
hydrology

Article

Improvements in Sub-Catchment Fractional Snowpack and
Snowmelt Parameterizations and Hydrologic Modeling for
Climate Change Assessments in the Western Himalayas

Vishal Singh 1 and Francisco Muñoz-Arriola 2,3,*

����������
�������

Citation: Singh, V.; Muñoz-Arriola, F.

Improvements in Sub-Catchment

Fractional Snowpack and Snowmelt

Parameterizations and Hydrologic

Modeling for Climate Change

Assessments in the Western

Himalayas. Hydrology 2021, 8, 179.

https://doi.org/10.3390/

hydrology8040179

Academic Editor: María-José Polo

Received: 5 November 2021

Accepted: 29 November 2021

Published: 7 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Water Resources System Division, National Institute of Hydrology Roorkee, Roorkee 247667, India;
vishal18.nihr@gov.in

2 Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
3 School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
* Correspondence: fmunoz@unl.edu

Abstract: The present work proposes to improve estimates of snowpack and snowmelt and their
assessment in the steep Himalayan ranges at the sub-catchment scale. Temporal variability of stream-
flow and the associated distribution of accumulated snow in catchments with glacier presence in the
Himalayas illustrates how changes in snowpack and snowmelt can affect the water supply for local
water management. The primary objective of this study is to assess the role of elevation, temperature
lapse rate (TLR), and precipitation lapse rate (PLR) in the computation of snowpack (or snowfall)
and snowmelt in sub-catchments of the Satluj River basin. Modeling of snowpack and snowmelt
was constructed using the Soil Water Assessment Tool (SWAT) in both historical (1991–2008) and
near-time scenarios (2011–2030) by implementing real-time hydrometeorological, snow-hydrological
parameters, and Global Circulation Model (GCM) datasets. The modeled snowmelt-induced stream-
flow showed a good agreement with the observed streamflow (~60%), calibrated and validated at
three gauges. A Sequential Uncertainty Parameter Fitting (SUFI2) method (SUFI2) resulted that the
curve number (CN2) was found to be significantly sensitive during calibration. The snowmelt hydro-
logical parameters such as snowmelt factor maximum (SMFMX) and snow coverage (SNO50COV)
significantly affected objective functions, such as R2 and NSE, during the model optimization. For
the validation of snowpack and snowmelt, the results have been contrasted with previous studies
and found comparable. The computed snowpack and snowmelt were found highly variable over the
Himalayan sub-catchments, as also reported by previous researchers. The magnitude of snowpack
change consistently decreases across all the sub-catchments of the Satluj river catchment (varying
between 4% and 42%). The highest percentage of changes in the snowpack was observed over
high-elevation sub-catchments.

Keywords: hydrological modeling; Himalayas; SWAT and SWATCUP; snowpack and snowmelt;
elevation bands

1. Introduction

Perennial streamflow in river basins in India such as Ganga, Indus, and Brahmaputra
originate from the Himalayan glaciers. Thousands of glaciers in the Himalayan Moun-
tainous valleys formed by large snowpacks represent the major sources of fresh water
and energy reserves in India [1,2]. Many studies reported that the hydroclimatology of
the Himalayan basins is changing due to climate change. The permanent snowpack (or
snowfall) and the glaciers are reducing their masses, which leads to more snowmelt water
in the streams [1,3,4]. As per the Intergovernmental Panel on Climate Change (IPCC), tem-
perature increase is the main cause of precipitation alteration in the Himalayan regions [1,5].
Some of these changes can be reflected in the spatial distribution and temporal variability
of rainfall and snowfall, which at the same time can drive streamflow generation in large
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catchments in the Himalayas [6–8]. While snowpack and glaciers influence streamflow
in high altitudes, rainfall is considered a predominant factor at low altitudes. As a main
tributary of the Indus River, the Satluj river has its flow primarily generated by snowmelt
during the spring. Thus, a higher measure of melting will result in an increase in runoff
downstream before the monsoon season [9,10]. As in other regions around the world, the
shift in runoff generation regimes may increase flood risk, affecting food, energy, and urban
security downstream of the catchment areas [11–14].

Ref. [1,2] reported that the length of many Himalayan glaciers is shortening, and only
25% of glaciers are stable. Other areas of the world, such as the western United States of
America, have experienced incremental increases at the altitude of snow accumulation
reduction in the snowpack, and earlier snowmelt onsets due to climate change [8,15–17].
The glacier retreating and snowmelt variations due to climate change may influence water
supply and storage and will affect the sustainability of human activities [18]; however,
in the Satluj Sutlej River or Sutlej catchment, recent and projected changes in snowmelt
and snowpack are inconclusive regarding about how glacial and perennial streamflow
will be affected in a changing climate. As per the studies conducted by [8,19,20], the
elevation-based fluctuations in temperature may affect the snowmelt process, especially
over Himalayan regions. A few studies highlighted elevation-dependent changes in
temperature and precipitation, especially in the high Himalayas [21,22]. Ref. [23] Elevation-
dependent changes in air temperature over glaciers in Arctic regions revealed a significant
variation in temperature lapse rate (TLR) and precipitation lapse rate (PLR). The variability
in TLR and PLR can be the major cause of reduction in the snowpack at high elevations of
the Himalayas [24–26]. The TLR and PLR are defined as the function of elevation [23], and
thus the snowpack and snowmelt rate can be influenced significantly due to changes in
TLR and PLR [19].

The ability of any hydrological model to simulate snowmelt runoff depends on how
well the model performs for the snowmelt processes. The temperature index model and
degree-day are factors widely assessed in snowmelt runoff diagnostics [9,20,27]. In the
simulation of the temperature index, the decrease in snow water equivalent (SWE) or
the amount of snowmelt is computed using a snowmelt factor and mean surface air
temperature [27]. This snowmelt factor or degree-day factor drives the snow–glacier melt
process since it is subject to changes in temperature. The temperature is dependent on
the elevation affecting the degree-day significantly, as has been evidenced in Himalayan
catchments by [20]. Previous researchers have used a constant degree-day factor for
the whole domain of research, whereas the degree-day factor varies spatially as well
as temporally. Thus, the role of elevation bands must be addressed in the computation
of snowmelt and snowpack, which becomes relevant over catchments along with the
Himalayan Mountain ranges.

The Global Circulation Models (GCMs) based studies revealed the impact of climate
change on the variability of precipitation over the Himalayas [21,22,28]. Climate change is
influencing TLRs and PLRs [21], particularly when catchments’ topography corresponds
with moderate to very high elevations such as the Himalayas. Thus, snowpack and
snowmelt amounts can be affected significantly in the high Himalayas. Further, the
influences of a changing climate in the Himalayan region have evidenced long-term shifts in
average air temperature, precipitation, and other land surface variables [9,29–31]; therefore,
future changes, especially near-term changes, have made it increasingly important to be
able to compute snowpack and snowmelt in sub-catchments to manage water resources.

