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Abstract: The primary goal of this study is to comprehend the effects of El Niño Southern Oscil-
lation (ENSO) climate pattern on groundwater storage (GWS) in the South Atlantic-Gulf Region.
Groundwater issues are complex and different studies focused on groundwater depletion while
few emphasized “groundwater rise”. The current research is designed to develop an outline for
assessing how climate patterns can affect groundwater fluctuation, which might lead to groundwater
rise. The study assessed the effect of ENSO phases on spatiotemporal variability of groundwater
using Spearman Rank Correlation. A significant positive correlation between ENSO and GWS was
observed. An increasing trend was detected in GWS where most grids were observed in Florida by
utilizing the non-parametric Mann–Kendall test. A positive trend magnitude was also detected by
utilizing Theil–Sen’s Slope method with a high magnitude in the mid-Florida region. The highest
GWS anomalies were observed in the peak of El Niño events and the lowermost GWS was observed
during La Niña events. Furthermore, most of the stations were above normal groundwater conditions.
This study provides a better insight on the research gap among groundwater rise and ENSO.

Keywords: GRACE; groundwater rise; ENSO; correlation analysis; climate variability

1. Introduction

Water resources planning and management is a fundamental step to ensure equitable
and sustainable use of available surface and groundwater resources. The progressive
development of the water resources is possible by limiting the available resources to
external forces like population growth, climate change, land-use change, and extreme
events which have a cumulative impact on the hydrological cycle. The hydrologic process
governs the functioning of the overall ecosystem which is being altered by modifying
the biophysical structures that obstruct the water cycle. Groundwater is one of the key
components of the hydrologic cycle and plays a vital role in balancing the ecosystem. The
effects in the hydrological cycle due to climate variability and change are significant [1].

Groundwater is a dynamic and complex system, and its sustainability is the main chal-
lenge as it is an extensive resource even without considering climate variability and change.
The relationship and the effects of climate variability and change are challenging [2] as it is
also influenced by anthropogenic activities [3]. To impact groundwater resources, a long-
term climate change signal has to ‘travel’ through the following water cycle components:
(a) precipitation, (b) streamflow, (c) soil moisture content, (d) interception and terrestrial
water storage (TWS), and (e) evapotranspiration. The strength of the climate change signal
as it passes through the aforementioned hydrologic components to affect the groundwater
resource have not yet been thoroughly investigated.

In past decades, hydrologists and water managers had deeper insights into different
modes of oceanic-atmospheric teleconnections occurring at different temporal and spatial
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scales. These modes occur at interannual and interdecadal time scales and provide predic-
tive information about hydrologic variability (precipitation, streamflow, and groundwater)
in regions around the world. Short-term hydrologic responses are due to seasonal climatic
variability whereas complex interaction of interannual climate variability controls ground-
water recharge and water table [4–9]. Some of the major modes of oceanic-atmospheric
climate variability include the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscil-
lation, Atlantic Multi-decadal Oscillation, and North Atlantic Oscillation. ENSO is the most
common mode of oceanic-atmospheric teleconnections that causes warming or cooling of
the equatorial Pacific Ocean and has three phases: El Niño, La Niña, and neutral. These
phases lead to variations in climatic settings in the central Pacific Ocean. El Niño describes
the warm phase whereas La Niña represents the cool phase of Sea Surface Temperature
(SST) around the world. Nevertheless, for a deeper knowledge on the effects on ground-
water storage (GWS) and recharge due to ENSO, further research is required [10]. The
information related to the groundwater fluctuation due to ENSO is important for informed
decision-making as well as to understand the groundwater availability due to different
phases of climate variability.

