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Abstract: Climate change has significant effects on societies and ecosystems. Due to the strong link
between climate and the hydrological cycle, water resources is one of the most affected fields by
climate change. It is of great importance to investigate climate change effects on streamflows by
producing future streamflow projections under different scenarios to create adaptation measures and
mitigate potential impacts of climate change. The Upper Campaspe Catchment (UCC), located at
North Central Victoria in Australia, is a significant catchment as it provides a large portion of total
inflow to the Lake Eppalock Reservoir, which supplies irrigation to the Campaspe Irrigation district
and urban water to Bendigo, Heathcote, and Ballarat cities. In this study, climate change effects on
monthly streamflows in the UCC was investigated using high resolution future climate data from
CSIRO and MIROC climate models in calibrated IHACRES hydrological model. The IHACRES model
was found to be very successful to simulate monthly streamflow in UCC. Remarkable streamflow
reductions were projected based on the climate input from both models (CSIRO and MIROC).
According to the most optimistic scenario (with the highest projected streamflows) by the MIROC-
RCP4.5 model in near future (2035–2064), the Upper Campaspe River will completely dry out from
January to May. The worst scenario (with the lowest streamflow projection) by the CSIRO-RCP8.5
model in the far future (2075–2104) showed that streamflows will be produced only for three months
(July, August, and September) throughout the year. Findings from this study indicated that climate
change will have significant adverse impacts on reservoir inflow, operation, water supply, and
allocation in the study area.

Keywords: climate change; streamflow; Campaspe River

1. Introduction

Climate change affects cities and the built environment, coasts, agriculture, water
resources, and natural ecosystems in Australia and all over the world. Among those
fields, water resources is one of the most affected ones due to the strong relationship
between climate and water resources [1,2]. There is a scientific consensus stating that
increasing temperatures due to global warming causes a change in quantity and timing
of precipitation and other climate-related parameters such as evapotranspiration [3,4].
Variations in precipitation amount and timing along with alterations in other climate
parameters result in changes in streamflow influencing downstream reservoir inflows and
operations [5]. Therefore, it is of great importance to investigate climate change effects on
streamflows by producing future streamflow projections under different scenarios to create
adaptation measures and mitigate potential impacts of climate change.

There are several studies investigating climate change effects on streamflows across
the world. Many of those studies reported decreases in streamflows in future. For example,
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D’Agostino et al. [6] reported a 16–23% decrease in streamflow in southern Italy by 2050.
Yilmaz and Imteaz [7] found significant runoff reduction in summer and spring seasons
for the period of 2070–2100 in the Euphrates basin, Turkey. Givati et al. [8] studied climate
change effects at the Upper Jordan River for 2020–2049 (near future) and 2050–2079 (far
future) periods under Representative Concentration Pathway (RCP)4.5 and RCP8.5 scenar-
ios. They projected a significant decrease in streamflows for both periods under both RCPs
with a higher reduction under RCP8.5 for the far future. Kanakoudis et al. [9] indicated
that the water resources availability is expected to be adversely affected by climate change
in the Adriatic region. Chen et al. [10] developed an index to evaluate water resources
vulnerability in the Huang-Huai-Hai River Basin, China and reported that water resources
will be more vulnerable in future under the effects of climate change.

There are also some studies in the literature projecting increases in future streamflow.
For example, Azari et al. [11] studied climate change impacts on streamflow in the North
of Iran using future climate data from three global climate models (GCMs) (i.e., CGCM2,
HadCM3, and CSIRO2) in the SWAT model under A1F1, A2, and B1 emission scenarios
over 2040–2069 period. They reported 5.8%, 2.8%, and 9.5% increases in annual streamflow
for the A1F1, A2 and B1 emission scenarios, respectively. Su et al. [12] and Bian et al. [13]
projected overall increases in annual average streamflows in the Yangtze River basin, China.
Furthermore, Kamis et al. [14] reported that the peak flow is anticipated to increase by
69% and 139% from 5 to 100 years return periods in Saudi Arabia for RCP4.5 and RCP8.5
scenarios respectively due to to the increases in rainfall by an average of 27% and 49% for
RCP4.5 and RCP8.5 models respectively. Arnbjerg-Nielsen [15] found that extreme rainfalls
in Northern Europe will increase due to climate change.

