [16,42,45–48]. The SVM method is based on nonlinear transformations that uses a
classification based on the principle of structural risk minimization [46]. Its objective is to
find an optimal hyperplane (or a decision boundary) in an N-dimensional space (where
N is the number of variables) that distinctly classifies flooding and non-flooding points.
This optimal hyperplane should maximize the distance between the data closest to the
hyperplane. Thus, the SVM algorithm aims to determine a multi-dimensional hyperplane
that maximizes the margin around the separating hyperplane, essentially making it a
constrained optimization problem [49]. The support vectors in the SVM are the data
points that lie closest to the hyperplane and they represent the selection criteria as the
best boundaries for the classification of flooding and non-flooding locations with a larger
margin [50].

2.4.3. Repeated Hold-Out Validation

Validation techniques are valuable tools used in predictive modelling and machine
learning to assess the consistency of results [51]. Even when prediction, variable selection
or model selection are not the focus, validation can help to assess the generalizability
and reliability of results. The Hold-Out method is the most widely used technique in
the validation of machine learning models [52,53]. It is based on dividing the database
into two non-overlapping parts and these two parts are used for training and testing
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respectively [54]. In this study, we proposed to use the Repeated Hold-Out method, which
is an iteration of the Hold-Out method; i.e., it is the repeated execution of the Hold-Out
method [55]. We randomly partitioned for 10 times the data into 80% for training and 20%
for testing. For each split, the four machine learning methods are trained on the training set
and validated on the testing. The average performance for each model is then computed
using the arithmetic mean Equation (1):

P =
1
K ∑K

i=1 Pi, (1)

where P represents the average value of a performance metric, which can be the total
accuracy of the model or other metric; K is the number of splits (where K = 10); and Pi is
the result of the performance metric of each split.

2.4.4. Performance Metrics and Evaluation Criteria

To ensure a proper evaluation of the modelling performance of the four machine
learning models, we used four types of classification results provided by the confusion
matrix (Table 1), namely, Accuracy (ACC; Equation (2)), Sensitivity (SST; Equation (3)),
Specificity (SPF; Equation (4)) and Precision (PRC; Equation (4)) [49]. In general, higher
values of the ACC, SST, SPF and PRC show better performance of the models. Evaluation of
the models was also done using the Receiver Operating Characteristic (ROC) curve statistic,
which is the most popular criterion for evaluating spatial modelling performance [56]. The
ROC curve value represents the probability that a test point is accurately differentiated
from a random point in the predetermined context of the study area. For a ROC curve of
0.5–0.6, 0.6–0.7, 0.7–0.8, 0.8–0.9 and 0.9–1, the models are classified, respectively, as poor,
medium, good, very good and excellent.

ACC =
TP + TN

TP + TN + FN + FP
, (2)

SST =
TP

TP + FN
, (3)

SPF =
TN

TN + FP
, (4)

PRC =
TP

TP + FP
, (5)

Table 1. Confusion matrix of a binary classification.

Predicted Positive Predicted Negative

Observed positive True Positive (TP) False Negative (FN)
Observed negative False Positive (FP) True Negative (TN)

3. Results and Discussion
3.1. Source of Urban Flood Variability

Principal components furnish the macro-parameters, i.e., synthetic data that convey
strong and significant information and, therefore, are particularly suitable and relevant for
time monitoring or digital mapping and spatial analysis, just like original parameters [39].
However, it should be noted that the mapping of the sources of variability does not cover
the entire study area, since the limit of the interpolation is given by the coverage of the
identified flood points.

The first six principal components accounted for 73% of the information, and PC1 to
PC5 have eigenvalues greater than 1 (Table 2), meaning that they concentrate more informa-
tion than one single variable. Figure 5 shows the correlation values of the parameters with
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each principal component. The correlation scores of the observations along the principal
components were used for the mapping of the main sources of variability in urban floods
identified in the study area (Figure 6).
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Table 2. Eigenvalues and percentage of explained variance by the first principal components. Only PC1 to PC6 are taken
into account in this study.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13

Eigenvalue 2.64 1.93 1.72 1.14 1.11 0.96 0.89 0.83 0.66 0.42 0.35 0.20 0.15
Variance (%) 20.31 14.84 13.21 8.77 8.50 7.40 6.87 6.37 5.11 3.22 2.69 1.55 1.17

Cumul. % 20.31 35.15 48.35 57.12 65.62 73.02 79.89 86.26 91.37 94.59 97.27 98.83 100.