The focus of this study is to assess the role of elevation bands coupled with SWAT
based temperature index model [27] in the computation of snowpack and snowmelt over
Himalayan catchments. Another objective of this study is to analyze the role of model
parameters in snowmelt modeling to reduce parameter-related uncertainties, which would
help construct more accurate snowmelt models at the sub-catchment scale. The sensitivity
analysis of modeling parameters was performed to identify the behavior of snowmelt and
other water balance parameters. Studies revealed the importance of sensitivity analysis



Hydrology 2021, 8, 179 3 of 22

in hydrological modeling [32–34]. The Nash–Sutcliffe Equation (NSE) and coefficient of
determination (R2) [35] are used as the main objective functions. The third objective of
this study is to highlight the snowmelt and snowpack changes and their comparisons
with the previous studies in the historical and near-term time scenarios. No previous
study accounted for a fractional variability assessment of snowpack and snowmelt at each
sub-catchment scale over Himalayan catchments. In this study, the two most influencing
climate factors, daily minimum–maximum temperature and daily precipitation, have
been emphasized to highlight the changes in a glacial Himalayan catchment. The TLR,
PLR, and other snowmelt parameters (e.g., seasonal degree-day factors) are optimized
using a Sequential Uncertainty Parameter Fitting (SUFI2) utilizing observed snowmelt
induced streamflow at three gauge locations. SWAT has already proven its capability in
the computation of snowpack and snowmelt [27,33,36].

2. Materials and Methods
2.1. Study Area

For the present study, the Satluj river catchment (up to Kasol gauge station) was
selected. The Satluj river flows through the western Himalayan region and is a part of the
Indus River basin. The Indus River has many major tributaries, such as the Satluj, Beas,
Jhelum, Chenab, Ravi, and minor tributaries. The main outlet station of the selected study
area, such as Kasol, consists of an area of about 51,055 km2, which is located at the head of
the Bhakra dam of India. The geographical extent of the study area lies between 77◦00′

to 82◦39′ E longitudes and 30◦8′ to 33◦00′ N latitudes (Figure 1). The Satluj river is the
longest river among the five major rivers that flow through northern India and Pakistan. It
is north of the Vindhya Range, south of the Hindu Kush segment of the Himalayas, and
east of the Central Sulaiman Range in Pakistan. The Satluj catchment is mainly covered
by snow and glaciers, which cover around 61% of the total catchment area as classified in
the land use/land cover (LULC) map. The Satluj river catchment corresponded to around
10.21% of the total Indian Himalayan region [9]. The Satluj river catchment elevation varies
from moderate (526 m) to very high elevations (7429 m). The majority of the Satluj river
catchment is fed by snowmelt (up to the Rampur gauge station) and rainfall during the
summer and by groundwater flow during the winter.
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2.2. Meteorological and Thematic Data

For the research work, we used the observed gridded (at 1◦ × 1◦ scale) daily precip-
itation and daily minimum and maximum temperatures (1989–2008) obtained from the
Indian Meteorological Department (IMD) and Indian Institute of Tropical Meteorology
(IITM). A total of 8 grids covering the catchment area were selected (Figure 1). These
datasets were generated using more than 1800 observed precipitation and temperature
gauges distributed across India. These gridded precipitation and temperature datasets
were increasingly used in studies on the Indian and Himalayan continents [21]. Addition-
ally, the measured gauge-based daily precipitation datasets for the same year 1989 to 2008
were available at the three gauges at Rampur, Suni, and Kasol, which were utilized for the
analysis. The historical simulation (1991–2008) of snowpack, snowmelt, and other water
balance components was generated using these gridded hydrometeorological datasets. The
initial two years (1989–1990) are taken as the warmup period. For the historical model
simulation (1991–2008), the observed temperature and precipitation gridded datasets were
spatially adjusted at each sub-catchment scale utilizing the TLR and PLR [21]. The whole
basin was categorized into 16 sub-catchments based on the default threshold area [33,37].

Each grid point has been spatially adjusted at the centroid of each sub-catchment,
and accordingly, the precipitation and temperature have been adjusted. For the adjust-
ment of the meteorological variables, the average TLR and PLR have been computed to
highlight the effect of elevation variations across the sub-catchments [21,33]. The spatial
adjustment of each grid point at the centroid location of the sub-catchments enhances the
local climatological effect in the snowmelt computation [21]. The methodology of TLR
and PLR is explained in Section 2.5.1. Snow and glaciers mainly cover the upper part
of the catchment that has a very low TLR, while the lower part of the catchment has a
reduced presence of glacier areas with large settlements and high temperatures. These
topographical variations brought high variability in TLR and PLR over the Satluj river
catchment, and thus, snow cover could be sensitive to the temperature variations [21];
therefore, ten elevation bands were computed at each catchment scale to account for the
effect of temperature in the snowpack.

The Shuttle Radar Topographic Mission (SRTM) digital elevation model (DEM) with
90 m spatial resolution [38] was used to delineate the catchment boundaries, stream chan-
nels, flow paths, fractional slopes, and elevation bands. The SRTM DEM was downloaded
freely from NASA’s earth explorer portal (https://earthexplorer.usgs.gov/ 12 June 2021).
The thematic data layer such as land use/land cover (LULC) map prepared at 1:50,000
topographical scale using Indian Remote Sensing satellite (IRSP6) Linear Imaging Spectral
Scanner (LISS) III satellite images (https://bhuvan-app3.nrsc.gov.in/data/download/
index.php 12 June 2021). The LULC maps were reclassified based on the SWAT man-
ual [37]. The soil map of the study area was downloaded from SWAT’s portal (http:
//swat.tamu.edu/data/india-dataset/ 12 June 2021) [39]. The description of soil cat-
egories was provided in the FAO’s world harmonic soil database [39] (Figure 1). The
LULC and soil categories for the Satluj catchment are shown in Figure S1. The Satluj river
catchment was discretized into 16 sub-catchments. Each sub-catchment includes a main
channel and multiple Hydrological Response Units (HRUs), which consist of geospatial
representations of homogeneous land use, soil type, and management practices.

2.3. GCM Datasets and Projection Scenarios

For the assessment of near-term (2011 to 2030) snowpack, snowmelt, and snowmelt
induced water yield, the daily precipitation and temperature datasets were downloaded
from the Intergovernmental Panel on Climate Change (IPCC) climate data portal. In
this study, the Coupled Global Climate Model (CGCM3.1)/T63 atmospheric and sea-ice
model output—namely, the SRES B2 model experiment [40,41]—was used to generate
near-time scenarios. SRES GCM scenarios find significant changes for the near-term
prediction and projection of watershed variables using temperature and precipitation
datasets [40–42]. CMIP3 SRES B2 experiment-based daily temperature and precipitation

https://earthexplorer.usgs.gov/
https://bhuvan-app3.nrsc.gov.in/data/download/index.php
https://bhuvan-app3.nrsc.gov.in/data/download/index.php
http://swat.tamu.edu/data/india-dataset/
http://swat.tamu.edu/data/india-dataset/
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datasets at 128 × 64 Gaussian grid (approximately 2.5◦ latitudes × 2.5◦ longitudes) are
then downloaded. Four GCM data points, which are falling inside/near the current study
area and highlight the spatial variations of the present study, are considered (Figure 1)
without downscaling [43]. These four GCM grids have been spatially interpolated at
each sub-catchment scale using the Inverse Distance Weighting (IDW) method [44,45].
For the GCM datasets, the statistical bias correction was performed with reference to the
observed daily temperature and precipitation datasets [22,46]. This study did not perform
the GCM data uncertainty. However, to preserve the local scale effect of GCM variables
(e.g., temperature and precipitation), the mean bias was computed at each sub-catchment
scale, and accordingly, the GCM variables were corrected.

