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Abstract: Accurate rainfall estimates are important in many hydrologic activities. Rainfall data
are retrieved from rain gauges (RGs), satellites, radars, and re-analysis products. The accuracy
of gauge-based gridded precipitation products (GbGPPs) relies on the distribution of RGs and
the quality of rainfall data records obtained from these. The accuracy of satellite-based precipita-
tion products (SbPPs) depends on many factors, including basin climatology, basin topography,
precipitation mechanism, etc. The hydrologic utility of different precipitation products was exam-
ined in many developed regions; however, less focused on the developing world. The Huai Bang
Sai (HBS) watershed in north-eastern Thailand is a less focused but an important catchment that
significantly contributes to the water resources in Thailand. Therefore, this research presents the
investigation results of the hydrologic utility of SbPPs and GbGPPs in the HBS watershed. The
efficiency of nine SbPPs (including 3B42, 3B42-RT, PERSIANN, PERSIANN-CCS, PERSIANN-CDR,
CHIRPS, CMORPH, IMERG, and MSWEP) and three GbGPPs (including APHRODITE_V1801,
APHRODITE_V1901, and GPCC) was examined by simulating streamflow of the HBS watershed
through the Soil & Water Assessment Tool (SWAT), hydrologic model. Subsequently, the streamflow
simulation capacity of the hydrological model for different precipitation products was compared
against observed streamflow records by using the same set of calibrated parameters used for an
RG simulated scenario. The 3B42 product outperformed other SbPPS with a higher Nash–Sutcliffe
Efficiency (NSEmonthly > 0.55), while APHRODITE_V1901 (NSEmonthly > 0.53) performed fairly well
in the GbGPPs category with closer agreements with observed streamflow. In addition, the CMORPH
precipitation product has not performed well in capturing observed rainfall and subsequently in
simulating streamflow (NSEmonthly < 0) of the HBS. Furthermore, MSWEP and CHIRPS products
have performed fairly well during calibration; however, they showcased a lowered performance
for validation. Therefore, the results suggest that accurate precipitation data is the major governing
factor in streamflow modeling performances. The research outcomes would capture the interest
of all stakeholders, including farmers, meteorologists, agriculturists, river basin managers, and
hydrologists for potential applications in the tropical humid regions of the world. Moreover, 3B42
and APHRODITE_V1901 precipitation products show promising prospects for the tropical humid
regions of the world for hydrologic modeling and climatological studies.

Keywords: gauge-based gridded precipitation products; Huai Bang Sai (HBS) watershed; hydrologic
utility; satellite-based precipitation products
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1. Introduction

Precipitation is one of the major driving components of the hydrologic cycle [1].
Therefore, accurate precipitation estimates are essential for many professionals including
meteorologists, hydrologists, ecologists, agriculturists, disaster management personals,
energy planners, etc. for decision making and planning in various hydrologic related
activities. Generally, precipitation estimates are obtained from rain gauges (RGs), meteoro-
logical radars, satellites, and re-analysis products. Technological and economic constraints
limit the usage of high-tech weather radars in developing countries such as Thailand for
hydrologic related applications [2]. Re-analysis data are produced through the combination
of past short-range weather forecasts with observations through data assimilation. These
re-analysis products can suffer from significant biases in the tropical regions [3–5]. Thus,
ground-measured rainfall measurements are treated as the best for their accuracy [6]. Ob-
served rainfall data are highly used in many hydrologic related applications. Interpolation
of RG data is used to derive the gauge-based gridded precipitation products (GbGPPs).
Noteworthy, dense meteorological networks are required to capture the inherent higher
spatial variability of rainfall. Nevertheless, a dense meteorological network is not always
possible in most regions. The Asian Precipitation Highly Resolved Observational Data
Integration Towards Evaluation of Water Resources (APHRODITE) [7], Global Precipita-
tion Climatology Center (GPCC) [8], Climate Research Unit (CRU) [9], Climate Prediction
Center Global Precipitation (CPC-GP) [10] are some of the most commonly used GbGPPs
in the context of water resources and climatology.