ENSO can have a significant influence on water-table rise or fluctuations [11–14]. The
fluctuations in groundwater level are a natural phenomenon; however excessive rise leads
to disruption of underground water infrastructures. In Saudi Arabia Jeddah Watershed,
Al-Sefry, and Sen [15] mentioned that from 1996 to 2000 there was an average of 0.41 m
of groundwater table rise. However, it is challenging to study the effects of ENSO on
groundwater due to the absence of relevant long-term data [1]. A study in central India
by Rishma and Katpatal [16] determined that the groundwater trend in the command
area and non-command area showed an increasing trend. During ENSO warm events
less groundwater storage was observed whereas during La Niña year high groundwater
storage was observed within their study area. In addition, GWS trends were calculated
by using Gravity Recovery and Climate Experiment (GRACE) estimates in India where
increased recharge was observed during intense rainfall [17]. GRACE is an effective tool to
quantify hydrologic processes, where spatial and temporal in situ groundwater data are
limited [18]. Thomas and Famiglietti [19] mentioned that in Lower Missouri Basin increased
GW storage estimated from GRACE was identified and corroborates positive trends in
the upper Midwest and northeastern US. Furthermore, the northern High Plain Aquifer,
northern California, and southern Nevada were found to have an increasing groundwater
trend, whereas a decline in southern High Plain aquifer was also observed [20,21]. Thomas
and Famiglietti [19] and Sahoo et al. [20] did not consider ENSO in their study while Russo
and Lall [21] considered ENSO in their study.

The current study focused on assessing the association between groundwater rise and
ENSO in the southeastern United States. It explored the changes in GWS estimated from
GRACE satellites including groundwater recharge and precipitation. Furthermore, this
study focused on “groundwater rise” whilst more focus is given to groundwater depletion.
Therefore, this study will be an addition to the literature. To sufficiently relate the ground-
water changes to ENSO, the current study analyzes the essential factors like variation of
groundwater from the long-term mean (anomaly), monthly change estimation of ground-
water, and recharge over time. These analyses mainly evaluate if the stations are whether
above normal groundwater level (positive anomalies) or below normal groundwater level
(negative anomalies). The study will address the following key questions: (1) What is
the historic spatiotemporal variation in GWS? (2) Does groundwater have a significant
relationship with ENSO? (3) Is groundwater level rising or falling? The specific objectives
of this study are (1) analyzing the correlation between groundwater and ENSO climatic
teleconnection using non-parametric Spearman rank correlation; (2) temporal trend anal-
ysis of groundwater storage; and (3) analyzing groundwater rise based on groundwater
storage anomaly-negative anomaly indicate lower monthly groundwater level (GWL) and
positive indicates higher than normal GWL.
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In addition, the scope of this study is to assess the spatiotemporal relationship between
ENSO and variability in groundwater. The land-use practices could be a reason that
could have a potential impact on the groundwater level, but the anthropogenic effect is
not covered in the current study. In addition, factors affecting the groundwater levels
include proximity to streams, lakes, and oceans, pumping, extraction, irrigation, drilling,
drinking water, and groundwater well construction. These factors have not been included
in the current study. Water-logging and soil salinity issues might also induce or amplify
groundwater rise, however, it might not exists over all the states in the study region.

2. Materials and Methods
2.1. Study Area

The current study is carried out in the Southeast region of the United States. This lies
in the Hydrologic Unit Code (HUC)-03 watershed inside the geographic boundaries of 22◦

N to 36◦ N latitude and 71◦ W to 93◦ W longitude as shown in Figure 1. The study area
covers seven states such as Georgia, Mississippi, Alabama, Virginia, South Carolina, and
North Carolina. This study area experiences a humid climate, and it generally has mild and
occasional winter cold. During warm days, the weather is sunny and during spring it has
cool mornings and evenings. The average rainfall ranges from 940 to 1420 mm each year
and the high temperature usually ranges between 26 ◦C and 32 ◦C. Due to its proximity
to the Ocean, thunderstorms and humid climates are common. The population density
is 388 people per square km with the highest population in Florida having an estimated
population of 21 million people.
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The majority of the study region lies in the Floridian aquifer system (FAS). It spans
Southeast Alabama, Georgia, South Carolina, and Florida. It is divided into upper and
lower FAS and consists of limestone and dolomite. FAS consist of four major aquifers,
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namely, Sand and gravel, Biscayne, Surficial, and Intermediate aquifer system. The first
aquifer contains of clay and sand with embedded layers of clay and silt, where confined
conditions are formed by clay layers. The aquifer comprises two high permeability zones
divided by less permeable sands and clays in Florida. A highly permeable limestone and
less permeable sand and sandstone lie in the Biscayne aquifer. The highly permeable rocks
of the Biscayne aquifer are enclosed by a thin layer of porous soil in most areas and the
groundwater levels rise quickly in response to intense precipitation. The surficial aquifer
system is unconfined and is composed of mainly unconsolidated shell, sand, and shelly
sand. A confined layers in the intermediate aquifer system is formed by permeable layers of
limestone, sand, and shell. Water penetrates downwards to the intermediate aquifer system
in most parts of the study area. A schematic of a hydrogeological section is illustrated
below in Figure 2.
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2.2. Datasets