The first principal component, PC1, stood out clearly from the other axes. It alone
accounted for 20.3% of the total variance (Table 2). It shows positive correlations with TPI
and TWI and negative correlations with slope, population density and building density
(Figure 5a). On the spatial distribution map (Figure 6a), the high and positive values
(orange-red color) correspond to high values of TPI and TWI, reflecting areas where
flooding occurs in higher areas with high drainage capacity [57–59]. The negative values
(cyan and blue color) represent areas where flooding is associated with high slopes as
well as high population and building densities. PC1 can thus be conceded as an axis
representing the influence of terrain properties and population distribution on urban flood
variability. The second principal component (PC2: 14.8% of variability) shows very high
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and positive correlations with population density and building density (Figure 5a). PC2
represents the axis of unique control of urban properties on urban flood variability. Thus,
high values of the PC2 spatial distribution map represent areas where flooding is related to
high population density and high urban density (Figure 6b).
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Figure 6. Distribution of the first six principal components (a) PC1, (b) PC2, (c) PC3, (d) PC4, (e) PC5 and (f) PC6 in the part
of the city of Tangier covered by the flooding points.

The third principal component, PC3 (13.2% of the variability), shows positive correla-
tions with distance to the river and negative correlations with drainage density (Figure 5b).
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It thus reflects the influence of the drainage network properties that cross the city on urban
flooding variability. PC3 indicates that the location in areas of short distances to rivers and
drainage channels is an important factor that explain a large part of urban flood variability;
these areas are represented by the negative values of PC3 (cyan-blue color) (Figure 6c).
The fourth principal component, PC4 (8.8% of the variability), shows a high and positive
correlation with the building stat parameter and a negative correlation with the altitude
(Figure 5d). The distribution of PC4 shows that the positive and high values (orange-red
color) represent areas where the occurrence of flooding is associated with lowland areas
and newly constructed buildings, while the negative values (cyan-blue color) represent ar-
eas where the occurrence of flooding is associated with high elevations and older buildings
(Figure 6d).

These situations highlighted by PC3 and PC4 are clear representations of how the
increase in the urban population is forcing the existing resources and infrastructures to be
more and more solicited, leading people to constantly occupy lowland and flood-prone
areas, narrowing the channel and, thus, reducing the channel carrying capacity [1,5,60].

The fifth principal component, PC5 (8.5% of the variability), shows high correlations
with the exposition parameter, the building type and elevation (Figure 5d). High PC5
values, located mainly in the south and southwest, represent on the one hand areas with
high elevation and high exposition values that reflect slope orientations to the west, south-
west and north-west towards the Atlantic Ocean, where the humid maritime influences
responsible for the major precipitation in Morocco come from (Figure 6e). On the other
hand, it represents high values of building type, representing areas of apartment buildings
and houses agglomeration and thus expressing a high population density (Figure 6e).
The sixth principal component, PC6 (7.4% of the variability), shows a high and positive
correlation with the curvature parameter (Figure 5e). In other words, the concave or convex
shape of the surface has an influence on the flood variability. The high and positive values
of PC6 indicate areas where flooding occurs on concave upward surfaces with accelerated
flow (Figure 6f).

The analysis of the first six principal components and their spatial distribution empha-
size the impact of the relationship between topographic properties, population distribution,
building density, stat and type, and the drainage network properties on the variability in
urban flooding. These findings have been widely observed in developing countries, where
human encroachment on the active flood channel, poor flood management strategies and
sustainable urban management (Figure 7a), lack of early warning systems and disposal of
solid waste in drainage channels are the main causes of urban flooding [1,61]. This analysis
demonstrates that a proper design and maintenance of drainage systems (Figure 7b) and
an appropriate distribution of urban residents are essential for reducing flood damage and
for sustainable urban management.
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3.2. Model Validation for Flood Vulnerability Prediction