The advancements of satellites and remote sensing (RS) technologies have enabled
the observation of many climatic variables (i.e., temperature, rainfall, and humidity), at-
mospheric parameters (i.e., aerosol content, the concentration of greenhouse gases, etc.),
and terrestrial water cycles (i.e., terrestrial water storages). These satellite-based precipi-
tation products (SbPPs) can be obtained without many disruptions, unlike the observed
meteorological data. In addition, they are readily available for most of the regions of
the world. More importantly, SbPPscan be extracted free of charge, which is an added
advantage. Satellite technology was utilized to measure rainfall from as far as the 1970s and
has achieved tremendous progress over the past few decades [11]. The Tropical Rainfall
Measuring Mission (TRMM) is considered the first satellite mission, which was aimed
at investigating the latent heat cycles of the tropical regions [12]. It was a joint mission
between the North Atlantic Space Agency (NASA) and the Japanese Aerospace Exploration
Agency (JAXA).

Precipitation Estimation based on Artificial Neural Networks techniques (PERSIANN) [13],
Climate Prediction Center (CPC) MORPHing technique (CMORPH) [14], Tropical Rain-
fall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) products [15], In-
tegrated MultisatellitE Retrievals for Global Precipitation Measurements (IMERG) [16],
Global Satellite Mapping of Precipitation (GSMap) [17], Naval Research Laboratory devel-
oped blended-satellite precipitation technique (NRL-blend) [18], Multisource Weighted-
Ensemble Precipitation (MSWEP) [19], and Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS) [20] are some of the SbPPs, which cover most of the regions of
the world. In addition, to the aforementioned products, some SbPPs are limited to certain
regions. Rainfall Estimate (RFE) and Tropical Applications of Meteorology using SATellite,
(TAMSAT v.2 and v.3) (TAMSAT), African Climatology Project (APC) v.2 [21] which cover
the African continent and the Combined Scheme Approach (CoSch) [22], which cover the
South American continent are few examples for region specific SbPPs.

The application of SbPPs and GbGPPs have been reported not only in hydrologic
modeling [23–25] but also in many other areas including, flood inundation modeling [26],
drought monitoring [27], soil erosion predictions [28], etc. Considering the diverse appli-
cations of SbPPs and GbGPPs the assessment of the efficiency of the SbPPs and GbGPPs
is of extreme significance. Therefore, many hydrologic studies have been carried out by
various researchers to examine the efficiency of SbPPs and GbGPPs by comparing against
RGs [29–31]. Precipitation mechanism, regional and seasonal effects of climates, basin
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topography, and catchment size are some other important factors affecting the accuracy
of SbPPs [32–35]. However, the accuracy of GbGPPs strongly relies on the reliability and
the quality of the rain gauge records. Considering these facts, accuracy assessment and
validation of SbPPs and GbGPPs are essential prior to decision making and many practical
applications.

Although, much research has been carried out to assess the hydrologic utility of SbPPs
and GbGPPs in different parts of the world, up to date, few studies have yet assessed the
hydrologic utility of these in the context of Thailand. According to the best understanding
of the authors of this paper, only Gunathilake et al. [2], Li et al. [36], Janjai et al. [37], Pakok-
sung and Takagi [38], Chokngamwong and Chiu [39], Sakolnakhon [40]; Trang et al. [41]
have evaluated the efficiency of SbPPs in Thailand. Among them, only Gunathilake et al. [2],
Li et al. [36], and Pakoksung and Takagi [38] have examined the hydrologic utility of SbPPs
for streamflow modeling in Thailand. Nevertheless, Huai Bang Sai (HBS) watershed in
the north-eastern Thailand was never examined for its hydrologic utility with SbPPs and
GbGPPs. Therefore, being an important watershed in Thailand in the context of agriculture
and water resources, it is highly important to assess the accuracy and efficiency of different
precipitation products over the HBS watershed.

Therefore, this paper for the first time presents a comprehensive study to examine the
effectiveness of nine SbPPs and three GbGPPs over the HBS watershed in north-eastern
Thailand. The Soil & Water Assessment Tool (SWAT) was used to simulate streamflow in
the HBS watershed using different precipitation products and to compare them against
observed streamflow. The physically based and semi-distributed SWAT model has success-
fully been applied to simulate rainfall-runoff processes in many regions of the world. This
model has been applied to simulate streamflow [42–44], examine land-use change effect on
streamflow [45], evaluate the impact of climate change on streamflow [46], assess the water
balance [47], model water qualities in streams [48], predict streamflow in ungauged catch-
ments [49], etc. Therefore, the SWAT model holds a successful record of wide applications
across the world, and its usage in the HBS watershed of Thailand is justifiable.