The current research used new mascon GRACE-RL06 CSR mascon solutions from
2002 to 2019 to evaluate the terrestrial water storage anomalies (TWSA), with a spatial
resolution of 0.5◦ × 0.5◦ derived from JPL to estimate the groundwater storage [22]. For
the missing data, a linear interpolation approach was used to populate the time series
based on the adjacent time series [23]. It is a comparatively simple interpolation technique
from which a linear equation can be obtained, and a missing value can be computed. This
approach is widely used, easy, and effectively handles missing data. The Soil Moisture
(SM), Snow Water Equivalent (SWE), and Canopy Water Storage (CWS) variations over
the study period were obtained from two land surface models (LSMs)—Noah (NOAH)
and the Variable Infiltration Capacity (VIC) driven by the Global Land Data Assimilation
System (GLDAS). The GLDAS data simulation system utilizes advanced LSMs and data
integration methods by incorporating ground data acquisition and satellite data [24] and
has high accuracy [25]. It has a good spatial resolution and is reliable with latest GRACE
RL06 CSR mascon solutions. Thus, the current study used NOAH and VIC—LSM models
for Groundwater Storage Anomaly (GWSA) calculation. The TWSA was calculated by
multiplying JPL and scale factors. The required anomalies of soil moisture (SMA), snow
water equivalent (SWEA), canopy water storage (CWSA), and terrestrial water storage
(TWSA) were computed to estimate groundwater storage anomaly (GWSA) within the
study area. The soil moisture was averaged for four depths from two LSM models, VIC, and
NOAH. The anomalies from GRACE and GLDAS estimates used the baseline from 2004
through 2009. Both are monthly datasets measured in millimeters. A detailed description
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of GWSA estimation from GLDAS and GRACE is available in Joshi et al. [26]. The GWSA
is calculated as in Equation (1) below:

GWSA = TWSA − (SMA + SWEA + CWSA). (1)

Direct gridded groundwater recharge datasets are not available in this study area, so
the available baseflow data from the LSM model was used to provide ancillary data of
groundwater recharge. The groundwater recharge was estimated by using the drainage
from the bottom of the lowest soil layer simulated by the LSMs—VIC and NOAH. It is
named “baseflow” in LSMs and used as suggested by Li et al. [27]. The time series of
247 well data was acquired from the National Groundwater Monitoring Network. The
groundwater well data with less than 10% missing values were only considered. To be
consistent with the station numbers and available data, a record length of 2002–2017 was
considered to determine groundwater rise or fall. The monthly gridded precipitation
data (5 × 5 km) from Gridded 5 km GHCN-Daily Temperature and Precipitation Dataset
(nClimGrid) was also used. The anomaly of precipitation data (PPTA) was also calculated
to be consistent with GRACE by using a baseline from 2004 to 2009. The monthly ENSO
index was obtained from an online database of NOAA [28]. The Niño-3.4 index was used
that represents the El Niño phase (SST > +0.5 ◦C), La Niña phase (SST < −0.5 ◦C) and
neutral phase the represents SST between −0.5 ◦C and >+0.5 ◦C.