The SRES B2 scenario emphasizes local rather than global solutions to economic,
social, and environmental stability and thus was found to be more reliable for the near-
term assessment [41,47]. The SRES B2 experiment was referred to by various researchers
in various climate change studies around the world [40,41,44,46,47] and hence was used
in this study. The SRES B2 model experiment was finally selected for the near-term
assessment based on the comparison of IPCC’s SRES B1, SRES A2, 20C3M, COMMIT, and
B2 historical simulations and observed precipitation and temperature [47]. Finally, the
bias-corrected GCM variables, such as daily temperature and daily precipitation, were then
incorporated into SWAT to generate the near-term scenarios. During the computation of
near-term scenarios, the GCM-based temperature and precipitation datasets were taken
as the variable parameters and other parameters were kept constant. The optimized
coefficients and parameter values were again incorporated into SWAT and then the near-
term scenarios of snowpack and snowmelt were generated. It is noteworthy to mention
that the use of CMIP-based scenarios represents a viable alternative to test the proposed
methodology and, at the same time, provided a diagnosis of the impacts of climate change
on snowpack simulation and scenarios.

2.4. Modeling Approach

The SWAT model is fully capable of computing the long-term water balance compo-
nents in a semi-distributed manner using hydrological response units (HRUs) (Arnold
et al. 1998). The Satluj river catchment was divided into 16 sub-catchments and 358 HRUs
based on the unique combination of soil, LULC, and slope. The water balance components
were computed at each HRU scale, and then their aggregation was determined at each
sub-catchment scale [27,32,48]. The rationale for discretizing the catchment is to simulate
streamflow, snowfall, and snowmelt at the sub-catchment scale. The representation of
snowpack and snowmelt at each sub-catchment by the function of multiple elevation
bands could be useful to highlight their variabilities in an efficient manner, especially
in the case of topographically variable catchments. In this study, the Soil Conservation
Services (SCS)-based curve number (CN) method was used for the water balance compu-
tation. The CN is a function of LULC, various soil conditions, and antecedent moisture
conditions (AMCs), which includes around 150 different parameters, including snowmelt
parameters [37,48]. The Satluj river catchment corresponded to steep slopes and has a
very complex topography; therefore, to account for the effect of steep slopes in the overall
water balance computation, we employed a slope-adjusted modified CN method for the
computation of water balance components [37]. The CNs were modified as per the frac-
tional slopes computed at each HRU scale, which enhanced the accuracy of the simulated
streamflow [37].

The main hydrological processes included interception, infiltration, runoff, evapotran-
spiration, lateral flow, and percolation. The details about the physical and hydrological
principles and parameters of SWAT are fully described in the SWAT user manual [37]. In
this study, the linear reservoir approach was applied for the computation of snowpack and
snowmelt by the fractional computation of snowpack and snowmelt [28]. The aggregated
snowpack and snowmelt amount with respect to multiple elevation bands accounted for at
each sub-catchment scale [37]. For each sub-catchment, a maximum 10 elevation bands are
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constructed. The five basic snowmelt parameters such as degree day melt factor maximum
(4.5 mm/d/◦C), degree-day melt factor minimum (2.5 mm/◦C/d), snowfall temperature
(0.0 ◦C), snowmelt temperature (0.5 ◦C), and snow water content for 100% snow cover
(100 mm) were incorporated in SWAT with their standard global values during default
simulation [37]. Since very limited studies were performed with respect to snowmelt and
glacier hydrology over the western Himalayan regions, thus, the regional/global values
were adopted as per their availability for model simulation [28,37]. In this study, the
snowmelt parameters are considered as the model calibration parameters.

2.5. Elevation Band Approach for Snowpack and Snowmelt Measurement

In this study, the temperature index model was constructed to compute the snowpack
and snowmelt (Fontaine et al., 2002). The seasonal degree-day melt factors (e.g., maximum
and minimum) with their global coefficient values obtained from the literature survey are
employed in the model for the computation of snowmelt [20,27,28,49]. In the Himalayan
region, the degree-day melt factor varies from 1.5 mm/◦C/d to 4.7 mm/◦C/d [20,27].
Initially, [28] developed the methodology for the snowmelt module and showed that the
elevation band-wise characterization of snowpack and snowmelt significantly enhanced.
Thus, each sub-catchment was categorized into a maximum of 10 elevation bands to im-
prove the simulation of snowpack and snowmelt. The elevation bands were defined based
on their mean elevation and the proportion of the sub-catchment area they encompass. To
incorporate the temperature and precipitation variations across the sub-catchments, the
TLR and PLR were computed and adjusted with respect to the altitude of the corresponding
sub-catchment [37]. The sequence of methodological steps are as follows:

2.5.1. TLR and PLR Computation and Their Adjustments at Each Elevation Band

For each sub-catchment, lapse rates for precipitation plaps (mm/km) and temperature
tlaps (◦C/km) were computed as Equations (1) and (2), respectively:

PB = P + (ZB − Z)
plaps

dayspcp,yr × 1000
(1)

TB = T + ( ZB − Z)
tlaps

1000
(2)

where P (mm), T (◦C), and Z (m) were the sub-catchment precipitation, temperature, and
recording gauge elevation, respectively, while PB, TB, and ZB were the adjusted precipi-
tation, temperature, and mean elevation for each elevation band. The variable daypcp,yr
represented the mean annual number of days with precipitation. The TLR could be com-
puted using mean annual temperature. In accordance with the delineation approach used
with sub-catchments, temperatures were adjusted within each elevation band by com-
paring the elevation bands’ midpoint elevation (ZB) within the station elevation (Z). The
elevation difference was multiplied by the lapse rate to calculate a temperature difference
between the station elevation and the elevation band. An updated elevation band mean
temperature (TB) was calculated by adding or subtracting the temperature difference to or
from the temperature measured at the station elevation (T) as in Equation (3):

TB = T + (ZB − Z)
dT
dZ

(3)

where dT
dZ is the mean local lapse rate (tlaps) (◦C/km) calculated at all sub-catchments. A

lapse rate for annual precipitation was represented by the changes of the mean annual
precipitation with respect to the station elevation. Adjusted precipitation in each elevation
band (PB) was based on the difference between the elevations of the sub-catchment meteo-
rological station (Z), and each elevation band (ZB) multiplied by the lapse rate of (mm/km)
per event (P). If the meteorological station was unavailable in a particular sub-catchment,
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then the next nearest meteorological station was considered for lapse rate calculations. The
equation was defined as Equation (4):

PB = P + (ZB − Z)
dP
dZ

(4)

where dP
dZ was the mean local lapse rate

(
plaps

)
calculated for all sub-catchments.