Results of urban flood model validation using statistical analysis methods for the
training dataset and testing dataset are shown in Tables 3 and 4, respectively. It is observed
that the statistical indexes (Accuracy, Specificity, Sensitivity and Precision) of the CART
model for training dataset (92–95%) are higher than those of other urban flood models
(SVM, DA and LR) (Table 3). In the testing dataset, CART and SVM shows the highest
value of Accuracy (90.61%) (Table 4). However, the CART model shows the highest
sensitivity (95.67%), while the SVM model shows the highest specificity and precision
values (respectively, 88.01% and 89.34%). The ROC curve statistic indicates that the four
models have excellent performance (0.887–0.962). However, the CART model has the
highest value (0.962 for the training dataset and 0.945 for the testing dataset), followed by
the SVM model (0.912 for the training dataset and 0.930 for the testing dataset), the LR
model (0.929 for the training dataset and 0.89 for the testing dataset), and the LDA model
(0.91 for the training dataset and 0.887 for the testing dataset). Results shows that the CART
model has the best predictive capability for spatial urban flood prediction, followed by the
SVM model, the LR model and the DA model, respectively.

Table 3. Predictive capability of urban flood models using the training dataset.

Statistical Index LDA LR CART SVM

Accuracy (%) 87.66 89.85 95.13 90.20
Specificity (%) 86.14 88.44 91.70 86.29
Sensitivity (%) 89.13 91.12 98.53 94.11
Precision (%) 86.60 89.11 92.19 87.13
ROC Curve 0.91 0.929 0.962 0.912

Table 4. Predictive capability of urban flood models using the testing dataset.

Statistical Index LDA LR CART SVM

Accuracy (%) 87.76 86.33 90.61 90.61
Specificity (%) 87.77 85.43 85.04 88.01
Sensitivity (%) 87.26 87.00 95.67 93.65
Precision (%) 87.45 86.15 87.68 89.34
ROC Curve 0.887 0.89 0.945 0.930

The four models used in this study have never been applied before in urban flood
prediction, and therefore it was not possible to make a comparison with previous studies.
However, in other areas of natural hazard assessment (landslide, snow avalanche and
rural flooding), applications of CART, SVM, LR and LDA have recently been compared
in the literature [16,42,47], and the results showed that all these models present good
performances in the prediction of risk vulnerability and susceptibility (AUC > 0.85). Fur-
thermore, these studies point out that no given conventional model presents better results,
these depending on the studied phenomenon, the quality of the data and the number of
descriptive parameters.

3.3. Urban Flood Vulnerability Mapping

The mathematical basis and structure of modelling methods vary significantly, often
leading to different results and predictive performance. For this reason, comparative
studies are essential to evaluate the performance of the models under the same conditions
and to make an adequate judgment on their capabilities. It is also important to recognize
that the application of different predictive models allows policy makers to develop effective
plans [16–18].

The urban flood-vulnerability maps produced by the four models (Figure 8) illustrate
the probability of flooding in the study area. The flood risk maps were classified into four
classes: low (0–0.25), medium (0.25–0.5), high (0.5–0.75) and very high (0.75–1). As shown
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in the figure, all four modelling approaches display the same pattern of flood vulnerability
prediction. They also showed that the areas with high and very-high vulnerability of
flooding are mainly located in the center, east, southeast and southwest associated with
lowland areas, high density of drainage channels and recent buildings (Figure 9a,b). Other
high-risk flooding areas are located in the west and northwest associated with areas of
high altitude and slope with old buildings and high population density (Figure 9c–e).
However, the spatial detail of each model differs. In fact, the CART model showed the
highest estimate of areas at very high risk of flooding, which is equal to 19% of the total
area of Tangier city, the SVM model estimated 6.4%, while the LR model and DA model
both estimated 10.6%. In addition, the CART model delineated the high vulnerability areas
more clearly and consistently than the other models, due to its very high sensitivity value
(SST = 95%).
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Figure 9. Example of areas in Tangier city identified by all four models as being at very-high vulnerability of flooding: (a,b)
associated with short distance to the channel, high drainage density and recent buildings; (c–e) associated with steep slopes,
high density of old buildings and high population density.

The results of flood vulnerability prediction show that proximity to rivers and main
drainage channels as well as population and urban density are factors that increase the risk
of flooding in Tangier city. Recent studies on vulnerability and flood risk have reached
the same conclusions [1,6], and have suggested that restoration of worn urban texture,
decentralization of the population in high vulnerability areas, protection of riverbank areas
and enactment of supportive laws in areas of high social vulnerability can be preventive
actions towards damage reduction.