2.3. Methods
2.3.1. Spearman Rank Correlation Analysis

In this study, the first objective is to assess the ENSO influence on GWSA, and precipi-
tation. Spearman Rank Correlation was computed in this study in order to investigate their
linkage. It is a non-parametric method that helps in determining the relationship between
the variables. It uses the rank of the records to calculate the correlation coefficient [29]. It
does not assume Gaussian distribution, and thus it was used understand the teleconnection
patterns. It is insensitive to extreme values (outliers), and the data need not be regularly
spaced. It can be used for small sample sizes but while converting the data into ranks,
information can be lost, and it can be less powerful than Pearson correlation analysis if
the data is normally distributed. In this method, each variable is ranked in ascending
order and the difference between ranks for each observed data is recorded. If the dataset is
correlated, then the sum of squares of the difference between the ranks is small, and the
magnitude is related to the significance of the correlation. The Spearman rank correlation
coefficient is calculated by using Equation (2):

Rρ = 1 − ∑ di
2

n(n2 − 1)
, (2)

where, Rρ is Spearman’s rank correlation coefficient, di is the difference between the two
ranks of each observed data, n is the number of observed data. The correlation coefficient
value ranges from −1 for negatively correlated variables and 1 for positively correlated
variables. The correlation coefficient is 0 if there is no connection between the variables. The
correlation values greater than 0.5 denotes strong positive correlation and less than −0.5
denotes strong negative correlation. To test the significance of a correlation, we assumed
that there is no correlation between ENSO and precipitation (or GWSA) at a 95% confidence
level (p < 0.05).

2.3.2. Mann–Kendall Test and Theil–Sen Slope

The second objective is to evaluate the trend of the groundwater levels from the
available time series. Similar to the Spearman Rank, the Mann–Kendall test is also a
non-parametric approach and was used to evaluate the trend in groundwater data. It is
also insensitive to outliers and can be used in a small dataset. This approach was used
to analyze the statistical significance of the trend in each grid of the GRACE dataset. The
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current study considered the trend at 10% statistical significance. The Thiel–Sen approach
(TSA) [30,31] was used to estimate the magnitude of a trend. It is useful with discontinuous
time series and is also insensitive to outliers. GWL is measured at irregular intervals
varying from day-to-day to yearly values. To sufficiently assess the relationship between
hydrological changes due to ENSO, the current study analyzed also analyzed the essential
parameters like deviation of GWS by calculating groundwater anomaly within the study
area. The average of GWSA and PPT was used for temporal analysis with the ENSO events
within the study region.

2.3.3. Determination of Groundwater Rise/Fall

To attain the third objective of assessing the groundwater level rise or fall, depth to
GWL anomaly was also generated and then a percentile suggested by USGS groundwater
watch [32] was used to understand the water level conditions in terms of three categories,
i.e., above normal, below normal and normal conditions as shown in Table 1. These
groundwater level anomalies were then compared to groundwater rise or fall within the
study area. Temporal maps of the number of stations under three categories were obtained
to examine the groundwater conditions in the HUC-03 region.

Table 1. Groundwater level categorization to determine rise/fall.

Percentile Groundwater Level Classes

<25 Below Normal
25–75 Normal
>75 Above Normal

3. Results and Discussion
3.1. Historical Variations in Groundwater

The long-term temporal trend presented in Figure 3 shows that the GWSA has in-
creased from 2002 to 2019 within the study region. From the trend analysis between GWSA
and ENSO in Figure 3i, it can be noted that the peak of ENSO events is consistent with
the peak of the GWSA. The red-colored areas represent the El Niño event whereas the
blue-colored areas represent the La Niña event. From the figure, a strong El Niño event is
occurring during positive GWSA and the strong La Niña event is appearing during nega-
tive GWSA. When there is a peak La Niña event, an increase in the GWSA was observed.
From the results, throughout the time of peak GWSA, peak El Niño events were observed.
Similarly, in Figure 3ii, high precipitation during El Niño and less precipitation during
the La Niña event were observed. The blue bars represent precipitation, and the red line
represents recharge. The pattern of precipitation is also similar with ENSO and GWSA
whereas the peak recharge is also during the peak precipitation events. ENSO mainly
affects rainfall in Southeast US [33–35] which could help in explaining high-level GWSA
during El Niño and less groundwater level during La Niña events. In the past, Florida had
incidences of groundwater flooding due to heavy rainfall in various counties [36]. High,
intense precipitation or above-normal precipitation could be one of the reasons that the
groundwater level rose, and another reason could be the effect of ENSO.



