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Abstract: Different methods are known for interpolating spatial data. Introduced a few years ago, the
initial version of the Most Probable Precipitation Method (MPPM) proved to be a valuable competitor
against the Thiessen Polygons Method, Inverse Distance Weighting and kriging for estimating
the regional trend of precipitation series. Climate Analyzer, introduced here, is a user-friendly
toolkit written in Matlab, which implements the initial and modified version of MPPM and new
selection criteria of the series that participate in estimating the regional precipitation series. The
software provides the graphical output of the estimated regional series, the modeling errors and
the comparisons of the results for different segmentations of the time interval used in modeling.
This article contains the description of Climate Analyzer, accompanied by a case study to exemplify
its capabilities.

Keywords: regional series; Most Probable Precipitation Method (MPPM); graphical representation;
MAE; MSE; MAPE

1. Introduction

An extensive Implementation Plan for the Grand Challenge on Understanding and Pre-
dicting Weather and Climate Extremes should focus on integrated observations, improved
models, new process understanding of the physical drivers of extremes and fast-track attri-
bution [1]. In this context, the concept of “regional area” allows the precise examination of
the phenomena’s impacts [2], incorporating all regional scale aspects, as the observations
quality and model simulations impacts representation, processes study, region climate
variability and change based on available data.

Efficient management of the water resources depends on the knowledge about the
climatic vectors, among which precipitation is one of the most important [3]. In arid
or semi-arid regions, where high precipitation episodes follow long drought periods,
the determination of the precipitation pattern at the regional scale is essential in the
water resources allocation for the households, agricultural and industrial use [4], land-use
planning, water control design, precipitation forecasting and downscaling [5].

Interpolation of hydrological series provides essential information for making in-
formed decisions for managing water resources, especially in the climate change context
when water scarcity became an acute issue worldwide [6]. Classical and artificial intelli-
gence methods, such as the Thiessen Polygons (TPM), Inverse Distance Weighting (IDW),
Kriging (ordinary—OK and universal—UK), have been used to interpolate the hydrological
data at ungauged stations [6–9]. Ly et al. [9] reviewed TPM, IDW, polynomial and spline
interpolation, Moving Window Regression (MWR), OK and UK. Wu et al. [10] compared
the performances of IDW, OK, Local Polynomial Interpolation, Radial Basis Function and
some versions of IDW and UK for interpolating data from the Mississippi River Basin.
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Five interpolation methods have been compared by Lloyd [11]. Kurtzmann et al. [12]
interpolated daily data utilizing the locally weighted regression and IDW with various
parameters. Different versions of kriging, IDW and Nearest Neighborhood have been used
by Zhang and Srinivasan [13] in their study about the Yellow River.

Modified IDW versions have also been proposed in [14–16], some of them based on
artificial intelligence methods [7,8], while other authors used remote sensing and GIS-based
modeling for interpolating hydro-meteorological series [17,18]. It was shown that there is
no best method for all the studied problems since that the modeling quality also depends
on the series characteristics [19–21]. All these approaches aim at providing accurate
estimations of precipitation as well as possible.

In the same idea of the spatial interpolation of the precipitation series [22–26], Bărbule-
scu [22] introduced a new method, called the Most Probable Precipitation Method (MPPM)
and compared its results with those provided by some well-known spatial interpolation
techniques—the Thiessen Polygons Method (TPM), Inverse Distance Weighting (IDW) and
Ordinary Kriging (OK)—for estimating the regional precipitation in Dobrogea, Romania.
The study covered annual maxima, monthly and seasonal series. In most cases, MPPM
proved to provide better results than the mentioned competitors [19]. For improving the
algorithm, Bărbulescu et al. [23] introduced a new version of MPPM and applied it to a
case study from the Arabian Gulf Region.

MPPM avoids the issues that could appear in the kriging applications [22,27], as the
invertibility of the distance matrix, the high computational cost for building the inverse of
the distance matrix in the case of a high number of stations, the choice of the variogram
model and the selection of the optimal variogram’s parameters.