4. Conclusions

This study applies and combines various mathematical approaches to study the
variability and vulnerability of urban flooding in Tangier city, northern Morocco. The
treatment through principal component analysis (PCA) made it possible to synthesize
the information carried by different parameters into single macro-parameters. In the case
treated, the initial 13D hyperspace was reduced to 6D with a loss of the order of 27% of the
information, including the statistical noise that is inherent in any database. This treatment
also makes it possible to separate these independent sources of variability, and thus the
information conveyed by the flooding occurrence in Tangier city; it also becomes easy to
draw synthetic maps of their distribution according to the main components. The analysis
and interpretation of the information contained in each source of variability highlights the
interconnection between the topographical properties and the urban properties (population
density and building density) of Tangier city as the major factor controlling the occurrence
of urban flooding, followed by a second factor that represents the relationship between
drainage properties (drainage density and distance to channels) and urban properties.

The machine learning results indicate that LDA, LR, CART and SVM models have an
excellent performance in predicting urban flood vulnerability (ROC curve > 0.9), which
confirms that data mining methods can be applied to urban flood forecasting without
expensive or complex hydrodynamic modelling. However, our analysis is limited to
providing information on levels of vulnerability and does not provide information on
either the actual level of risk or the extent of possible flood risk, as it cannot provide or
generate such data. The CART and SVM models showed the highest accuracy on the
testing dataset (ACC = 91.6%) followed by the LDA model (ACC = 87.76%) and then the
LR model (86.33%). However, the CART model showed the highest estimate of areas at
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very-high vulnerability of flooding (19% of the total area of Tangier city) due to its high
sensitivity (SST = 95%). On the four urban flood-vulnerability maps, the high and very-
high vulnerability areas are associated with lowland areas, high drainage density, recent
buildings, areas of high altitude and slope with old buildings and high population density.

The results of this study should support the spatial decision making of the relevant
authorities and decision makers to formulate policies related to urban flood risk reduction
through sustainable urban management. The results should also be used for initial studies
of the areas likely to be impacted by fluvial flooding and to determine areas where more
detailed analyses should be carried out, including hydrodynamic modelling to characterize
the flow conditions, mainly its depth and speed.

However, the reduction of the vulnerability of goods and people to flood risk should
not be systematically synonymous with the immobilization of territories subject to risk,
but should rather consist in controlling the urbanization of the most exposed areas, while
allowing the urban and economic development of already urbanized areas or least-exposed
areas. The methodology used in this research could also be applied to other urban areas to
support the management, control and reduction of damage in flood-prone urban areas.

Author Contributions: Conceptualization, T.B. (Tarik Bouramtane) and I.K.; methodology, S.A.,
K.B. and V.V.; software, T.B. (Tarik Bouramtane), V.V. and M.A.; validation, M.L., L.B. and I.K.;
formal analysis, V.V., N.K. and O.E.B.; investigation, M.A., M.M., T.B. (Tarik Bahaj); resources,
T.B. (Tarik Bouramtane), M.A. and K.O.; data curation, T.B. (Tarik Bouramtane), M.A. and K.O.;
writing—original draft preparation, T.B. (Tarik Bouramtane); writing—review and editing, T.B. (Tarik
Bouramtane), S.A. and L.B.; visualization, S.Y.; supervision, V.V. and I.K.; project administration, I.K.;
funding acquisition, S.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by W.M. Keck Foundation through the Undergraduate
Education Grant Program.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data are available on request.

Acknowledgments: This work was carried out at the Geosciences, Water and Environment Lab-
oratory of the Faculty of Sciences of Mohammed V University in Rabat in collaboration with the
UMR EMMAH Hydrogeology Laboratory of the University of Avignon and with the support of the
Electrical and Computer Engineering Department of Seattle University.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Parvin, G.A.; Shaw, R.; Surjan, A. 3-Cities, Vulnerability, and Climate Change. In Urban Disasters and Resilience in Asia; Shaw, R.,

Surjan, A., Parvin, G.A., Eds.; Butterworth-Heinemann: Oxford, UK, 2016; pp. 35–47, ISBN 978-0-12-802169-9.
2. Eldho, T.I.; Zope, P.E.; Kulkarni, A.T. Chapter 12-Urban Flood Management in Coastal Regions Using Numerical Simulation and

Geographic Information System. In Integrating Disaster Science and Management; Samui, P., Kim, D., Ghosh, C., Eds.; Elsevier:
Amsterdam, The Netherlands, 2018; pp. 205–219, ISBN 978-0-12-812056-9.