Hydrology 2021, 8, 119 7 of 15

Hydrology 2021, 8, x FOR PEER REVIEW     7 of 15 

 

 
Figure 3. Mean monthly temporal graph of (i) ENSO index and GWSA. (ii) Precipitation and recharge. (iii) Spatial varia-
tion of a magnitude of a trend for a period of 2002–2019. On (i), the blue line, the red shaded areas and the blue shaded 
areas represents GWSA, El Niño and La Niña, respectively. On (ii), the red line and the blue bar represents recharge and 
precipitation anomaly, respectively. 

Figure 3iii shows spatial variation of trend magnitude which was calculated by using 
Theil–Sen’s Slope in each grid. The positive trend magnitude suggests an increase in GWS 
whereas the negative trend magnitude suggests a decrease in GWS over the study period. 
It is evident from the figure that most of the grids in the Florida region have high trend 
magnitude in GWSA whereas few negative trends were observed in the Alabama and 
Mississippi area. A maximum positive trend magnitude observed in the study region was 

Figure 3. Mean monthly temporal graph of (i) ENSO index and GWSA. (ii) Precipitation and recharge. (iii) Spatial variation
of a magnitude of a trend for a period of 2002–2019. On (i), the blue line, the red shaded areas and the blue shaded
areas represents GWSA, El Niño and La Niña, respectively. On (ii), the red line and the blue bar represents recharge and
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The recharging capacity of the aquifer has a key role in groundwater fluctuations.
In this study, the LSM used for recharge does not simulate the anthropogenic impacts.
From Figure 3ii, it is clear that a strong seasonal cycle is consistent with GWS. Most of
the precipitation contributes to recharging where the soil layers are porous. A report by
Grubbs [37], stated that March and September have the highest recharge rates in FAS. In
West Central Florida and North Florida, the limestone is exposed at the land surface and
lies beneath an unconfined aquifer system. It contains low permeable clays in the upper
confining unit and groundwater is contained under pressure. The aquifer system in the
study region mostly consists of sand and carbonated rocks. The Upper Floridian aquifer
has a shallow permeable zone. Thus, the recharging rate can also be a factor contributing
to increasing GWS.

Figure 3iii shows spatial variation of trend magnitude which was calculated by using
Theil–Sen’s Slope in each grid. The positive trend magnitude suggests an increase in GWS
whereas the negative trend magnitude suggests a decrease in GWS over the study period.
It is evident from the figure that most of the grids in the Florida region have high trend
magnitude in GWSA whereas few negative trends were observed in the Alabama and
Mississippi area. A maximum positive trend magnitude observed in the study region was
found to be 0.914 cm/year whereas the lowest trend magnitude of −0.332cm/year was
observed over the study period. Most of the grids in Florida showed a significant positive
trend at a 90% confidence level. From this, we can confirm that the southern region has
experienced increasing GWSA. Increasing groundwater can also be observed throughout
the time series in Figure 3i. From this analysis, groundwater trend and magnitude were
observed, and it also gave an overall idea of the fluctuation extent over the study period.

Groundwater is a dynamic system that also plays a major role in the agriculture,
drinking water supply, and commercial water use sector and it can also pose a significant
threat if the rise is very high. Based on the results, most of the grids have an increasing trend
and the increased groundwater was featured in media as well as reported by Suwanee River
Management District [36]. It reported increased groundwater mainly in the adjacent district
of Dixie County. The correlation analysis between groundwater and ENSO showed a strong
relationship whilst precipitation also has a main role in the groundwater fluctuations which
is discussed in the subsequent section.