Importantly, the north-eastern part of Thailand is world-famous for its rice production
and it is also a leading exporter of rice [50]. Thailand’s agriculture is heavily driven by
rainfall [39]. Hence, the results of this research study will be valuable to water resources
planners, agriculturists, and various stakeholders (including farmers) for decision-making
purposes to obtain sustainable water usage. In addition, the study provides valuable
feedback to algorithm developers to improve data retrieval algorithms of SbPPs and
interpolation techniques adopted in GbGPPs in the tropical humid regions of the world.

2. Materials and Methods
2.1. Study Area

The HBS watershed is in the north-eastern part of Thailand (refer to Figure 1). The
HBS is a sub-watershed with a drainage area of 1340 km2) of the greater Mekong River [51].
Figure 1 showcases the location map of the HBS, rainfall gauging stations, streamflow
gauging station, and the drainage network. The sub-watershed receives an average annual
rainfall of 1340 mm [52] and receives rainfall mainly during two monsoon seasons, which
are the southwest monsoon (from May to October) and the northeast monsoon (from
November to March). These two monsoon seasons are separated by two inter-monsoonal
periods. Nevertheless, the southwest monsoon brings a significant amount of rainfall to
the HBS watershed [53]. The potential evapotranspiration in the northeast region is around
1600 mm per year [36]. The weather is dry and cool during the northeast monsoon season.
The temperatures are usually higher in April and May [53].
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Figure 1. Hydro-meteorological network and stream network in the HBS watershed.

2.2. Obtained data

Daily observed rainfall data (for 2004–2014) at three stations with station IDs 640112
(A. Dong Luang), 640122 (A. Wan Yai), and 640150 (A. Huai Ta Poe) were collected from
the Royal Irrigation Department (RID) of Thailand. In addition, daily observed streamflow
data at ’Station kh.92’ (Ban Kan Luang Dong, Dong Luang), draining an area of 1118 km2

(for 2007–2014), were also obtained from the RID. The drainage map of the HBS was
collected from the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) office in
Thailand. These stations and the drainage map are shown in Figure 1.

Figure 2a–c illustrate the topography (through the Digital Elevation Model), land-use,
and soil cover of the HBS watershed. The Digital Elevation Model (DEM) of a 30 m × 30 m
resolution was downloaded from the United States Geological Survey website accessi-
ble through https://earthexplorer.usgs.gov/ (accessed on 25 September 2020) (refer to
Figure 2a). In addition, the land-use data of 500 m resolution and scale of 1:50,000 and soil
cover maps with 1 km resolution and scale of 1:100,000 for the year 2015 were obtained
from the Land Development Department (LDD) of Thailand (refer to Figure 2b,c). The
elevation of the watershed ranges from 0 to 636 m above mean sea level. The main land-use
types of the study area are deciduous forests, cassava, and rubber plantations, which cover
nearly 67%, 13%, and 6% of the land area, respectively. Most of the land in HBS is covered
by Hang Chat, which has a loamy sand texture.

https://earthexplorer.usgs.gov/
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Figure 2. Details of the HBS watershed (a) Digital elevation model; (b) Land-use patterns; (c) Soil cover.

2.3. Satellite-Based Precipitation Products (SbPPs) and Ground-Based Gridded Precipitation
Products (GbGPPs)

Table 1 provides the information of SbPPs and GbGPPs used in this study. PERSIANN
products are available through https://chrsdata.eng.uci.edu/ (Accessed on 15 September 2020)
whereas the TRMM products including TMPA-3B42 (version 7), TMPA-RT (version 7) and
IMERG (version 6B) products are available from https://disc.gsfc.nasa.gov/ (Accessed
on 20 September 2020). In addition, MSWEP (version 1.1) is available from http://www.
gloh2o.org/ (Accessed on 25 September 2020). Furthermore, three GbGPPS, APHRODITE-
products (version 1801 and version 1901), and GPCC (version 1) are accessible through http:
//aphrodite.st.hirosaki-u.ac.jp/products.html (Accessed on 25 September 2020) and https:
//climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre
(Accessed on 25 September 2020) respectively.

https://chrsdata.eng.uci.edu/
https://disc.gsfc.nasa.gov/
http://www.gloh2o.org/
http://www.gloh2o.org/
http://aphrodite.st.hirosaki-u.ac.jp/products.html
http://aphrodite.st.hirosaki-u.ac.jp/products.html
https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre
https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre
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Table 1. Description of the precipitation products.