Investigation of climate change effects on streamflows and water resources is particu-
larly important in Australia as the driest continent on Earth apart from Antarctica. Only a
small fraction of total precipitation turns into a runoff in Australia and Australia has the
highest interannual streamflow variability in the world [16,17]. Climate change will very
likely exacerbate the water availability challenge in Australia, hence a better understanding
of climate change effects on streamflows is of high priority to the Australian government
and water industry [17].

Below are the examples of the Australian studies on climate change and streamflow
relationship. Vaze and Teng [17] investigated the likely changes in runoff around the year
2030 under A1B scenario in New South Wales and Australian Capital Territory. They
reported future mean annual runoff decrease by 0–20% in the southern parts of the study
area, not considerable change (decrease) in the eastern parts and an increase by 0–20% in
the northwest portion of the study area. Al-Safi and Sarukkalige [18] used future rainfall
and temperature projections from eight GCMs under RCP4.5 and RCP8.5 scenarios in
calibrated HBV model during mid and late 21st century to generate future streamflow
projections, and they found significant decreases in future streamflow in selected three
catchments. CSIRO [19] developed future runoff projections for the entire Campaspe River
Basin using multiple GCMs’ output in calibrated SMHYD model, and large decreases in
streamflows were reported by that study.

The Campaspe River Basin is located in north-central Victoria, Australia. In this study,
climate change effects on streamflows in the Upper Campaspe Catchment (UCC) were
investigated. The UCC is a significant catchment as it provides a large portion of total
inflow to the Lake Eppalock Reservoir. Lake Eppalock Reservoir supplies irrigation to the
Campaspe Irrigation district and urban water to Bendigo, Heathcote, and Ballarat. It is
vital to produce streamflow projections in this basin to understand climate change effects
on reservoir inflow, operation, water supply, and allocation. High resolution corrected
future climate data from CSIRO and MIROC GCMs were used in calibrated IHACRES
hydrological model to generate monthly streamflow projections in the UCC. To the knowl-
edge of the authors, this study presents the first monthly streamflow projection for both
near (2035–2064) and far (2075–2104) future in the UCC using projected (future) climate
data with a high spatial resolution (5 × 5 km) from the Victorian Climate Change Pro-
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jections 2019 (VCP19). Also, this paper is one of the earlier studies presenting the use of
VCP19 data in hydrological modelling. Therefore, this paper might shed light on the future
hydrological studies adopting VCP19 data. In addition, the applicability of the IHACRES
model in the UCC is examined in this study using observed climate and streamflow data.

2. Study Area and Data

The UCC is one of the main sub-basins inflowing to the Lake Eppalock Reservoir in
the Campaspe River Basin. The Lake Eppalock is the largest reservoir in the Campaspe
River Basin with a storage capacity of 312 GL, and the mean annual inflow into the Lake
Eppalock Reservoir is around 101 GL [19]. The surface area of the UCC is 634 km2 and
around 60% of the total inflow into Lake Eppalock reservoir is from the UCC. The UCC
(purple painted sub-catchment) and the Lake Eppalock is shown in Figure 1.
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In this study, the monthly gridded observed and projected climate data including
rainfall and average temperature were received from the VCP19, which was produced by
the partnership between The Victorian Government, Australia and the Commonwealth
Scientific and Industrial Research Organisation (CSIRO) to provide support to the Victorian
communities for climate change adaptation. Details of the VCP19 project can be seen
in Clarke et al. [21]. Both observed and future rainfall and temperature data have a
spatial resolution of 5 km by 5 km providing very detailed information in comparison to
information provided by GCMs with a general spatial resolution in the range of 100–300 km.
The future (projected) data in this study were received from two GCMs including the
Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Model
for Interdisciplinary Research on Climate (MIROC) for two emission pathways, medium
emission (RCP4.5) and high emission (RCP8.5). It is worth noting that future data sets
have been dynamically downscaled by CSIRO Climate Science Center (to 5 × 5 km spatial
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resolution) and produced using a quantile-quantile scaling approach. In the quantile-
quantile scaling, change ratios in percentiles are calculated from the GCMs’ historical and
future time series data. Then, the GCM based percentile change ratios are implemented to
all observation values in each quantile.