In the presented context, this study aims at:

• Introducing new selection criteria of the precipitation series values that participate in
fitting the regional series, with the aim at improving the algorithm’s performances.

• Describing Climate Analyzer software.
• Exemplifying the Climate Analyzer use on the total precipitation series collected

in the Dobrogea region (Romania) during 1965–2005. Comparisons of the Climate
Analyzer’s output with the results provided by TPM, IDW, KG are provided.

Climate Analyzer is designed to work with precipitation quantity. It is easy to use,
does not suppose advanced statistical and computational knowledge, and will be freely
available on request from the authors.

For the interested readers, the study of the precipitation occurrence has been per-
formed on daily precipitation [25,28,29] for the same region.

2. Methods and Implementation

Climate Analyzer, proposed here, is a user-friendly toolkit written in MatlabR2019b
(MathWorks, Inc., Natick, MA, USA) whose main functionality is to implement the MPPM
method and its version introduced in [22,23] and described in Sections 2.1–2.3. The interface
and the implementation details are presented in Section 2.4.

2.1. Method I

Suppose that the data series registered at k sites in n consecutive periods are given
and let us denote by (yji) (j = 1, . . . , n) the series registered at the station i (i = 1, . . . , k).

Method I has the following stages [22].

(I1) Establish the working intervals: compute the minimum (yj min) and maximum values
(yj max), recorded at the jth moment (j = 1, . . . , n) and their amplitudes (Aj).

(I2) Divide each interval [yj min, yj max] into mj subintervals with the length Lj = Aj/mj,
(j = 1, . . . , n). The number of intervals is selected by the user, based on the user’s
experience or different objective criteria. Each sub-interval should contain a sufficient
number of values.
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(I3) Denote by Yjl, the subinterval l at the moment j and define its frequency, fjl, to be
the number of values in Yjl, l = 1, . . . , mj, j = 1, . . . , n. Choose the interval whose
frequency is maximum, denote it by Ij max and its frequency by fj max.

If there is more than one subinterval whose frequency is equal to fj max, then Ij max will
be chosen to be that one whose average is closest to the average of the entire interval [yj min,
yj max] (j = 1, . . . , n).

(I4) Choose the average of the values in Ij max to be the representative value for the period
j (j = 1, . . . , n).

(I5) Compute the Mean Absolute Error (MAE) and Mean Standard Error (MSE) corre-
sponding to all the observation sites.

(I6) Represent graphically the results.

In the initial version of the algorithm, at stage (I3), the existence of at least two
intervals with the same maximum frequencies and the same averages was not considered.
Therefore, the initial algorithm might choose any of these intervals to be Ij max. Thus, many
combinations may appear. To avoid this issue, at stage (I5), the average of all the values in
the intervals with the equal maximum frequency will be the representative value for the
period j. The implementation of the algorithm takes into account this situation.

2.2. Method II

Keeping the same notations as in Method I, Method II has the following stages [23].

(II1) Choose the number of clusters, k and perform the k-means clustering to group the
data series into clusters. This step returns an n-by-1 vector (idx) containing the cluster
index for each observation site, the locations of the clusters’ centroids, within-cluster
sums of point-to-centroid distances and distances from the points to the centroids.

(II2) Determine the cluster containing the highest number of elements and build a matrix
using the data series recorded at the sites from that cluster.

(II3) Choose the value representing the period j as the average of the values recorded at j
at the stations from the cluster with the highest number of observations.

(II4) Compute the Mean Absolute Error (MAE) and Mean Standard Error (MSE) corre-
sponding to all the observation sites.

(II5) Represent the results graphically.

In this version of the algorithm, the number of clusters was chosen using the sil-
houette method, and the cluster selection has been made based on maximizing the ratio
BSS/TSS×100, where BSS is the between sum of squares and TSS is the total sum of squares
computed in the k-means algorithm [30–32]. If two or more clusters have the same number
of elements (the highest one), the representative value computed at (II3) is the average of
all the elements belonging to the cluster with the highest ratio.