Types Product Temporal
Coverage

Finest Temporal
Frequency Spatial Coverage Spatial

Resolution References

SbPPs PERSIANN 03/2000 to date 1 h 60◦ N–60◦ S 0.25◦ × 0.25◦ Nguyen et al. [13]
PERSIANN-CSS 2003 to date 1 h 60◦ N–60◦ S 0.04◦ × 0.04◦ Nguyen et al. [13]
PERSIANN-CDR 1983 to date 1 day 60◦ N–60◦ S 0.25◦ × 0.25◦ Nguyen et al. [13]

TMPA-3B42 1998 to 12/2019 3 h 50◦ N–50◦ S 0.25◦ × 0.25◦ Huffman et al. [16]
TMPA-3B42RT 03/2000 to 12/2019 3 h 60◦ N–60◦ S 0.25◦ × 0.25◦ Huffman & Bolvin [15]

IMERG 03/2000 to present 30 min 90◦ N–90◦ S 0.10◦ × 0.10◦ Huffman et al. [16]
MSWEP 1979 to present 3 h Global 0.25◦ × 0.25◦ Beck et al. [19]

CMORPH 2002 to present 30 min 60◦ N–60◦ S 0.027◦ × 0.027◦ Joyce et al. [14]
CHIRPS 1981 to date Daily 50◦ N–50◦ S 0.05◦ × 0.05◦ Funk et al. [20]

GbGPPs GPCC 1988 to present 1 day Global 1.0◦ × 1.0◦ Schröder et al. [54]
APHRODITE-V

_1801 1988 to 2015 1 day Monsoon Asia 0.25◦ × 0.25◦ Maeda et al. [55]

APHRODITE-
V_1901 1988 to 2015 1 day Monsoon Asia 0.05◦ × 0.05◦ Maeda et al. [55]

2.4. SWAT Model Description

The Soil and Water Assessment Tool (SWAT) model [56] was developed by the Agri-
culture Research Services Division of the United States Department of Agriculture. The
user-friendly Geographical Information System interface, robust algorithms to simulate
hydrologic processes, and availability in the public domain are some of the attractive
features of the SWAT model.

The model uses the water balance equation (which is given in Equation (1)) to simulate
hydrologic processes.

SWt = SW0 +
t

∑
i=1

(Ri − Qi − ETi − Pi − QRi) (1)

where SWt and SWo are the final and initial water content (in mm) for a period of t in days.
Ri, Qi, ETi, Pi and QRi are the precipitation, surface runoff, evapotranspiration, amount
of water entering the vadose zone from the soil profile, and the amount of return flow on a
particular day i and measured in mm. More details on the SWAT model can be found in
Arnold et al. [56].

2.5. Overall Methodology
2.5.1. Extraction of SbPPs and GbGPPs

The nine satellite precipitation products used in this study were extracted through
different methods. PERSIANN group of products were directly obtained from the Center
for Hydrometeorology and Remote Sensing (CHRS) in CSV file format. IMERG and TRMM
products were obtained as NetCDF files from National Aeronautics and Space Adminis-
tration, U.S.A. (NASA) GESDISC portal. Afterwards, IMERG was extracted through the
process of merging the files in Climate Data Operator (CDO) followed by the extraction
using R coding in RStudio. Finally, the TRMM products were merged together, using a
similar approach to IMERG. However, the extraction of the point rainfall data was carried
out using MATLAB. Furthermore, GPCC, APHODITE_V1801 and APHRODITE_V1901
were extracted as NetCDF file format.