3. Sarma, J.; Rajkhowa, S. Urban Floods and Mitigation by Applying Ecological and Ecosystem Engineering. In Handbook of Ecological
and Ecosystem Engineering; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 201–218, ISBN 9781119678595.

4. Hossain, M.K.; Meng, Q. A fine-scale spatial analytics of the assessment and mapping of buildings and population at different
risk levels of urban flood. Land Use Policy 2020, 99, 104829. [CrossRef]

5. Rahman, A.; Shaw, R.; Surjan, A.; Parvin, G.A. 1-Urban Disasters and Approaches to Resilience. In Urban Disasters and Resilience
in Asia; Shaw, R., Surjan, A., Parvin, G.A., Eds.; Butterworth-Heinemann: Oxford, UK, 2016; pp. 1–19, ISBN 978-0-12-802169-9.

6. Eini, M.; Kaboli, H.S.; Rashidian, M.; Hedayat, H. Hazard and vulnerability in urban flood risk mapping: Machine learning
techniques and considering the role of urban districts. Int. J. Disaster Risk Reduct. 2020, 50, 101687. [CrossRef]

7. Ahmad, S.S.; Simonovic, S.P. Spatial and temporal analysis of urban flood risk assessment. Urban Water J. 2013, 10, 26–49.
[CrossRef]

8. Borden, K.A.; Schmidtlein, M.C.; Emrich, C.T.; Piegorsch, W.W.; Cutter, S.L. Vulnerability of U.S. Cities to Environmental Hazards.
J. Homel. Secur. Emerg. Manag. 2007, 4. [CrossRef]

9. Solín, L’. Spatial variability in the flood vulnerability of urban areas in the headwater basins of Slovakia. J. Flood Risk Manag. 2012,
5, 303–320. [CrossRef]

http://doi.org/10.1016/j.landusepol.2020.104829
http://doi.org/10.1016/j.ijdrr.2020.101687
http://doi.org/10.1080/1573062X.2012.690437
http://doi.org/10.2202/1547-7355.1279
http://doi.org/10.1111/j.1753-318X.2012.01153.x


Hydrology 2021, 8, 182 17 of 18

10. Löschner, L.; Nordbeck, R. Switzerland’s transition from flood defence to flood-adapted land use—A policy coordination
perspective. Land Use Policy 2020, 95, 103873. [CrossRef]

11. Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-
Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [CrossRef]

12. Brunner, G.W.; Piper, S.S.; Jensen, M.R.; Chacon, B. Combined 1D and 2D Hydraulic Modeling within HEC-RAS. In Proceedings
of the World Environmental and Water Resources Congress 2015, Austin, TX, USA, 17–21 May 2015; pp. 1432–1443.

13. Follum, M.L.; Tavakoly, A.A.; Niemann, J.D.; Snow, A.D. AutoRAPID: A Model for Prompt Streamflow Estimation and Flood
Inundation Mapping over Regional to Continental Extents. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 280–299. [CrossRef]

14. Afshari, S.; Tavakoly, A.A.; Rajib, M.A.; Zheng, X.; Follum, M.L.; Omranian, E.; Fekete, B.M. Comparison of new generation
low-complexity flood inundation mapping tools with a hydrodynamic model. J. Hydrol. 2018, 556, 539–556. [CrossRef]

15. Kalantar, B.; Pradhan, B.; Naghibi, S.A.; Motevalli, A.; Mansor, S. Assessment of the effects of training data selection on the
landslide susceptibility mapping: A comparison between support vector machine (SVM), logistic regression (LR) and artificial
neural networks (ANN). Geomat. Nat. Hazards Risk 2018, 9, 49–69. [CrossRef]

16. Pham, B.T.; Prakash, I.; Tien Bui, D. Spatial prediction of landslides using a hybrid machine learning approach based on Random
Subspace and Classification and Regression Trees. Geomorphology 2018, 303, 256–270. [CrossRef]

17. Rahmati, O.; Falah, F.; Naghibi, S.A.; Biggs, T.; Soltani, M.; Deo, R.C.; Cerdà, A.; Mohammadi, F.; Tien Bui, D. Land subsidence
modelling using tree-based machine learning algorithms. Sci. Total Environ. 2019, 672, 239–252. [CrossRef]

18. Felicísimo, Á.M.; Cuartero, A.; Remondo, J.; Quirós, E. Mapping landslide susceptibility with logistic regression, multiple
adaptive regression splines, classification and regression trees, and maximum entropy methods: A comparative study. Landslides
2013, 10, 175–189. [CrossRef]