2.3. Comparison of the Results

The model quality evaluation uses MSE, MAE and MAPE (mean absolute percentage
error) computed for each series, and the average MSE, MAE and MAPE. The smaller the
values of the indicators are, the better the estimation is. At least two indicators should be
utilized for comparing the results (for cross-validation). Graphical representations of the
fitted data and errors are also recommended.

2.4. Implementation

Climate Analyser was initially designed to implement the Most Probable Precip-
itation Method (Method I). In its actual form, it implements the methods described
in Sections 2.1 and 2.2. Based on the input data, it computes the maxima, minima and
amplitude series, and to provide their graphical representation. Temperature and pollution
trends over a region can also be modeled by utilizing this software.

After performing the spatial interpolation, the fitted series are displayed, together
with the MAE and MSE series. If two methods have been performed, comparisons of the
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results are provided on the same chart. The computed MAE and MSE are exported in xls
files for further analysis.

The work is in progress to implement the Thiessen Polygons Method and IDW interpo-
lation and to provide comparisons between these methods. Another module will provide
the frequency analysis for daily precipitation and temperature series, and the computation
of the WMO indicators [28,29].

Data series are introduced in a Table (each series in a column) in a .csv file. The
user can upload the file by clicking on the Select button and must provide the number of
sub-intervals or clusters for running the algorithm. The methods that will be run may also
be selected—the first one, the second one or both. After making this selection, one should
click on Start button to perform the analysis.

Figure 1 presents the interface of the software. The results are displayed in the six
windows (Figure 1). The flowchart of the algorithm is shown in Figure 2.

The algorithm has the following steps:

1. Compute_Amplitude step involves:

- the calculation of the extreme values (yj min, respectively, yj max) for each j;
- the amplitude computation for each j;

2. Amplitude Representation step: amplitude 2D Graphical Representation.
3. Choosing the number of subintervals or clusters.

Performing the modeling using Method I and Method II. Figure 3 shows the methods
flowcharts.

4. Collecting the results in the Data Processing from Matlab destination tables.
5. 2D graphical representations of “Trend series that fit the regional one”, MAE and

MSE using both methods (presented in the next section) (Figure 4).
6. Export to file: the modeling output is exported to the xlsx files.
7. Performing a comparative study, using both methods for different numbers of subin-

tervals, respectively, different numbers of clusters and the graphical representation of
the results for “Trend series that fit the regional one”, MAE and MSE (Figure 5).
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2.5. Data Series

Data used for modeling consist of the annual precipitation series (recorded during
41 years at 10 meteorological stations situated in the southeastern part of Romania, in the
Dobrogea region, between the Danube and the Black Sea (Figure 6).
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Most of Dobrogea has an arid climate, with a mean annual temperature of about
10–11 ◦C and a summer mean annual temperature of 22–23 ◦C. The number of days
with temperatures higher than 25 ◦C varies between 72 in Constanta and 95 in Tulcea.
The average relative humidity varies between 78% and 85%, the lowest humidity being
registered in the central and southern parts of the region. The mean annual precipitation is
350–450 mm. In the zone with the highest altitude, the mean annual precipitation values
increase to about 450 mm. The 400 mm isohyet, parallel to the Black Sea Shore, delimitates
the coastal region from the continental Dobrogea. Years with mean annual precipitation
under 250 mm have been recorded as well [33]. The study series are represented in Figure 7.
Among them, Sulina is situated 12 km offshore in the Danube Delta.
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Figure 7. The annual precipitation series.

For this dataset, the ANOVA was performed in previous studies [22,25] to test if there
is a difference between the series, followed by the Scheffe posthoc test. This test found that
the Sulina series forms a separate group.

In [25,28,29], climate change in the area has been studied utilizing the daily data and
the indices recommended by WMO. To give an idea about the precipitation occurrences,
Table 1 contains the statistical distributions that best fit the annual precipitation series.

Table 1. The statistical distributions that best fit the annual precipitation series.