2.5.2. Snow Accumulation

SWAT differentiates snowpack (solid precipitation) and rainfall (liquid precipitation)
based on near-surface daily air temperature. The snowpack (depth) was represented in
SWAT by the snow water equivalent (the mass of liquid water in the snowpack) SWE
(mm), which balanced snowfall SF (mm) and snowmelt SM (mm) or sublimation ES (mm)
(Equation (5)):

SWEday = SWE(day−1) + SF− SM− Es (5)

In SWAT, SM is controlled by the air and snowpack temperatures, the melting rate,
and the areal coverage of snow. When the daily mean air temperature is less than a snowfall
temperature, as specified by the SWAT variable SFTMP (Table 1), the precipitation within
an HRU is classified as snow, and the liquid water equivalent is added to the already-
present snowpack. The snowpack temperature is a function of the mean daily temperature
during the preceding days and varies as a dampened function of air temperature [49]. The
influence of the previous day’s snowpack temperature on the current day’s snowpack
temperature was controlled by a lagging factor, (TIMP), which intrinsically accounts for
snowpack density, snowpack depth, exposure, and other factors known to affect snowpack
temperature (Equation (6)):

Tsnowpack(day) = Tsnowpack(day−1) × (1− TIMP) + TavTIMP (6)

where Tsnowpack (day) and Tsnowpack (day−1) are the snowpack temperature (◦C) on a given
day and on the day preceding it, respectively, and Tav (◦C) is the mean air temperature
for the same given day. The fraction of area covered by snow SNOcov can be computed as
Equation (7):

snowcov =
SNO

SNO100

(
SNO

SNO100
+ exp

(
cov1 − cov2

SNO
SNO100

))
− 1 (7)

where SNO is the water content of the snowpack on a given day (mm), SNO100 is the
threshold depth of snow at 100% coverage (mm), and cov1 and cov2 are coefficients that
define the shape of the curve. Snow depth over an elevation band is assumed to be constant
when the SWE exceeds SNO100; i.e., the areal depletion curve affects snowmelt only when
the snowpack water content is between zero and SNO100. The SNO100 (e.g., the initial snow
coverage) was computed using LISS3 satellite datasets. The values of cov1 and cov2 were
adopted from the study carried out by [50].

2.5.3. Snowmelt and Glacier Melt

In the SWAT model, the snowmelt rate is controlled by snowpack temperature and air
temperature. A snowpack cannot begin to melt and release water before the entire pack
has reached 0 ◦C [27]. SWAT model provides melt water at each sub-catchment scale which
includes the contribution of melt water from both snow and glaciers [37]. To incorporate
the melt effect from the glacier area, the percentage of glacier area (20%) within the Satluj
river has been incorporated [9]. The standard global coefficient related to glacier melting
(e.g., glacier temperature) has been incorporated to account for melt release from glaciers,
similarly applied by [51]. The melt rate from a snowpack/glacier varies in response to
snowpack conditions [28]. In SWAT modeling, the snowmelt and glacier melt were set
up together as a linear function of the differences between the average of the snowpack
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and glacier temperature (Tsnowpack), and the maximum air temperature (Tmax) on a given
day and the base, or threshold temperature, for the snowmelt (Equation (8)); however, the
SWAT model does not differentiate the melt water from glacier and non-glacier areas. The
snowmelt (SM) can be computed as:

SM = bmlt × snocov

[Tsnowpack + Tmelt

2
− TMLT

]
(8)

where bmlt (mmH2O/day-◦C) in Equation (9) is the melt factor for a day:

bmlt =
SMFMN + SMFMX

2
+

SMFMN− SMFMX
2

sin
(

2π
365

(dn − 81)
)

(9)

Table 1. SWAT model simulated water balance components details.

Model Simulation Details

General details Satluj catchment
Simulation period (years) 16

Warm up (years) 2
Hydrological response units (HRUs) 358

Sub-basins 16
Output time step Daily, Monthly

Watershed area (km2) 51,055

Water Balance Ratios

Streamflow/precipitation 0.63
Baseflow/total flow 0.25

Surface runoff/total flow 0.45
Percolation/precipitation 0.26

Deep recharge/precipitation 0.01
ET/precipitation 0.36

Water Balance Components (mm)

ET 382.0
Precipitation 1073.5

Surface runoff 304.8
Lateral flow 113.0
Return Flow 259.0

Percolation to shallow aquifer 283.4
Revaporation from shallow aquifer 10.2

Recharge to deep aquifer 14.2

Equation (9) has been adapted for application in the Northern Hemisphere, where
SMFMN is the melt factor for 21st June, SMFMX is the melt factor for 21st December, and
dn represents the day of the year [37].

2.6. Model Calibration and Validation

The main aim of the calibration of snowmelt-induced streamflow is to produce more
accurate water balance components; therefore, the observed snowmelt induced streamflow
time-series datasets (1989 to 2008) at the three-gauge locations, such as Rampur, Suni, and
Kasol (outlet point), obtained from the Central Water Commission (CWC) India, were used
for the calibration and validation of modeled snowmelt induced streamflows. The accuracy
and reliability of the modeled snowpack and streamflow depend on the overall water
balance parameters and their optimized coefficient values. The model strength was evalu-
ated using objective functions, such as coefficient of determination (R2) and Nash–Sutcliffe
Equation (NSE) index [52]; however, we assume that the reasonable NSE and R2 results are
not fully sufficient to judge the snowmelt modeling strength of a model that indicates how
accurate (%) our model is for the computation of snowpack and snowmelt; therefore, the
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modeled outcomes, such as snowpack and snowmelt, are also validated/compared with
the previous studies performed over the Satluj river catchment [9,20,53].

A deterministic-approach-based hydrological model such as SWAT is unable to explore
the stochastic behavior of meteorological variables such as precipitation in the streamflow
simulation [32,52]; thus, SWAT Calibration and Uncertainty Program (SWATCUP)-based
Sequential Uncertainty Parameter Fitting method (SUFI2), an optimization algorithm, [52]
was used to analyze the different model calibration parameters and uncertainty analysis.
The model was calibrated and validated at both daily and monthly time scales. The main
aim of the calibration is to reduce the model uncertainties, mainly through parameteri-
zation, to compute a more accurate estimation of water balance components at a smaller
scale. The model calibration was performed based on the concept of aggregate parameter
selection [54]. An ‘aggregate parameter’ was obtained by adding terms such as v, a, and r
to the front of the original parameter to create an absolute increase and a relative change in
the initial parameter values, respectively [55].

2.7. Parameter Uncertainty and Sensitivity Analysis

The main goal of the parameterization and sensitivity analysis is to improve the
model simulation in historical and near-term projection scenarios, especially through
GCMs. Thus, in near-term scenarios, the optimized parameters and coefficients have
been used. The optimal values of model calibration parameters improve the overall
model performance, and thus, more accurate water balance components can be generated.
Model parameterization and sensitivity analysis using observed hydro-observation datasets
always lead to non-identifiable parametric uncertainties, which may be expected with
hydrological processes and datasets, especially in the case of the snow-glacier induced
catchment [52,54].