3.2. Correlation Analysis

The relationship between precipitation and ENSO over the period 2002–2019 is
strongly positive throughout the study area in November and December months as shown
in Figure 4. The correlation coefficient values were found to be highest and the most
consistent than other months. In July, in most of the grids negative correlation values
were observed and in January most grids showed lower significant correlation values (i.e.,
less than 0.3). In all other months, both positive and negative correlation values were
observed, whereas in October strong negative correlation was observed in the southern
part of Florida. The maximum correlation coefficient for that month is analysis is 0.75 and
this higher correlation has been found concentrated in Georgia, South Carolina, Virginia,
North Carolina, and few parts of Florida for November and December. In May, correlation
is positive and concentrated in the mid-Florida region. The spatiotemporal relationship
utilizing Spearman Rank Correlation between gridded precipitation data and the Niño
3.4 index suggests a strong association exists between ENSO and precipitation.
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The climate oscillation is mostly affected by teleconnection signals and ENSO is one
of the prominent and important events that lead to anomalies in climate [38]. When sea
surface temperature is low and sea level pressure is high then ENSO is considered to
occur [39]. This is also supported by several studies in the past [40–42]. ENSO is a tropical
pacific pattern and has a strong influence on climate during winter (December–February)
across the US. During El Niño jet stream splits into weak polar and strong subtropical jet
stream and during La Niña the pacific jet stream are variable [43]. A strong interannual
variation was observed from the long-term temporal analysis between precipitation and
ENSO (Figure 3ii). A strong interannual variation can be observed as the variabilities in
precipitation with high peaks consistent with ENSO events. El Niño events are generally
observed in the southern US have wetter and cooler than average condition and in the
northern part of the US have the drier condition [44]. High peaks in precipitation were
observed during El Niño events followed by La Niña events in the study area. El Niño
is related to ocean components and can cause cooling (known as La Niña) or warming
(known as El Niño) of SST in the tropical Pacific Ocean. From the results, it can be observed
that certain high rainfall events are directly related to ENSO phases. El Niño years have
higher rainfall than compared with the La Niña years. It affirms that ENSO plays a
significant role in precipitation within the study area. A strong relationship between ENSO
and precipitation was observed from the temporal analysis as well as correlation analysis
as shown in Figure 3i,ii, respectively. This corresponds with various studies that show
precipitation in the Southeast US being predominantly influenced by ENSO phases [34].

The estimated GWSA was used for correlation analysis with the Niño 3.4 index in
some areas. Figure 5 represents these results, and it is certain that only in the June, July,
and August months, most of the grids of the study region showed a negative correlation
coefficient. Most of the grids in June, September and October showed lower correlation
coefficient (i.e., less than 0.3). However, a strong correlation coefficient was observed in
all other months. The correlation coefficients in this analysis are consistent and positive
throughout the study area. Most of the grids in January, February, and March showed a
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strong and positive correlation as shown in Figure 5. The maximum correlation coefficient
for these months is 0.91 and this higher correlation has been found concentrated in Missis-
sippi, Alabama, Georgia, South Carolina, North Carolina, and northern parts of Florida. A
strong association was also detected between ENSO and precipitation in November and
December. This influence also forms a relationship between ENSO and precipitation in the
study region, which in turn explains correlations between ENSO and GWSA.Hydrology 2021, 8, x FOR PEER REVIEW     10 of 15 
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A similar correlation pattern represents the relationship between ENSO and precip-
itation across the same region. This trend and the peaking correlation suggest not only
that precipitation is the process by which the ENSO is transferred to groundwater, but
also that the subsurface plays a role in controlling the magnitude and timing of this ENSO
phase. According to NOAA, throughout El Niño event, the eastern winds flowing from the
tropical Pacific Ocean are weaker than normal and SST in the eastern and central Pacific
become warmer than normal. In the southern part, El Niño events increase wet and cold
winters, and in the Northwest, the winter has milder temperatures than normal. During La
Niña events, SST in the eastern tropical Pacific is colder than usual. The polar jet stream
shifts towards the north throughout the central Pacific Ocean with cold temperatures in the
west and wet winters in the northwest. Because of ENSO on precipitation and temperature,
it also has a direct or indirect effect on groundwater variability across the Southeast US.