Crt. No Series Distribution Parameters Kolmogorov-
Smirnov

Chi-
Squared

Reject
the Null

1 Adamclisi Wakeby α = 185.8 β = 4.148 γ = 249.34
δ = −0.55834 ξ = 288.45 0.9631 0.94298 No

2 Cernavoda Log-logistic (3P) A = 7.853 β = 530.76 γ = −56.791 0.9987 0.78226 No

3 Constanta Wakeby α = 1396.7 β = 8.6357 γ = 131.68
δ = −0.17477 ξ = 169.03 0.9793 0.98812 No

4 Corugea GEV k = 0.07952 σ = 80.002 µ = 363.68 0.9663 0.9776 No

5 Mangalia Johnson SB γ = −1.5528 δ = 5.7129
λ = 2959.6 ξ = −1305.7 0.9972 0.9711 No

6 Medgidia Log-logistic (3P) α = 19.78 β = 1142.3 γ = −723.44 0.9987 0.9284 No

7 Harsova Pearson 6 (4P) α 1 = 38.828 α2 = 10.541
β = 93.195 γ = 47.668 0.9555 0.9835 No

8 Jurilovca Generalized
logistic k = 0.10343 σ = 68.053 µ = 397.14 0.9946 0.9666 No

9 Sulina Wakeby α = 395.83 β = 4.3011 γ = 80.116
δ = 0.14853 ξ = 148.9 0.9975 0.9908 No

10 Tulcea Burr k = 0.94537 α = 7.5822 β = 436.52 0.9820 0.9281 No

Readers may find information about the monthly and seasonal series trend in [29] and
Dobrogea and its climate in [33–35]. Therefore, to exemplify how the software works, the
annual data was chosen. All the mentioned results and related works, together with the
present article, give a global picture of the precipitation dynamics in the Dobrogea region.
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3. Results and Discussion

The optimal number of clusters has been determined to be three by the silhouette
method and two by the elbow method. For comparison reasons, we present the results
obtained when Method I was run with the number of intervals equal to the number of
clusters—two and three. When using three clusters, the cluster with the highest number of
elements contains all but Mangalia, Medgidia and Sulina (nos. 5, 6 and 9 in Table 1) series
(Figure 8a). When using two clusters, the cluster with the highest number of elements
contains all but Mangalia and Medgidia series (nos. 5 and 6, in Table 1) (Figure 8b). The
clustering quality can be observed in Figure 8.
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Based on the presented algorithm, the series Mangalia, Medgidia and Sulina or only
the first two do not participate in the computation of the regional trend (when using three
or two clusters). Therefore, the regional series is determined using the group containing
homogenous data series (the cluster with the highest number of elements).

Figures 9 and 10 presents the graphical results of fitting the regional trend of annual
precipitation (“Trend series that fit the regional one”), the resulted mean absolute errors
(MAE), the mean, standard errors (MSE) and Amplitude, when working with two (three)
sub-intervals/clusters, using both methods.

The numbers from 1 to 10 represent the series as they are ordered in Table 1.
In Figures 9a and 10a, Meth. I and Meth. II refer to the results obtained using the first

or the second method, and Avg. is the average series computed for each year by averaging
the annual recorded values of all the 10 series. In Figures 9f and 10f, Min and Max are the
minimum and maximum precipitation series, respectively, and Amplitude is the difference
between Max and Min series.

Notice the similar shapes of MAEs and MSEs in Figure 9c,e and Figure 10c,e, showing
a similar pattern of the residual series. In most cases, MAEs and MSEs from Method I are
higher than those from Method II (Figure 9b,d and Figure 10b,d).

Tables 2 and 3 displays the MAE, MSE and MAPE computed using Method I (Method
II). MAPE was utilized as extra goodness of fit indicator because it is non-dimensional, so
it is recommended to compare different types of models [8].
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Table 2. The goodness of fit indicators in Methods I with two and three intervals for annual precipitation.