SUFI2 accounts mostly for parameter uncertainty through a Latin hypercube sam-
pling (LHS) method, which constructs a “stratified-random” sampling method unlikely to
Monte Carlo simulation [52,56]. The resultant simulated variables and state variables are
contrasted to the equivalent observations through the application of an objective function
(e.g., NSE/R2) [32,56]. The SUFI2 algorithm assumes a large parameter uncertainty (or
physically meaningful range) occurring in response to data inputs to ensure the observed
data fall into the 95% prediction uncertainty (95PPU) band during the first iteration [57].
During this iterative procedure, uncertainty progressive decrease is monitored through the
changes of the p-factor and r-factor [32,52,56]. In each progressive iteration, the uncertainty
band reduces, and we obtain a more concise parameter value. The p-factor determines
the percentage of simulated data falling into the observed-data range, and the r-factor
contributes to determining the uncertainty of the simulated variables and state variables
when compared with observed datasets [56]. The value of the p-factor ranges between
0 and 100%, and the r-factor ranges between 0 and infinity. A value of p-factor = 1 and
r-factor = 0 represents a perfect match between simulated and observed data.

In the SUFI2 algorithm, the old coefficient parameters (e.g., default parameter values)
iteratively change and are updated into a new array of coefficients during calibration to
ultimately achieve the final set of parameters. In this way, it improves the parameter
coefficient values and reduces the parameter uncertainty. In this study, each iteration
contained around 600 simulations to analyze the uncertain effect of model parameters.
In this study, we ran four iterations to obtain the best-fitted coefficients and parameter
values during both daily and monthly calibrations. Correspondingly, we performed the
sensitivity analysis to identify the most model influencing parameter. It helps to identify
the significance of a particular parameter to the calibration process, whether the process is
influenced by the parameter values or nature of the forcing. In this study, we performed a
global sensitivity analysis (GSA) through multiple regressions.

In sensitivity analysis, the statistical significance tests such as p-value and t-stat
are employed to rank parameters from highly sensitive to non-sensitive. The p-values
closer to zero will enable the use of trend analyses of the simulated variables and state
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variables [56]. The parameter value towards zero will be more significant. The GSA was
evaluated based on the significance level alpha (α = 0.05). The alpha value 0.05 was chosen
as the local significance level [56]. Based on this significance level, values larger than
+1.96 indicate a significant (p < 0.05) positive sensitivity of the parameter, and values lower
than −1.96 indicate a significant negative sensitivity. The model simulation details are
given in Table 1 and parameter details are given in Table S1.

3. Results

The thematic components, such as topography, LULC, and soil classes, are parameter-
ized in SWAT [37]. For example, more than 30 different soil parameters associated with
each soil category, such as soil texture, available water content, hydraulic conductivity,
bulk density, and organic carbon content, were used to setup SWAT simulation. These
parameters in SWAT were defined for each soil subtype for different layers (between
two and three layers). The average curve number (CN) (average of all HRUs) has been
computed around 80 in the catchment, though it varied from lower sub-catchment to
upstream sub-catchment as per the unique combination of LULC, slope, and soil. SWAT
information on model implementation, including the temporal context for the simulated
water balance components, is described in Table 1. The model calibration, parameterization,
and sensitivity results were a product of 20 different hydrological parameters (Table S1)
on both daily and monthly time steps. In Table S1, the parameters that were relevant to
snowmelt-induced streamflows are selected for model parameter selection and calibration,
and sensitivity analysis. The description of parameters and their coefficients are given
in Table S1. The optimized best-fitted parameter values and their statistics of sensitivity
on both a daily and monthly basis are shown in Table S2. Further, Table S2 shows the
aggregate parameter ranges that result from the final iteration number optimized through
the Latin Hypercube Sampling (LHS) method [56].

Table 2 and Figure 2 show the daily and monthly results for streamflow calibration
(1991 to 2000) and validation (2001 to 2008) at all three outlet locations, Rampur, Suni,
and Kasol. Figure 3 shows the sub-catchment-wise snowpack and snowmelt with ref-
erence to precipitation. Figure 2 shows the regression plots between the observed and
calibrated/validated streamflows at all three gauges. The plotted regression lines showed
an optimal correlation between observed and calibrated/validated snowmelt-induced
discharge. Table 2 shows the goodness-of-fit between the calibrated/validated and mea-
sured streamflows with the R2 and NSE at all three gauges, such as Rampur, Suni, and
Kasol (outlet) gauges. The computed R2 and NSE are found reasonably acceptable for
daily and monthly observations (Table 2 and Figure 2). Regarding goodness-of-fit aspects,
monthly and daily calibration correlations were similar. Among all the three outlet gauges,
Kasol and Rampur show slightly better calibration and validation statistics than the Suni
station. Yet, the consistency of the efficiency statistics also indicates consistency in the
performance of the model. Before the initialization of the model calibration, we took 5%
as a bias to ignore the extreme ambiguities from the calibration. The overall R2 and NSE
between the computed and observed snowmelt induced discharge are computed ~0.7 and
~0.6, respectively.

The calibration process includes surface, groundwater, and snowmelt hydrology
parameters. The focus was to calibrate snow hydrology parameters. Among twenty
calibration parameters, five parameters such as R_CN2.mgt, R_SMFMX.bsn, V_CH_K2.rte,
TLAPS.sub, and V_GW_DELAY were found significantly sensitive for daily calibration,
while four parameters such as SNO50COV.bsn, CN2.mgt, GW_DELAY.gw, and SOL_K.sol
were found significantly sensitive for a monthly calibration. For example, the TLAPS.sub
parameter shows variation in the daily temperature at each sub-catchment scale. The
parameter range for TLAPS.sub (or TLR) fluctuated from −7.0 ◦C/km to 2.5 ◦C/km and
the best-fitted value was computed as −4.1 ◦C/km. This highlights the sensitivity of
temperature variations across the Satluj river sub-catchments. For TLAPS.sub, the p-value
is recorded as 0.01, and its t-stat value is recorded as−2.2, which is found to be significantly
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sensitive for the model calibration. The TLR is defined as the function of elevation. It
clarifies the existed variations in snowpack and snowmelt amount across the elevation
bands and catchments.

Table 2. Model calibration and validation results as per SUFI method on the daily and monthly
basis analysis.

Calibration (1991–2000)

Outlet
Station

Daily Monthly

p-Factor r-Factor R2 NSE p-Factor r-Factor R2 NSE

Rampur 0.46 1.89 0.75 0.61 0.41 1.90 0.71 0.64

Kasol 0.57 1.50 0.76 0.63 0.57 1.57 0.78 0.67

Suni 0.52 1.60 0.72 0.59 0.49 1.43 0.73 0.60

Validation (2001–2008)

Outlet
Station

Daily Monthly

p-Factor r-Factor R2 NSE p-Factor r-Factor R2 NSE

Rampur 0.43 1.89 0.62 0.54 0.45 1.92 0.65 0.55

Kasol 0.52 1.67 0.71 0.59 0.60 1.62 0.73 0.61

Suni 0.52 1.72 0.65 0.58 0.58 1.52 0.71 0.60
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Figure 3. Annual variability of snowpack and snowmelt and precipitation at sub-catchment scale for the year 1991 to 2008.
Following drainage areas in Figure 1b, the stations above drain from left to right: (a) SB1: from top to bottom; (b) SB2;
(c) SB3; (d) SB4; (e) SB6; (f) SB8: from (j) SB14 to (i) SB7: from right to left (i) SB7 to (h) SB5; and (g) SB13.