2.5.2. Watershed Model Development

The SWAT Calibration and Uncertainty Procedures (SWAT-CUP) [57] was initially
used to conduct a sensitivity analysis of the model’s parameters in the study area, followed
by manual calibration and validation of the model for runoff. The SWAT 2012 version
was used in the present study to simulate streamflow of the HBS watershed. The HBS
was delineated into seven sub-watersheds and a total of 797 Hydrologic Response Units
(HRUs) were created. The first three years (2004–2007) of the simulation period were
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treated as a warmup period in order to equilibrate between various water storages in
the hydrological cycle. The streamflow gauging station kh.92 was used for calibration
and validation of streamflow. The calibration period was 2007–2010 (4 years), while
the validation period was 2011–2014 (4 years). In the SWAT model developed in this
study, surface runoff was predicted by the Soil Conservation Service Curve Number
(SCS-CN) method and potential evapotranspiration by the Hargreaves method. Detailed
information on SWAT model development is explained in detail through Babel et al. [58].
The SOL_AWC factor that controls the available soil water capacity. The ESCO factor,
a parameter which controls depth distribution to meet the soil evaporative demand to
account for the effects of capillary action. Groundwater flow-related sensitive parameters
were GW_REVAP, ALPHA_BF, GW_DELAY, and GWQMN. GW_REVAP allows water
to move to the overlying saturated/vadose zone from the underlying aquifer. Similarly,
model parameter GW_DELAY controls the delay between water entering the soil profile
and entering the underlying aquifer. GWQMN is the threshold depth of water in a shallow
aquifer required for return flow to occur. Table 2 provides the adjusted range of parameters
for streamflow calibration and their final values in the Huai Bang Sai River Basin.

Table 2. Adjusted range of parameters for streamflow calibration and their final values in the HBS [58].

Rank Parameter Description Initial Values Fitted Value

1 CN

SCS-CN 73–92
Deciduous forest 77 73

Cassava 85 83
Sugarcane 85 83

Rice 81 81
Rubber 77 77

Rangeland 79 79
Water 92 92
Urban 90 90

2 ESCO Soil evaporation compensation factor 0.95 0.70–0.95

3 SOL_AWC

Available soil water capacity
Hang Chat/Loamy sand 0.14 0.1

Slope Complex/Loamy sand 0.14 0.1
San Sai/Sandy loamy 0.1 0.13

Phon Phisai/Sandy loamy 0.1 0.14
San Patong/Loamy sand 0.1 0.15

4 ALPHA_BF Base-flow alpha factor 0.048 0.99
5 GW_DELAY Ground water delay 31 2
6 GW_REVAP Groundwater “revap” coefficient 0.02 0.19

The hydrograph obtained during calibration and validation was extracted from Babel et al. [58]
and presented here to showcase the accuracy of the developed SWAT model (refer to
Figure 3). The statistical indicators used to evaluate the hydrologic model performance
were the Coefficient of Determination (R2) and the Nash–Sutcliffe Efficiency (NSE). Ac-
ceptable accuracy can be seen from the developed model (R2 = 0.83 and NSE = 0.82 during
calibration period and R2 = 0.78 and NSE = 0.77 during validation period). These accuracies
are acceptable and reasonable in hydrologic model simulations [59].

2.5.3. Streamflow Simulation

The SbPPs and GbGPPs for this study were selected based on their performance in
previous applications over the Southeast Asian Region [2,36,41]. Initially, the SWAT model
developed for the HBS watershed was run with RG measured rainfall. Next, the HBS
watershed was modelled with different meteorological inputs of SbPPs and GbGPPs for a
time period of 11 years from 2004 to 2014. The streamflow was simulated at Station kh.92
for different precipitation inputs and compared against the observed flow data. The same
parameters calibrated with RG measured rainfall were used to simulate the SWAT model



Hydrology 2021, 8, 165 8 of 21

with other precipitation products as well. The hydrologic utility of different precipitation
products was analysed based on these results.

Figure 3. Hydrograph obtained during calibration (2007 to 2010) and validation (2011 to 2014) at
kh.92 [58].

2.5.4. Hydrologic Performance of the Developed Models

The hydrologic performance, accuracy, and efficiency of the developed models were
assessed based on the streamflow rates. These discharges were simulated based on different
SbPPs, and GbGPPs were compared against the observed streamflow. The accuracy of the
simulated discharge was found based on the Coefficient of Determination (R2) and the
Nash–Sutcliffe Efficiency (NSE). The mathematical formulations for R2 and NSE are given
in Equations (2) and (3), respectively.