MAE MSE MAPE

Crt. No Station 2 3 2 3 2 3

1 Adamclisi 66.01 69.46 84.80 92.00 13.03 14.10
2 Cernavoda 67.92 63.84 94.52 83.04 13.07 12.36
3 Constanta 46.50 47.72 59.16 64.98 11.75 12.20
4 Corugea 60.62 50.77 76.95 73.44 15.47 13.42
5 Mangalia 100.24 107.67 158.57 164.93 43.58 45.32
6 Medgidia 76.91 73.71 106.27 101.39 19.47 19.50
7 Harsova 67.21 55.60 95.03 82.00 17.36 15.33
8 Jurilovca 56.41 64.30 70.49 83.69 15.91 18.75
9 Sulina 117.66 126.95 138.15 149.82 45.35 48.47

10 Tulcea 64.81 56.26 86.52 78.52 14.15 12.88

Average 72.43 71.63 97.04 97.38 20.91 21.23

Table 3. The goodness of fit indicators in Methods II with two and three clusters for annual precipitation.

Crt. No
MAE MSE MAPE

Station 2 3 2 3 2 3

1 Adamclisi 67.93 61.42 83.45 74.52 13.55 12.42
2 Cernavoda 64.34 53.38 76.82 66.85 12.58 10.26
3 Constanta 37.07 40.70 45.83 48.44 9.15 10.38
4 Corugea 42.23 45.41 55.35 58.81 11.17 12.11
5 Mangalia 99.15 102.46 146.16 148.51 41.16 42.24
6 Medgidia 64.27 60.78 86.10 83.22 16.61 15.94
7 Harsova 53.18 55.93 72.65 75.63 13.40 14.75
8 Jurilovca 47.98 54.62 55.60 64.18 13.62 15.85
9 Sulina 116.69 131.28 130.43 147.86 43.62 49.07

10 Tulcea 58.21 58.21 74.47 67.90 12.70 12.25

Average 65.10 66.06 82.68 83.59 18.76 19.52

MAPEs resulted from Method II are, in most cases, smaller than those from Method
I. The average goodness of fit indicators (MAE, MSE and MAPE) are the smallest when
using two clusters.

In Method I, MSE and MAPE are the smallest when working with two intervals,
whereas MAE is the smallest in the case of three intervals. In Method II, all indicators are
the smallest in the case of two clusters.

Figure 11 shows the comparisons of MAEs and MSEs for two and three sub-intervals/
clusters. It confirms the best quality of the models when utilizing Method II with two clusters.

Comparison of the best model (Method II, two clusters) with Inverse Distance Weighting
(IDW) and kriging are provided in Table 4. The best variogram model for the kriging was the
exponential one, with the optimized parameters nugget = 1, sill = 2 and range = 24 [24].

The average MAE = 65.10, corresponding to MPPM (Method II), is the lowest com-
pared to the average MAEs corresponding to IDW and kriging (KG), 71.11 and 84.40,
respectively. For six out of 10 stations, MAEs computed in Method II are lower than those
corresponding to IDW and KG. MAEs in IDW (KG) are the lowest for three (one) stations.
The lowest average MSE was computed in KG (82.00). It is not significantly higher than
the average MSE in MPPM (Method II), 82.68. MSEs in MPPM (IDW and KG, respectively)
are the lowest for six (two and two, respectively) series. The average MAPE is the lowest
when running Method II.

From these comparisons, one may notice the superior performances of Method II.
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Table 4. Comparison of the performances of Method II, IDW and kriging.

MPPM (Method II) IDW Kriging

MAE MSE MAPE MAE MSE MAPE MAE MSE MAPE

Adamclisi 67.93 83.45 13.55 60.08 70.22 12.41 82.03 68.85 12.08
Cernavoda 64.34 76.82 12.58 53.81 71.00 10.25 65.23 81.15 14.12
Constanta 37.07 45.83 9.15 48.17 59.90 12.78 43.22 51.35 11.39
Corugea 42.23 55.35 11.17 49.23 62.40 10.93 46.04 61.65 10.32
Mangalia 99.15 146.16 41.16 56.91 72.64 13.67 56.34 70.75 13.54
Medgidia 64.27 86.10 16.61 47.20 57.11 11.44 50.19 61.64 14.63
Harsova 53.18 72.65 13.40 61.71 84.26 54.81 62.21 84.26 54.75
Jurilovca 47.98 55.60 13.62 69.90 88.14 25.83 61.24 75.83 20.42