19. Gholamnia, K.; Gudiyangada Nachappa, T.; Ghorbanzadeh, O.; Blaschke, T. Comparisons of Diverse Machine Learning
Approaches for Wildfire Susceptibility Mapping. Symmetry 2020, 12, 604. [CrossRef]

20. Hong, H.; Naghibi, S.A.; Moradi Dashtpagerdi, M.; Pourghasemi, H.R.; Chen, W. A comparative assessment between linear and
quadratic discriminant analyses (LDA-QDA) with frequency ratio and weights-of-evidence models for forest fire susceptibility
mapping in China. Arab. J. Geosci. 2017, 10, 167. [CrossRef]

21. Dereli, T.; Eligüzel, N.; Çetinkaya, C. Content analyses of the international federation of red cross and red crescent societies (ifrc)
based on machine learning techniques through twitter. Nat. Hazards 2021, 106, 2025–2045. [CrossRef]

22. Berndtsson, R.; Becker, P.; Persson, A.; Aspegren, H.; Haghighatafshar, S.; Jönsson, K.; Larsson, R.; Mobini, S.; Mottaghi, M.;
Nilsson, J.; et al. Drivers of changing urban flood risk: A framework for action. J. Environ. Manag. 2019, 240, 47–56. [CrossRef]

23. Simon, T.; Goldberg, A.; Adini, B. Socializing in emergencies—A review of the use of social media in emergency situations. Int. J.
Inf. Manag. 2015, 35, 609–619. [CrossRef]

24. Resch, B.; Usländer, F.; Havas, C. Combining machine-learning topic models and spatiotemporal analysis of social media data for
disaster footprint and damage assessment. Cartogr. Geogr. Inf. Sci. 2018, 45, 362–376. [CrossRef]

25. Wu, D.; Cui, Y. Disaster early warning and damage assessment analysis using social media data and geo-location information.
Decis. Support Syst. 2018, 111, 48–59. [CrossRef]

26. Li, L.; Bensi, M.; Cui, Q.; Baecher, G.B.; Huang, Y. Social media crowdsourcing for rapid damage assessment following a
sudden-onset natural hazard event. Int. J. Inf. Manag. 2021, 60, 102378. [CrossRef]

27. Xu, Z.; Zhang, H.; Hu, C.; Liu, Y.; Xuan, J.; Mei, L. Crowdsourcing-based timeline description of urban emergency events using
social media. Int. J. Ad Hoc Ubiquitous Comput. 2017, 25, 41–51. [CrossRef]

28. Ma, J.; Sengupta, M.K.; Yuan, D.; Dasgupta, P.K. Speciation and detection of arsenic in aqueous samples: A review of recent
progress in non-atomic spectrometric methods. Anal. Chim. Acta 2014, 831, 1–23. [CrossRef]

29. Faxi, Y.; Rui, L. Mining Social Media Data for Rapid Damage Assessment during Hurricane Matthew: Feasibility Study. J. Comput.
Civ. Eng. 2020, 34, 5020001.

30. Devaraj, S.; Yarrakula, K. Evaluation of Sentinel 1–derived and open-access digital elevation model products in mountainous
areas of Western Ghats, India. Arab. J. Geosci. 2020, 13, 1103. [CrossRef]

31. Karabörk, H.; Makineci, H.B.; Orhan, O.; Karakus, P. Accuracy Assessment of DEMs Derived from Multiple SAR Data Using the
InSAR Technique. Arab. J. Sci. Eng. 2021, 46, 5755–5765. [CrossRef]

32. Letsios, V.; Faraslis, I.; Stathakis, D. InSAR DSM using Sentinel 1 and spatial data creation. In Proceedings of the 22th AGILE
International Conference on Geographic Information Science (AGILE 2019), Limassol, Cyprus, 17–20 June 2019; pp. 1–4.

33. Burrough, P.; McDonnell, R.A. Principles of Geographical Information Systems, 3rd ed.; Oxford University Press: New York, NY,
USA, 1998.