R2 =

 ∑n
i=1(Oi − Omean)× (Si − Smean)√

∑n
i=1(Oi − Omean)

2 × ∑n
i=1(Si − Smean)

2

2

(2)

NSE = 1 −
(

∑n
i=1(Si − Oi)

2

∑n
i=1(Oi − Omean)

2

)
(3)

where Oi stands for observed while Si stands for simulated discharges. Omean and Smean
stands for average of observed flow and simulated flow, respectively.

3. Results and Discussion
3.1. Comparison of Rainfall from Rain Gauges and Other Precipitation Products

Figure 4 illustrates the comparison of observed rainfall against the different precipita-
tion products for the three stations. The dashed lines in the annual series are the extracted
precipitation products, whereas the straight lines (blue coloured) are the observed annual
rainfall in respective stations. The rainfall patterns are somewhat matching to each other
in a particular year. The peaks and troughs are somewhat coinciding with each other for
different precipitation products. However, a perfect match is not visible. Therefore, it
justifies the requirement of this research in order to identify better precipitation products
in the absence of observed rainfall records.
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Figure 4. Cont.
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Figure 4. Annual and monthly rainfall of different precipitation products. (a) For station 640112; (b) For station 640122;
(c) For station 640150.

In addition, monthly variations of precipitation products for selected years are given
for each station. The years 2005, 2011, and 2012 are selected for station 640112 deepening
on the peaks and trough of the annual precipitations. Similarly, three years are presented
for their monthly precipitation variation for 640122 and 640150 stations.

The 3B42-RT and CMORPH precipitation products under-estimated the actual annual
rainfall for the 640112 station. However, other precipitation products can be seen around
the observed rainfall variation. The same pattern can be seen for 640122 and 640150 stations:
however, with CCS and CMORPH precipitation products. The patterns of 3B42-RT and
CMORPH in 640112 are merely the same with patterns of CCS and CMORPH in 640122 and
640150 stations; however, the numerical values are different from each other. In addition,
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these underestimations can be clearly seen in monthly precipitation variations. Therefore,
the underestimations demonstrated by 3B42-RT, CCS, and CMOPRH depict that they
are incapable of simulating high rainfall events that occurred during the rainy season.
Interestingly, the precipitation products other than CCS and CMORPH, overestimated the
observed rainfall. Nevertheless, while considering the highly variable nature of rainfall,
these precipitation products can be used for hydrological analysis.

A previous study by Li et al. [36] showed that 3B42 and IMERG over-estimates RG
measured rainfall over the Chi River Basin of the north-eastern part of Thailand. The
results are somewhat similar to the results obtained in the present study. Overall, it can
be observed that with over-estimations and underestimations, the different precipitation
products can still capture the rainfall pattern of the area.

In previous studies in the tropical humid Ethiopia the CMORPH product has also
demonstrated significant underestimates [60]. The reason for this is that CMORPH precipi-
tation estimates are derived from the microwave data exclusively. In addition to CMORPH,
the CCS has also demonstrated significant underestimates over the tropical humid regions.
Both observations might be due to the difficulty in detecting rainfall over the comparatively
shallow convective clouds. In another study, it has been demonstrated that CMORPH
has demonstrated underestimates rainfall in the Upper Haihe River Basin which has a
transitional area of the humid zone to the semi-arid zone [61]. Yang et al. [62] also obtained
underestimates of CMORPH rainfall over the middle part of the Haihe River Basin. The per-
formance of CMORPH from previous studies clearly depicts that CMORPH under-estimate
RG measured rainfall over the tropical humid climatic zones.