Sulina 116.69 130.43 43.62 171.23 182.93 74.79 261.63 170.87 58.74
Tulcea 58.21 74.47 12.70 92.90 111.51 14.75 75.92 93.65 13.21

Average 65.10 82.68 18.76 71.11 84.29 24.17 84.40 82.00 22.32

4. Conclusions

In this article, two algorithms for modeling the regional trend of precipitation have
been presented, together with their implementation in Climate Analyser. To exemplify
the functioning of this toolbox, a complete set of annual precipitation data, recorded for
41 years at 10 meteorological stations has been utilized, and the modeling results have been
discussed. The main contributions of this work are twofold.

1. The optimizing of finding the regional series, in the following two directions:

a. The selection (in the k-means algorithm) of the clusters whose elements partic-
ipate in the construction of the regional series, based on maximizing the ratio
BSS/TSS×100. In the previous algorithm version [22,23], when two clusters
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have the same number of elements (maximum), each could be selected to build
the regional series. In this version, choosing the maximum BSS/TSS×100 en-
sures a higher distance between the clusters and a smaller one inside them. Thus,
the homogeneity degree of the series in the clusters is higher, so the estimation
of the regional series is better than in the previous version of Method II.

b. The choice of the values that participate in building the regional series when at
least two subintervals have the same maximum frequency and absolute value
of the difference between the subinterval average and the series average.

Let consider that I1 and I2 are such intervals, with the same maximum frequency, fmax,
m is the average precipitation in a specific year, m1 and m2 are the averages of I1 and
I2 and |m1 − m| = |m2 − m| . Given that the values in the intervals are in ascending
order, this means that m1 − m = − (m2 − m), so m = (m1 + m2)/2. Therefore,
selecting I1 would underestimate the regional series (since only the smallest values
would participate in the evaluation of the regional series), while selecting I2 would
overestimate it; so the best choice is using the values in both intervals for building the
regional series.

2. The second one is implementing the algorithm in user-friendly software, Climate
Analyzer, freely available on request. It facilitates the computation of the regional
trend. It also provides the graphical visualization of the output of the selected
algorithm, offering the facility to compare the results for different segmentations of
the series.

In the future, we intend to extend the software in the following directions:

a. Implementing algorithms for determining the optimal number of clusters, given that
the fitting quality depends on the number of groups involved in the regional series
computation.

b. implementing the IDW and Thiessen Polygons Methods.
c. Extending the algorithm for analyzing the occurrence of precipitation events.

Author Contributions: Conceptualization, A.B.; methodology, A.B.; software, F.P.; validation, A.B.,
F.P. and C.S, .D.; formal analysis, C.S, .D.; investigation, A.B., F.P. and C.S, .D.; resources, F.P.; data
curation, A.B.; writing—original draft preparation, A.B., F.P. and C.S, .D.; writing—review and editing,
A.B.; visualization, F.P.; supervision, A.B.; project administration, A.B.; funding acquisition, A.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data series will be available on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Report of the 21st Session on the CLIVAR Scientific Steering Group. In Proceedings of the 21st Session of the CLIVAR Scientific

Steering Group, Moscow, Russia, 10–12 November 2014. ICPO Publication Series No. 201 WCRP Informal Report No. 3/2015.
2. Schneider, T.; Teixeira, J.; Bretherton, C.S.; Brient, F.; Pressel, K.G.; Schär, C.; Siebesma, A.P. Climate goals and computing the

future of clouds. Nat. Clim. Chang. 2017, 7, 3–5. [CrossRef]
3. Hiez, G. Homogénéisation des données pluviométriques. Cah. ORSTOM Hydrol. 1997, XIX, 129–172.
4. El Alaoui El Fels, A.; El Mehdi Saidi, M.; Bouiji, A.; Benrhanem, M. Rainfall regionalization and variability of extreme precipitation

using artificial neural networks: A case study from western central Morocco. J. Water Clim. Chang. 2021, 12, 1107–1122. [CrossRef]
5. Srinivas, V.V. Regionalization of Precipitation in India—A Review. J. Indian Inst. Sci. 2013, 93, 153–162.
6. Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53,