3.3. Relationship between Groundwater Storage, Precipitation, and Recharge

Groundwater availability depends on the amount of precipitation, recharge, and
production [45]. Precipitation is above normal precipitation during El Niño events in the
Southeast US and contrary effects on the Southeast US during La Niña events [46]. A



Hydrology 2021, 8, 119 11 of 15

wetter than average precipitation in the southeast could therefore be one of the factors
influencing the increasing trend in groundwater in the study area. In this study, a strong
temporal association between precipitation and groundwater (Figure 3i,ii) also explains
and quantifies precipitation-driven groundwater variability, with negative GWSA in La
Niña and high groundwater level in El Niño events. Successive precipitation induces
increased infiltration leading to increased GWS and recharge. This also indicates that
groundwater recharge mostly occurs during El Niño events.

The temporal analysis was used to assess the effects of ENSO on historical GWS
variability. It was found that the trend increases from 2007 and it is highly sensitive to
El Niño during 2012–2019. During El Niño events, the maximum positive anomaly ob-
served was about 15.9 cm in February 2019 whereas a minimum of 0.04 cm in October
2013. Similarly, during La Niña events, the maximum negative anomaly observed was
about −13.4 cm in October 2007 whereas a minimum of −0.04 cm in April 2007. A nega-
tive anomaly indicates a deficit of GWS within the study area due to less rainfall or high
abstraction, whereas a positive anomaly indicates high recharge due to a high rainfall
rate which increases groundwater storage. These increases and decreases in groundwater
storage are associated with different ENSO phases and are confirmed by temporal trend
plots in Figure 3. The precipitation anomaly analysis indicates that higher GWSA was
observed during higher precipitation anomaly whereas lower GWSA during low precipi-
tation anomaly. Furthermore, the net groundwater storage monthly pattern follows the
precipitation anomaly data.

The correlation between ENSO and groundwater storage shows that ENSO influences
GWSA. The climatic impact of the warm phase, increasing precipitation, seems to appear
it increases GWSA. However, there was an apparent delayed response in some major
peaks as shown in Figure 3. This may be due to different groundwater responses to climate
depending on various factors that affect infiltration and recharge rates such as local geology,
land use, and land cover. The study area was covered mostly by the permeable type of rock
and the dominant one was sand which could be a potential factor contributing to infiltration
leading to increased groundwater storage. Additionally, this study made no distinction
between shallow, medium, or deep aquifers. The semiconfined nature of deep aquifers
requires the consideration of time attenuation that passes over the unsaturated region
and clay layers resulting in long recharge travel time. Climate variables may influence
in a different way to shallow and unconfined aquifers at annual timescale, whereas deep
confined aquifers at interannual or extended timescale due to soil type, elevation, land use
that can take longer time to recharge the aquifer. Hence, in future studies, the distinction of
aquifers should also be considered.