3.2. Evaluation of Streamflow Simulation Capacity of Different Precipitation Products

Figure 5 presents the simulated hydrographs for different precipitation scenarios.
Figure 5a illustrates the hydrograph obtained from the hydrologic model simulated under
the observed rainfall. However, there are some mismatches between observed and sim-
ulated streamflow with mixed results (over-estimations and under-estimations). These
differences can clearly be seen for flood peaks during the rainy seasons. However, it is
noteworthy, the flood peak in 2010 simulated by the SWAT model from RGs was com-
parable with observed discharge. Through eyeball analysis, it is evident that baseflow
during the dry seasons in most of the years was simulated fairly well through the SWAT
model. Figure 5b–d present the hydrographs obtained under the SbPPs. Fairly acceptable
matches in discharges are found in Figure 5b for 3B42 precipitation product; however,
underestimations in simulated discharges can be clearly seen in Figure 5c,d for 3B42-RT and
CMORPH precipitation products. These two SbPPs have underestimated the precipitation
too (refer to Figure 4). Figure 5e,f present the simulated hydrographs under the GbGPPs
(APHRODITE_V1901 and GPCC, respectively). Over-estimations can be clearly seen in
APHRODITE_V1901 and GPCC precipitation products. All other simulated hydrographs
are presented in Figure A1a–g in the Appendix A of this paper. However, among all
precipitation products, the RG simulated SWAT model outperformed all other precipitation
products. This observation can be seen from by Li et al. [36] for the Chi River Basin in the
north-eastern part of Thailand.

Conclusions drafted from Figure 5 are based on the visual observations. Therefore,
the hydrologic performance of different precipitation products was examined by statistical
indices, including the NSE and the R2, which were recommended by Moriasai et al. [59].
Table 3 provides the NSE and R2 obtained for hydrologic simulations under different
precipitation products.
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Figure 5. Simulated hydrographs under SbPPS and GbGPPs. (a) For observed rainfall; (b) For 3B42;
(c) For 3B42-RT; (d) For CMORPH; (e) For APHRODITE V1901; (f) For GPCC.
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Table 3. Hydrologic performance of different precipitation products.

Precipitation
Product

For Calibration (2007–2010) For Validation (2011–2014)
NSE R2 NSE R2

Rain gauge 0.82 0.83 0.77 0.78
PERSIANN 0.19 0.49 0.50 0.73

CCS 0.27 0.57 0.35 0.76
CDR 0.15 0.60 0.40 0.81
3B42 0.55 0.72 0.68 0.85

TMPA-3B42RT 0.01 0.63 0.10 0.62
IMERG 0.08 0.74 0.13 0.82
MSWEP 0.55 0.75 0.30 0.77
CHIRPS 0.55 0.69 0.14 0.61

CMORPH −0.17 0.53 -0.07 0.68
APHRODITE_V1901 0.61 0.72 0.53 0.91
APHRODIE_V1801 0.21 0.66 0.49 0.90

GPCC 0.32 0.73 0.45 0.81

Among the tested precipitation products, only observed rainfall, 3B42, and APHRODITE_
V1901 show NSE and R2 values higher than 0.50 in both calibration and validation pro-
cesses. Therefore, it can be argued that only these precipitation products are acceptable
for hydrologic modeling of the HBS. Thus, it can be stated that 3B42 precipitation product
outperformed the other SbPPs in terms of the SWAT model performance for simulating
streamflow. This was observed in the obtained hydrographs (refer to Figure 4b). Similarly,
APHRODITE_V1901 outperformed other GbGPPs with NSE greater than 0.50 for both
calibration and validation time periods in terms of the tested GbGPPs.

Although CHIRPS and MSWEP have performed fairly well during the calibration
time periods (provided with NSE values greater than 0.50), the performance of hydrologic
modeling significantly decreased during the validation time period. The over-estimations
compared to RGs produced from SbPPs can be the reasons for this observation. However,
in contrast, PERSIANN showcased a better performance during the validation period. In
addition, the CMORPH products showed the worst performance (NSE < 0) during both cal-
ibration and validation time periods. This can be directly attributed to the lower detection
accuracy of rainfall events observed, which was also observed by Behrangi et al. [63].

Furthermore, CCS significantly under-estimates the streamflow from the SWAT model
developed for the HBS. Similar results were demonstrated by Gunathilake et al. [2] for
the Upper Nan River Basin in Northern Thailand using the Hydrologic Engineering
Center-Hydrologic Modeling System (HEC-HMS) hydrologic model. The significant under-
estimations of streamflow simulated by 3B42-RT, PERSIANN, and CCS were also previously
demonstrated by Gunathilake et al. [2]. The underestimations of rainfall from these precipi-
tation products can be a good reason subsequently for such underestimations in simulated
streamflow. Pakoksung and Takagi [38] have also carried out hydrologic modeling for
the Upper Nan River Basin using the Rainfall-Runoff Inundation Model (RRI) to simulate
an extreme rainfall event. The results of the study in the Upper Nan demonstrated that
the PERSIANN product significantly underestimates observed streamflow. In addition,
Gunathilake et al. [64,65] showcased similar cases for the PERSIANN group of products
over the Seethawaka watershed, a sub-watershed of the Kelani watershed of Sri Lanka.