173–189. [CrossRef]
7. Bărbulescu, A.; S, erban, C.; Indrecan, M.-L. Improving spatial interpolation quality. IDW versus a genetic algorithm. Water 2021,

13, 863. [CrossRef]

http://doi.org/10.1038/nclimate3190
http://doi.org/10.2166/wcc.2020.217
http://doi.org/10.1016/j.envsoft.2013.12.008
http://doi.org/10.3390/w13060863


Hydrology 2021, 8, 125 14 of 14

8. Bărbulescu, A.; Băutu, A.; Băutu, E. Particle Swarm Optimization for the Inverse Distance Weighting Distance method. Appl. Sci.
2020, 10, 2054. [CrossRef]

9. Ly, S.; Charles, C.; Degré, C. Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological
modeling at watershed scale: A review. Biotechnol. Agron. Soc. Environ. 2013, 17, 392–406.

10. Wu, K.-Y.; Mossa, J.; Mao, L.; Almulla, M. Comparison of different spatial interpolation methods for historical hydrographic data
of the lowermost Mississippi River. Ann. GIS 2019, 2, 133–151. [CrossRef]

11. Lloyd, C. Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. J. Hydrol.
2005, 308, 128–150. [CrossRef]

12. Kurtzman, D.; Navon, S.S.; Morin, E. Improving interpolation of daily precipitation for hydrologic modelling: Spatial patterns of
preferred interpolators. Hydrol. Process. 2009, 23, 3281–3291. [CrossRef]

13. Zhang, X.; Srinivasan, R. GIS-Based spatial precipitation estimation: A comparison of geostatistical approaches. J. Am. Water
Resour. Assoc. 2009, 45, 894–906. [CrossRef]

14. Liu, H.; Chen, S.; Hou, M.; He, L. Improved inverse distance weighting method application considering spatial autocorrelation in
3D geological modeling. Earth Sci. Inform. 2020, 13, 619–632. [CrossRef]

15. Liu, Z.; Zhang, Z.; Zhou, C.; Ming, W.; Du, Z. An Adaptive Inverse-Distance Weighting Interpolation Method Considering Spatial
Differentiation in 3D Geological Modeling. Geosciences 2021, 11, 51. [CrossRef]

16. Ozelkan, E.; Bagis, S.; Ozelkan, E.C.; Ustundag, B.B.; Yucel, M.; Ormeci, C. Spatial interpolation of climatic variables using land
surface temperature and modified inverse distance weighting. Int. J. Remote Sens. 2015, 36, 1000–1025. [CrossRef]

17. Jiang, W.; Zhang, P.; Jiang, H.; Zhao, X. Reconstructing Satellite-Based Monthly Precipitation over Northeast China Using Machine
Learning Algorithms. Remote Sens. 2017, 9, 781. [CrossRef]

18. Ryu, S.; Song, J.J.; Kim, Y.; Sung-Hwa, J.; Younghae, D.; GyuWon, L. Spatial Interpolation of Gauge Measured Rainfall Using.
Asia-Pac. J. Atmos. Sci. 2021, 57, 331–345. [CrossRef]

19. Dragomir, F.L. Theoretical Bases of the Process Simulation; Sitech: Craiova, Romania, 2017.
20. Dragomir, F.L. Modeling and Simulating the Systems and Processes; Editura Universităt, ii Nat, ionale de Apărare Carol I: Bucures, ti,

Romania, 2017.
21. Dragomir, F.L. Decision Theory—Theoretical Notions; Editura Universităt, ii Nat, ionale de Apărare Carol I: Bucures, ti, Romania, 2017.
22. Bărbulescu, A. A new method for estimation the regional precipitation. Water Resour. Manag. 2016, 30, 33–42. [CrossRef]
23. Bărbulescu, A.; Nazzal, Y.; Howari, F. Statistical analysis and estimation of the regional trend of aerosol size over the Arabian

Gulf Region during 2002–2016. Sci. Rep. 2018, 8, 9571. [CrossRef]
24. Bărbulescu, A.; Barbes, L.; Nazzal, Y. New model for inorganic pollutants dissipation on the northern part of the Romanian Black