For the validation of snowmelt and snowpack modeled from the temperature index
model by the aggregation of elevation bands, we referred to previous studies in the similar
study area of Satluj River [9,20,53]. Figure 3 shows the daily averaged discrimination
of snowmelt-induced streamflow and rainfall-induced streamflow. As per Figure 3, the
snowmelt is maximally accounted for during May and June (~60% of total flow), while in
July, it shows less than rainfall-induced streamflow due to the monsoon effect. The valida-
tion/comparative statistics of snowpack and snowmelt between modeled and reference
values are shown in Table 3. Table 3 highlights a good agreement between the modeled
data and referenced data from previous studies. The majority of the studies reported
snowmelt contribution to the annual runoff is around 60%. The overall outcomes of this
study are comparable to previous studies [9,20,53].

Table 3. Validation of modeled snowpack and snowmelt with respect to referenced datasets.

Variables SWAT Jain et al.,
2010

Singh and Kumar,
1997 Tiwari et al., 2016 Singh and Jain,

2002

Snowpack 61% (Winter) 65% (Winter) 53% (summer)–
64% (Winter) 75% (Winter) 59% (summer)–

72% (Winter)

Snowmelt at Satluj 58%
(maximum) 59% (maximum) 64%

(maximum) 63% (maximum) 59% (maximum)

The sensitivity of TLR (TLAPS.sub) variations clearly shows that the elevation differ-
ences significantly affected the distribution of snowpack and snowmelt across the whole
catchment. The Satluj river catchment is dominated by temporary/permanent snow covers,
glaciers, permanent ice sheets, and seasonal well-packed snow. They are typical features
of the catchment, which, at the same time, are identified in the sensitivity of parameters.
The parameters such as SNOCOVMX.bsn and SNO50COV.bsn (parameters that represent
the fraction of snowpack and the elevation bands) have been found to be significantly
sensitive (Table S2). They computed t-stat values less than −2.2 or greater than +2.2,
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and their estimated p-values were close to zero. These parameters show that the snow
depletion curve has a significant influence on the snowmelt process. Thus, the seasonal
variations in the snowmelt factor could be sensitive for snowmelt and glacier melt rates.
As in other latitudes, soil properties also evidence the regulatory role of infiltration in the
subsurface [57]. For example, the V_GW_DELAY.gw parameter of aquifer recharge at the
catchment was found to be significantly sensitive for both daily and monthly time steps
(Table S2). In unconfined and shallow aquifers, this factor could influence the temporal vari-
ability and spatial distribution of different components of the water balance, highlighting
the contributions of surface water and groundwater interactions. Further, at the catchment
scale, A_ALFA_BF.gw, whose p-value was recorded as 0.2 daily and 0.4 monthly, were
found insignificant for the model calibration. This evidence indicates that the model grap-
ples with capturing possible surface water–groundwater interactions and the associated
discharge–recharge rates, which can also be seen in data-driven models [58].

Other model parameters associated with different types of LULC and soil categories
were not considered sensitive for the model calibration and validation process. These model
parameters included GWQMN.gw, HRU_SLP.hru, SOL_BD.sol, PLAPS.sub, CH_N2.rte,
SOL_AWC.sol, and GW_REVAP. The snowmelt temperature-related parameters, such as
R_SMTMP.bsn, R_SFTMP.bsn, and R_SMTMP.bsn, were recorded as non-significant during
model calibration, as shown in Table S2. These properties are relevant to the temperatures
that allow the formation or accumulation of snow, rather than the melting of snow already
packed (which coincides with the sensitivity of the SMFMX parameter described above).
They were not recognized as significantly sensitive because their computation was less
uncertain. The curve number coefficient (R_CN2) was found most to be the significantly
sensitive parameter in the model calibration process. The CN varies for each HRU; there-
fore, the CNs were modified based on the fractional HRU slopes and calibrated at each
HRU scale. The LULC and soil physical properties vary at the HRU scale. This makes the
snowmelt-induced streamflow calibration more effective at smaller scales. The groundwa-
ter delays and baseflow, together with management practices, soil physical properties, and
snow properties, influence the generation of return flows, which aligns with the purpose
of this work in the Satluj river catchment.

Each parameter transports several uncertainties in the calibration process; therefore,
the stochastic calibration process using SUFI2 was found helpful to minimize the uncertain
effects of the parameters listed above. The uncertainty results were computed using two
objective functions, such as p-factor and r-factor (Table 2). The results provide insights
into the precision and accuracy of model calibration and their simulations. Further, they
refer to the final uncertainty levels of the calibration-validation approach. The p-factor
values were recorded as 0.46, 0.57, and 0.52 on a daily time step and 0.41, 0.57, and 0.49
on a monthly time step during model calibration for Rampur, Kasol, and Suni stations
(1991–2000) (Table 2). During model validation, the p-factor values were recorded as 0.43,
0.52, and 0.53 on a daily time step and 0.45, 0.60, and 0.58 on the monthly time step,
respectively. The p-factor values indicated that more than 50% of the simulated snowmelt-
induced flows were encompassed within the uncertainty bonds for Kasol station on both
daily and monthly calibration and validation, respectively. In contrast, simulated flows for
Rampur showed p-factors below 50%, contrasting with their performance on the SWAT
model for Kasol and Suni stations during daily simulations and for model validation, both
downstream of Rampur.

On the other hand, the r-factor values were recorded as 1.89, 1.50, and 1.60 on a
daily time step and 1.90, 1.57, and 1.43 on the monthly time step for Rampur, Kasol, and
Suni. During model validation, the r-factor values were calculated as 1.89, 1.67, and 1.72
on the daily time step and 1.92, 1.62, and 1.52 on the monthly time step for Rampur,
Kasol, and Suni, respectively. Resultant r-factor values indicated the SWAT’s ability to
reproduce snowmelt induced flow values; however, values above 1.43 indicated that
other sources of error besides model physics could contribute to the values of the r-factor.
The experiments described here are unable to identify the contribution of such sources
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of error. Kasol, Suni, and Rampur were the only stations with observed data, and all
were in the lowest drainage area in the Sutlej River catchment. The small differences
among model performance metrics illustrate the local contributions of Suni and Rampur’s
downstream drainage areas to the total streamflow generated at Kasol. Kasol averages
over and under estimations of snowmelt-induced streamflows generated upstream, so
lower r-factor values are expected, representing higher precision. Furthermore, the values
of p-factor in Kasol in a daily time step (0.57) also indicate an average accuracy (~60%) of
the model in replicating observed streamflows within the uncertainty bands. These results
are acceptable as compared to previous studies, especially in the case of high uncertain
snowmelt induced in the Himalayan catchment.