Through the results of the current study, it is clear that the spatial resolution of SbPPs
products does not have a clear impact on streamflow simulations. For instance, in terms of
SbPPs, the TMPA-3B42 product which had the lowest spatial resolutions (0.25◦ × 0.25◦)
outperformed the CCS which had a comparatively high spatial resolution (0.04◦ × 0.04◦).
The CMORPH product which had the highest spatial resolution (0.027◦ × 0.027◦) demon-
strated the worst skills among all. Interestingly, the IMERG product which had a spatial
resolution of 0.10◦ × 0.10◦ did not perform well in simulating streamflow when compared
to other SbPPs (i:e PERSIANN, PERSIANN-CDR, and MSWEP) which had a compara-
tively lower spatial resolution (0.25◦ × 0.25◦) to IMERG. PERSIANN, PERSIANN-CDR,
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MSWEP, TMPA-3B42, which had the same spatial resolution performed slightly differently
in hydrologic model simulations.

However, with a slight exception, in terms of the GbGPPs, it is clear that among
the GbGPPs which had the highest spatial resolution (0.05◦ × 0.05◦), APHRODIE_V1901
outperformed two other GbGPPs in reproducing observed streamflow with NSE values
greater than 0.50 for both calibration and validation time periods.

The authors of this paper believe that the uncertainties in the hydrologic model might
have also induced some errors (to a certain extent). The sampling, instrumental and
algorithmic errors in estimating rainfall are some of the reasons which might be attributed
to the mismatches between observed and simulated streamflow. However, Tan et al. [66]
demonstrated that 3B42 product has outperformed PERSIANN and CMORPH products
over Malaysia. These results are comparable with the results obtained in this study for
HBS watershed. Furthermore, Li et al. [38] have demonstrated that TRMM and IMERG
simulated streamflow over-estimated observed streamflow in the Chi River Basin of the
north-eastern part of Thailand. This observation is also similar to the present study.
Therefore, the results of this presented paper are justifiable.

4. Conclusions

This study demonstrated the usefulness of satellite-based and gauge-based gridded
precipitation products for hydrologic modeling in the Huai Bang Sai (HBS) watershed in
north-eastern Thailand. Nine different satellite-based precipitation products (SbPPs) and
three different gauged-based precipitation products (GbGPPs) were used to drive the SWAT
hydrologic model for the HBS watershed. Among the analysed SbPPs, 3B42 showed promis-
ing results in terms of the hydrologic utility for the SWAT model for future applications in
water resources management. In addition, among the GbGPPs, APHRODITE_V1901 can
be recommended to be used for various hydrological and climatological applications in
the humid tropical regions of the world. However, the differences between RG data and
other different precipitation products are clearly seen through the simulated streamflow.
Nevertheless, the present study provides valuable insights for water resources planners for
the estimation of ecological flows. Furthermore, and more interestingly if the irrigation
scheduling rules of the small tanks in the northeast part of Thailand can be incorporated
into hydrologic modeling results, the modeling results can be further improved.

Through the results obtained by forcing different precipitation products into the SWAT
hydrologic model, it was observed that the resolution of the product does not have a clear
impact on the streamflow estimation accuracy. Hence, it can be decided that that the
methods adopted in estimating precipitation in different precipitation products which
will lead to accurate precipitation measurements ultimately had a clear role in hydrologic
simulations. This study calls for improved hydrologic model results through bias-corrected
algorithms, which can be applied for rainfall estimations. Therefore, the results of this
study will be valuable for precipitation product developers to improve bias corrections in
the tropical humid climates. It is expected that the evaluation and findings in this study
can potentially provide useful information about SbPPs choices in terms of strengths and
weaknesses and their applicability for the region. However, the application accuracy of
SbPPs and GbGPPs is location specific.
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Appendix A

The following Figures are presented in support for Figure 5 in the main text.
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