The recharge rate was also calculated in the current study. It shows that it has a varying
recharge rate over 18 years. It was interesting to note that a recharge of 9.8 cm was observed
in July 2008 over the study period. However, the trend did not increase as that of GWS, but
it showed seasonal fluctuation. The average correlation between ENSO and GWSA of the
watershed computed by a spatial average was found to be 0.51. In addition, the correlation
values between precipitation and recharge were also computed for the average value of the
whole watershed and a very low correlation of 0.32 was obtained. Similarly, the correlation
values of GWSA and recharge were also very low (0.001). This may be due existence to the
indirect linkage between recharge, precipitation, and groundwater. Moreover, recharge is a
slow phenomenon, and it also depends on the land use so it might not have a direct causal
relationship with precipitation and groundwater storage. From this, it is clear that increased
GWS is not only due to increased recharge. The recharging phenomenon may saturate
the portions of the aquifer during the low water periods resulting in increased GWS. The
time it takes for the infiltrated water to move from terrestrial area to subsurface may be
influenced by other aquifer properties and soil moisture; it can also take months to years as
well to respond to precipitation. Extreme precipitation is associated with the recharge rate
and may aggravate by soil erosion, high surface runoff, and inundations [47]. Furthermore,
Russo and Lall [21] corroborated that climate indices are correlated with GWS changes
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with recharge being strongly influenced by climate such as ENSO. From this analysis, it
is evident that the ENSO index has a higher influence on GWS than precipitation and
recharge. The recharge and precipitation did not show an increasing trend (Figure 3ii), but
it was observed that the strong ENSO events followed by an increased GWSA (Figure 3i)
and is also supported by Joshi et al. [26]. Thus, it can be concluded that groundwater aids as
an integrator that regulates hydroclimatic and ENSO variability in a particular watershed.

3.4. Groundwater Rise

Long-term deviation of GWL is also an essential factor to assess groundwater variabil-
ity. In this study, normal water level conditions were categorized if groundwater level was
found between 25th and 75th percentile, similarly, above normal for GWL higher than 75th
percentile and below normal for GWL lower than 25th percentile as shown in Table 1. Out
of 247 stations, a maximum of 184 stations showed above normal GWL in February 2016
and 78 showed below normal in May 2007 and is represented in Figure 6. The observed
groundwater level variations had a rise in GWL in maximum station however were not
uniform every year. A maximum number of stations were observed to be above normal
groundwater conditions and is clear from Figure 6. The groundwater wells having less than
10% missing values were only considered. The sample size was not uniform throughout the
study area due to absence of continuous datasets. Therefore, it can also be a potential factor
having a maximum number of stations showing above normal groundwater conditions.
However, it is clear from the GWSA temporal plot that GWS has an increasing trend.
GWSA tends to have a delayed response in few months with precipitation.
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The positive precipitation anomaly tends to have a positive groundwater level anomaly,
whereas a negative anomaly tends to have a negative groundwater level anomaly. In addi-
tion, the wells had a shallow depth to the water table, so it responds quickly to precipitation
due to the presence of permeable sand. Sand has high permeability and porosity that in-
creases the rate of recharge. Furthermore, in locations where limestone was a dominant
type of rock, 82 wells were found, similarly, in areas having dominant sand layers, 62 wells
were found, and 38 wells in clay or mud type were found.
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4. Conclusions

In earlier research, groundwater depletion has been a major area of concern, but this
study aimed at a less focused research domain, i.e., groundwater rise. The current study
intends to analyze the relationship between precipitation, ENSO, and groundwater in the
South Atlantic-Gulf Region using robust non-parametric statistical techniques. The GWS
changes were investigated by utilizing GRACE and GLDAS gridded datasets over 18 years
(2002–2019). The maximum number of GWSA grids was observed to have a strong positive
relationship with ENSO within the study period. The frequency of stations exhibiting
above normal groundwater level was found to be maximum throughout the study period
in comparison to normal and below normal groundwater level.

The main conclusions drawn in this task are as follows:

1. The correlation between ENSO, precipitation, and groundwater was observed to
be statistically significant at a 95% confidence level. February and March had the
strongest correlation of 0.91 between GWSA and ENSO whereas and November and
December showed a strong correlation of 0.75 between precipitation and ENSO;

2. During high precipitation, the GWS was found to be higher and during less precipita-
tion, GWS was found to be less;

3. During La Niña low precipitation and high precipitation in El Niño were observed.
Furthermore, low groundwater storage in La Niña and high groundwater storage in
El Niño was found ascertaining the dependence on ENSO climate patterns;

4. A maximum positive groundwater trend magnitude observed was 0.914 cm/year
while the lowest groundwater trend magnitude of −0.322 cm/year was observed
over the study period;

5. ENSO had a higher influence on GWS fluctuation than precipitation and recharge;
6. Most of the stations were found to be above normal groundwater conditions through-

out the study period.
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