Sea coast. Rom. J. Phys. 2018, 63, 806.
25. Bărbulescu, A. Studies on Time Series. Applications in Environmental Sciences; Springer: Cham, Switzerland, 2016.
26. Zhang, Q.; Han, J.; Yang, Z. Spatiotemporal characteristics of regional precipitation events in the Jing-Jin-Ji region during

1989–2018. Int. J. Climatol. 2002, 41, 1190–1198. [CrossRef]
27. Chiles, J.-P.; Delfiner, P. Geostatistics. Modeling Spatial Uncertainty, 2nd ed.; Wiley: Hoboken, NJ, USA, 2002.
28. Bărbulescu, A.; Deguenon, J. Change point detection and models for precipitation evolution. Case study. Rom. J. Phys. 2014, 59,

590–600.
29. Deguenon, J.; Bărbulescu, A. Trends of extreme precipitation events in Dobrudja. Ovidius Univ. Ann. Ser. Civil Eng. 2011, 1, 73–80.
30. Soetewey, A.; Stats, R. Available online: https://statsandr.com/blog/clustering-analysis-k-means-and-hierarchical-clustering-

by-hand-and-in-r/ (accessed on 20 May 2021).
31. Al-Taani, A.; Nazzal, Y.; Howari, F.; Iqbal, J.; Bou-Orm, N.; Xavier, C.M.; Bărbulescu, A.; Sharma, M.; Dumitriu, C.S, . Contamina-

tion assessment of heavy metals in soil, Liwa area, UAE. Toxics 2021, 9, 53. [CrossRef] [PubMed]
32. Nazzal, Y.H.; Bărbulescu, A.; Howari, F.; Al-Taani, A.A.; Iqbal, J.; Xavier, C.M.; Sharma, M.; Dumitriu, C.S, . Assessment of metals

concentrations in soils of Abu Dhabi Emirate using pollution indices and multivariate statistics. Toxics 2021, 9, 95. [CrossRef]
[PubMed]

33. Bărbulescu, A.; Maftei, C.; Bautu, E. Modeling the Hydro-Meteorological Time Series. Applications to Dobrudja Region; Lambert
Academic Publishing: Saarbrucken, Germany, 2010.

34. Bărbulescu, A.; Maftei, C. Statistical approach of the behavior of Hamcearca River (Romania). Rom. Rep. Phys. 2021, 73, 703.
35. Bărbulescu, A.; Maftei, C.; Dumitriu, C.S. The modeling of the climatic process that participates at the sizing of an irrigation

system. Bull. Appl. Comput. Math 2002, CII-2048, 11–20.

http://doi.org/10.3390/app10062054
http://doi.org/10.1080/19475683.2019.1588781
http://doi.org/10.1016/j.jhydrol.2004.10.026
http://doi.org/10.1002/hyp.7442
http://doi.org/10.1111/j.1752-1688.2009.00335.x
http://doi.org/10.1007/s12145-019-00436-6
http://doi.org/10.3390/geosciences11020051
http://doi.org/10.1080/01431161.2015.1007248
http://doi.org/10.3390/rs9080781
http://doi.org/10.1007/s13143-020-00200-7
http://doi.org/10.1007/s11269-015-1152-2
http://doi.org/10.1038/s41598-018-27727-0
http://doi.org/10.1002/joc.6786
https://statsandr.com/blog/clustering-analysis-k-means-and-hierarchical-clustering-by-hand-and-in-r/
https://statsandr.com/blog/clustering-analysis-k-means-and-hierarchical-clustering-by-hand-and-in-r/
http://doi.org/10.3390/toxics9030053
http://www.ncbi.nlm.nih.gov/pubmed/33801890
http://doi.org/10.3390/toxics9050095
http://www.ncbi.nlm.nih.gov/pubmed/33923007

	Introduction 
	Methods and Implementation 
	Method I 
	Method II 
	Comparison of the Results 
	Implementation 
	Data Series 

	Results and Discussion 
	Conclusions 
	References