Considering that most of the drainage areas of this catchment are snowmelt-dependent
and are upstream of Rampur station, a deeper assessment of snowfall and snowmelt along
with streamflow generation is required at high altitudes given the lack of high-altitude sta-
tion data. The temporal variability and spatial distribution of the hydrological components
such as precipitation, snowpack, snowmelt, water yield (contributed by rainfall only), and
total water yield (contributed by both snowmelt and rainfall) were computed and analyzed.
Figure 4 illustrates the aggregation of simulated snowpack and snowmelt compared with
precipitation from 1991 to 2008 in sub-catchments. Here, it is evident that the maximum
snowpack contribution occurs at the sub-catchments, which correspond with high eleva-
tions. The sub-catchments such as SB1, SB2, SB3, SB4, SB15, and SB16 have varied their
snowpack and snowmelt amount from ~10 to ~380 mm in a single year. Figure 3 shows
that sub-catchments, such as SB10, SB11, SB12, and SB13, located in the lowest drainage
areas, poorly contribute by snowpack, and consequently, the corresponding snowmelt is
also poorly recorded. For these sub-catchments, the annual snowpack and corresponding
melt amount were below 150 mm. Inter-annual changes in snowpack and the precipitation
amount show local to large-scale influences in snow melt as well as snowpack. For example,
SB1 shows that the proportion of snowmelt/snowpack with respect to precipitation was
larger in 2000 and 2002, which contrasts with those proportions between 1995 and 1996. In
the easternmost portion of the catchment, this proportion is consistent during all recorded
years, which contrasts with the catchment’s lower drainage areas. Sorting the temperatures
by the altitude, Figure 5 shows the possible influence of elevation differences along the
catchment and through the year, which may respond to local-to-long-scale influences of
climate patterns. Further analysis is required to identify causality in precipitation and
temperature gradients in response to El Niño Southern Oscillation or inter-annual changes
in monsoon intensity and inter-annual accumulation of snow.
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Figure 4. Averaged modeled daily discharge (1991–2008) at Kasol showing snowmelt-induced
discharge and rainfall-induced discharge.

Spatiotemporal variations of temperature and precipitation along topographic gra-
dients in the Himalayas, could drive the emergence or shift in hydrologic regimes [14].
During the near-term projection (2011–2030), the input parameters such as DEM, LULC,
and soil map were kept constant to simulate and isolate possible effects of temperature
and precipitation, which could emerge in places with highly variable elevations and large
elevation gradients. The optimized parameter coefficient values are again incorporated in
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SWAT for the historical and near-term scenarios. The average annual TLR and PLR were
estimated by elevation bands, as shown in Figure 5, and are incorporated in SWAT. The
TLR and PLR are given as input to set up the SWAT model for sub-catchment calculations
of snowfall and snowmelt, as well as parameters in calibration. Figure 5a,b illustrate
the TLR or inverse changes in temperature with altitude [23]. Figure 5b also shows the
winter and summer months temperature variations in relation to elevation differences,
as well as the inherent variation due to seasonal cycles at each sub-catchment. While
winter temperatures in low-altitude portions of the catchment vary between 9 ◦C and
21 ◦C, summer temperatures range between 22 ◦C and 27 ◦C. At high altitudes, the largest
temperature span (21 ◦C) occurs during the winter months, whereas the summer months’
temperature span (5 ◦C) remains the same along the catchment. Parameter sensitivity in
daily and monthly analyses (described in Table S2) evidenced SWAT’s ability to simulate
flows in response to snowmelt rather than changes in temperatures. Figure 5b shows such
sensitivity since the temperature between April and September remains within a 5 ◦C
temperature span.
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Figure 5. Changes of average temperatures along multiple sub-watersheds. The bar indicates the
elevation of the centroid for (a) winter months and (b) summer months.

Changes in snowpack and variations in elevation bands are critical elements of mod-
eling changes in snow accumulation. The variability of snow accumulation by snow band
and altitude reflects the nonlinearity and high dimensionality of processes captured by
the model parameterizations presented here. Figure 6 shows annual averages of snow-
pack variations by elevation band (10 Fractions) computed at each sub-catchment for the
1991–2030 period. These variations are expressed in the fractional snowpack at each sub-
catchment, which at the same time define the variations in TLRs and PLRs. The distribution
of the fractional snowpack varied throughout the catchment from upstream to downstream
sub-catchments. Figure 6a–d are examples of high-altitude drainage areas characterized by
high and variable snowpack. In contrast, low-land variations upstream of Rampur station
(Figure 6e,f) evidenced small variability and low values of accumulated snow. Downstream
of Rampur (Figure 6g,h) illustrate slightly larger variations in snow accumulation with
average values below 50 mm/year. Figure 7 is consistent with the fractional variations in
snowpack expressed above, expanding such variations into multi-decade contributions
(1991–2000, 2001–2008, 2011–2020, and 2021–2030). In this figure, snowpack variation
is highlighted at each catchment on a cumulative annual average. Figure 7 shows that
sub-catchments at high elevations, such as SB1, SB2, SB3, SB8, SB15, and SB16, receive the
highest amounts of snowpack. When compared intra-annually, the scenarios computed
between 1991–2000 and 2001–2008 showed higher snowpack amounts than those calculated
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between 2011–2020 and 2021–2030. This difference in snowpack amount mainly occurred
due to the variations in fractional snow covers.
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Figure S1 shows the spatial distribution of multi-decadal averages of precipitation,
snowpack, snowmelt, rainfall-runoff, and total water yields (contributed by both snowmelt
runoff and rainfall runoff) for the period 1991–2008 and their differences with respect to
the near-term period 2011–2030. Figure S2a shows that the lower portion of the catchment
(i.e., SB10, SB11, SB12, and SB13) and the highest elevated part of the catchment (i.e., SB14,
SB15, and SB16) had the largest precipitation (1991–2030); however, when compared with
split time-series sets, such as the 1991–2008 and 2011–2030 time-series sets, precipitation
decreases in the high elevation sub-catchments and increases in the lower elevation areas.
The snowpack and snowmelt plots show similar trends in their time series. A decrease in
the snowpack amounts can be observed in Figure S1b,c. Figure S2d also shows that the
contribution of runoff (due to rainfall) has increased during the time 2011–2030. Figure S2e
shows an increase in total water yield in sub-catchments at low elevations. The portions of
the watershed most vulnerable to hydrologic changes, specifically, responses to variations
in snow melting and snow accumulation, are the mid- to low-altitude portions of the
catchment upstream of Rampur station.

Figure 8 illustrates the magnitude of change (shown as “% of change”) in snowpack
amount as a function of the fraction of elevation bands. At each sub-catchment, the
snowpack differences have been computed and analyzed by comparing historical and
near-term scenarios. The results showed a significant decrease in snowpack amount across
all the snowpack-induced sub-catchments. A 5% (minimum) to 42% (maximum) decrease
in snowpack has been accounted for across all the sub-catchments. This shows the severity
of temperature in snow cover and glaciers melting over Himalayan catchments. The sub-
catchments SB1, SB2, SB3, SB8, and SB16 correspond with the utmost decrease in snowpack
amount (20% to 42%); whereas the sub-catchments SB5, SB7, SB14, SB15, and SB16 showed
a small to moderate decrease in snowpack amount (4% to 20%). It has been noticed that
the SBs that are situated at a high elevation portion showed a higher amount of change or
decrease in snowpack than the SBs, which are corresponded to moderate elevation ranges.
This clearly illustrates a higher warming trend at high elevation portions than the moderate
and low elevation ranges. The overall water balance components showed significant
variations in the water yield, snowpack, and snowmelt over the Satluj river catchment.
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4. Discussion

In this study, the role of elevations in snowpack and snowmelt computation are
explored at sub-catchment-scale in the western Himalayas. Previous studies along the
Himalayas have observed changes in snow accumulation and melting within the historical
record [6,8,51,59]; however, it is unclear if snow parameterizations in hydrologic modeling
can capture the nonlinearities of the snowpack formation and melt along complex topo-
graphic features. Ref. [60] explored the snowmelt runoff computational difficulties in a
large complex terrain catchment. The strong variability in the degree-day factors from
January to December has been reported by [20]. At the same time, such variation in the
Satluj River Basin is evidenced by the maximum numbers of elevation bands (10 fractions)
and maximum–minimum melt factors, which are incorporated at each sub-catchment scale,
leading to improvements in the computation of snowmelt rate. The sub-catchment-wide
distribution of elevation ranges increased the computation efficiency of the temperature
index model, which complements earlier studies [9,20].