34. Archer, N.A.L.; Bonell, M.; Coles, N.; MacDonald, A.M.; Auton, C.A.; Stevenson, R. Soil characteristics and landcover relationships
on soil hydraulic conductivity at a hillslope scale: A view towards local flood management. J. Hydrol. 2013, 497, 208–222.
[CrossRef]

35. Reinhardt-Imjela, C.; Imjela, R.; Bölscher, J.; Schulte, A. The impact of late medieval deforestation and 20th century forest decline
on extreme flood magnitudes in the Ore Mountains (Southeastern Germany). Quat. Int. 2018, 475, 42–53. [CrossRef]

36. Shivakumar, B.R.; Rajashekararadhya, S. V Investigation on Land Cover Mapping Capability of Maximum Likelihood Classifier:
A Case Study on North Canara, India. Procedia Comput. Sci. 2018, 143, 579–586. [CrossRef]

http://doi.org/10.1016/j.landusepol.2019.02.032
http://doi.org/10.1016/j.geomorph.2004.06.010
http://doi.org/10.1111/1752-1688.12476
http://doi.org/10.1016/j.jhydrol.2017.11.036
http://doi.org/10.1080/19475705.2017.1407368
http://doi.org/10.1016/j.geomorph.2017.12.008
http://doi.org/10.1016/j.scitotenv.2019.03.496
http://doi.org/10.1007/s10346-012-0320-1
http://doi.org/10.3390/sym12040604
http://doi.org/10.1007/s12517-017-2905-4
http://doi.org/10.1007/s11069-021-04527-w
http://doi.org/10.1016/j.jenvman.2019.03.094
http://doi.org/10.1016/j.ijinfomgt.2015.07.001
http://doi.org/10.1080/15230406.2017.1356242
http://doi.org/10.1016/j.dss.2018.04.005
http://doi.org/10.1016/j.ijinfomgt.2021.102378
http://doi.org/10.1504/IJAHUC.2017.083481
http://doi.org/10.1016/j.aca.2014.04.029
http://doi.org/10.1007/s12517-020-06108-w
http://doi.org/10.1007/s13369-020-05128-8
http://doi.org/10.1016/j.jhydrol.2013.05.043
http://doi.org/10.1016/j.quaint.2017.12.010
http://doi.org/10.1016/j.procs.2018.10.434


Hydrology 2021, 8, 182 18 of 18

37. RMHPDRTTA Projections de la population des Provinces et Prefectures de la Region Tanger-Tetouan-al Hoceima 2014–2030; Rabat,
Morocco, 2018. Available online: https://www.hcp.ma/region-tanger/attachment/995544/ (accessed on 14 December 2021).

38. Bouramtane, T.; Tiouiouine, A.; Kacimi, I.; Valles, V.; Talih, A.; Kassou, N.; Ouardi, J.; Saidi, A.; Morarech, M.; Yameogo, S.;
et al. Drainage Network Patterns Determinism: A Comparison in Arid, Semi-Arid and Semi-Humid Area of Morocco Using
Multifactorial Approach. Hydrology 2020, 7, 87. [CrossRef]

39. Bouramtane, T.; Yameogo, S.; Touzani, M.; Tiouiouine, A.; El Janati, M.; Ouardi, J.; Kacimi, I.; Valles, V.; Barbiero, L. Statistical
approach of factors controlling drainage network patterns in arid areas. Application to the Eastern Anti Atlas (Morocco). J. Afr.
Earth Sci. 2020, 162, 103707. [CrossRef]

40. Anderson, R.H.; Farrar, D.B.; Thoms, S.R. Application of discriminant analysis with clustered data to determine anthropogenic
metals contamination. Sci. Total Environ. 2009, 408, 50–56. [CrossRef]

41. Wilson, S.R.; Close, M.E.; Abraham, P. Applying linear discriminant analysis to predict groundwater redox conditions conducive
to denitrification. J. Hydrol. 2018, 556, 611–624. [CrossRef]

42. Choubin, B.; Borji, M.; Mosavi, A.; Sajedi-Hosseini, F.; Singh, V.P.; Shamshirband, S. Snow avalanche hazard prediction using
machine learning methods. J. Hydrol. 2019, 577, 123929. [CrossRef]

43. Zhu, Z.; Lin, C.; Zhang, X.; Wang, K.; Xie, J.; Wei, S. Evaluation of geological risk and hydrocarbon favorability using logistic
regression model with case study. Mar. Pet. Geol. 2018, 92, 65–77. [CrossRef]

44. Loh, W.-Y. Classification and regression trees. WIREs Data Min. Knowl. Discov. 2011, 1, 14–23. [CrossRef]
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