The fractional snowpack and snowmelt were computed at each elevation band and
then their aggregation occurred at each sub-catchment outlet. The elevation bands con-
tributed to identifying the reduction in the snowpack amount in response to elevation-
dependent variations and (Figures 6 and 8). SWAT-based inbuilt TLR and PLR parameters
were formulated at each catchment scale by utilizing multiple elevation bands. The PLR
and TLR were taken as calibration parameters, and after calibration, their optimized co-
efficient values significantly improved the model efficiency. Initially, Jain et al. (2008)
used measured land surface temperature (LST) datasets to identify the role of TLR in the
snowmelt process over the Satluj basin and reported that the TLR significantly affects the
snowmelt over the Satluj basin. In this study, we also recognized the TLR as a significant
sensitive parameter at each sub-catchment. The literature values suggested by [9] are used
during calibration in the first iteration process.

Figure 2 shows a very good correlation at all gauges, even on the daily scale calibration
in a very complex high hilly terrain Himalayan catchments (Table 2). As per [9,56], the
R2 and NSE greater than 0.6 could be a reasonable agreement between the observed and
simulated values, especially in the case of the Himalayan catchment (Table 2). Ref. [60]
stated that the uncertainty estimation is an integral part of modeling studies, considering
sources of uncertainty beyond the model to allow a realistic assessment of the degree of
confidence that decision makers can have about potential outcomes. This study presented
a rigorous approach to modeling calibration with uncertainty assessment. The present
approach incorporated around 20 different hydrological calibration parameters relevant to
surface water hydrology, groundwater hydrology, and snowmelt hydrology (Table S1).

The calibration was performed on both a monthly and daily basis, which significantly
improved the accuracy of the simulated and projected snowmelt and snowpack (Table S2).
The calibration of snow hydrological parameters significantly improved the modeling ac-
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curacy of snowmelt in the streamflow. The literature values related to snowmelt calibration
parameters are helpful for the optimization process [9,15,20,50]. This study added multiple
calibration parameters and performed a detailed sensitivity analysis to identify the most
influencing model calibration parameters (Tables S1 and S2). The best-fit value of the most
influencing parameter reduces the model uncertainty [32,56].

Ref. [61] worked on the Hindu-Kush-Karakoram Himalayan catchments and found
that the satellite snow cover-based assessment of snowpack and snowmelt runoff is dif-
ficult in Himalayan catchments due to cloud covers and unavailability of field measure-
ment datasets such as snow density and snow depths. Several authors found that the
physical models, such as SWAT, which is based on real-time datasets, are fully able to
compute the snowmelt and snowpack in the absence of satellite datasets over a large
area catchment [28,49,51]; however, for small-scale study, incorporation of calibration pa-
rameters could be useful to improve the model accuracy [28,51,56]. The satellite-derived
snow-cover-based computation of snow water equivalent (SWE) and snowmelt studies
conducted by [15,20] were found comparable to the modeled snowmelt, as shown in
Table 3. All studies reported that around a 60% snowmelt amount contributed to total
runoff during summer, as observed in Figure 4. This justifies the overall accuracy of the
present snowmelt modeling approach utilizing elevation bands; however, the fractional
assessment of snowmelt and snowpack makes this study more reliable than previous
studies [9,15,19,20,50], especially over the Himalayan catchment.

Many climate change studies revealed significant warming over Himalayan terrains
and reported a significant reduction in snowpack and a higher melting rate of snow and
glaciers [1,2,25]; therefore, in this study, GCM variables such as daily temperature and
daily precipitation were used to project the near-term scenarios and our results revealed
the same conclusion (Figure 8). The high elevation-based sub-catchments of the Satluj
river basin show a significant reduction in snowpack amount and have been reported
in previous studies [8,50,62]. In this study, we reported around 4% to 20% reduction in
snowpack from the historical datasets and a maximum of up to 40% for the near-term
scenarios at different elevation bands (or zones). The higher reduction in the snowpack has
been observed at high elevation zones/catchments, similarly, reported by [62]. Ref. [53]
also reported the earlier snow melting in case of higher warming and concluded that the
snowpack would reduce around 4% to 18% with 2 ◦C increments in surface temperature.
Similar observations were computed in the present study.

5. Conclusions

This study analyzed the snowpack and snowmelt computations in high elevations
of the Satluj river Himalayan catchment. In this study, the snowpack and snowmelt were
evaluated at multiple elevation bands, illustrating spatial variations in their amount at each
sub-catchment. For the computation of snowpack and snowmelt, both measured and GCM
datasets were used to highlight the intra-annual changes in snowmelt and snowpack. This
study showed an enormous spatial and temporal variability in snowpack and snowmelt
amount at each sub-catchment scale. The average TLR and PLR were successfully used
to compute the more accurate estimation of snowpack and snowmelt. Various model
calibration parameters were considered, and then sensitivity was analyzed. Based on the
sensitivity analysis, significant sensitive and non-sensitive parameters were identified,
which helped to improve the accuracy of the computation of snowpack and snowmelt.
The other water balance components such as precipitation, water yield due to rainfall,
and water yield due to snowmelt were spatial studies. The long-term spatial comparison
of these water balance components showed noticeable spatial variability from upstream
sub-catchments to downstream sub-catchments. The percentage of change analysis clearly
showed that snowpack is highly variable over the Satluj catchment, and it could be more
variable in the near-term period. Improvements in snowmelt runoff modeling capability
using temperature index model and degree-day factors, the daily/diurnal variations in
snowmelt rate will be incorporated by analyzing the effect of radiation factor, in which
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the rate and quantity of snowmelt depend on the surface as well as radiation factors. This
work is underway. Furthermore, the relevance of this work worldwide may contribute to
improving the diagnostics of winter floods and infrastructure resilience in places where
snow storage and melting are critical to managing water resources [63,64].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/hydrology8040179/s1, Figure S1: (a) Soil and (b) Land use/Land cover maps of the Satluj
river catchment, India; sub-catchment boundaries up to Kasol gauge. Figure S2: Changes and
inter-annual comparisons in average annual (a) precipitation, (b) snowpack/snowfall, (c) snowmelt,
(d) water yield (due to snow), and (e) total water yield (snowmelt and rainfall runoff) over the study
area in different temporal climate domains (1991–2030), Table S1: Description of model calibration
parameters, Table S2: Aggregate parameters values, their ranges, and global sensitivity results.
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