The observed and future monthly rainfall and temperature data span the period
of 30 years. The observed period includes data over 1981–2010, whereas two future
data periods were adopted in this study: (1) near future (2035–2064), and (2) far future
(2075–2104). It should be noted that the data over 1981–2010 period refer to the real
gridded observed data, not the GCMs’ historical simulations. Also, observed rainfall and
temperature grid data were averaged over the catchment area (for each time step) to be
used in the hydrological model.

In addition to rainfall and mean temperature data, observed streamflow data from
station 4061213 (shown in Figure 1) over the period of 1981–2010 was used to calibrate and
validate the hydrological model, which was later used for streamflow projections. Basic
annual climate characteristics (i.e., average, maximum, and minimum values) of data sets
are shown in Table 1.

Table 1. Annual rainfall and temperature characteristics.

Period Temperature (◦C) Rainfall (mm)
Mean Max Min Mean Max Min

Observed Data 1981–2010 12.5 13.6 11.6 728 1139 378

MIROC near
future

RCP4.5 2035–2064 13.8 15.0 12.8 726 1139 351
RCP8.5 2035–2064 14.3 15.5 13.2 613 1097 284

MIROC late
future

RCP4.5 2075–2104 14.5 15.7 13.4 619 1019 270
RCP8.5 2075–2104 16.0 17.3 14.8 575 1010 259

3. Methodology

The identification of unit hydrographs and component flows from rainfall, evapo-
transpiration and streamflow (IHACRES) model was adopted in this study for simulation
of observed streamflows and generation of future streamflow projections. The IHACRES
model is a well-established hydrological model employed in several studies [22,23] in
the literature.

The IHACRES model is a mixture of both metric and conceptual models. It implements
the simplicity of the metric model to decrease the parametric error derived from the
hydrological model as well as signifying the internal process of an ordinary metric model
in more detail. The IHACRES model consists of linear and non-linear modules. The
IHACRES produces effective rainfall using total rainfall and temperature input through
the non-linear loss module, whereas effective rainfall is converted to the streamflow by the
linear module [24].

Originally, the IHACRES model implemented an exponentially decaying soil moisture
index to transform total rainfall into effective rainfall. The IHACRES model was modified
by Ye et al. [25] to enhance its performance in regards to ephemeral catchments. This is an
important point for the current study as the UCC is an ephemeral catchment. The IHACRES
model uses Equation (1) to determine the soil moisture index (φk), Equation (2) to calculate
the reference drying rate (τk), and Equation (3) to compute the effective rainfall (uk).

φk = rk +

(
1 − 1

τk

)
φk−1 (1)

τk = τwexp(0.62 f (Tr − Tk)) (2)

uk = [c(∅k − 1)]ρrk (3)

where rk is the observed rainfall, τk is the drying rate, τw is the reference drying rate, f is
the temperature modulation, and Tr and Tk are the reference and observed temperature
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respectively. The linear module utilizes exponentially decaying stores to get the streamflow
(Q) from the rainfall (U), as shown by Equation (4).

Qk = −αQk−1 + βUk−δ (4)

where δ represents the delay between rainfall and streamflow response, α denotes the
recession rate of storage, and β is the fraction of effective rainfall [18]. More details
regarding the model can be found in Croke and Jakeman [24].

The coefficient of efficiency (E) was used to evaluate IHACRES model performance
as advised in Yilmaz and Imteaz [7] and Yilmaz and Muttil [26]. In addition to E, deter-
mination of coefficient (R2) and root-mean-square error (RMSE) were adopted for model
performance assessment in this study. E, R2, and RMSE are defined in Equations (5)–(7).

E = 1 − ∑(Qo(t)− Qm(t))
2

∑
(
Qo(t)− Qo

)2 (5)

R2 =

 ∑N
t=1
(
Qm(t)− Qm

)(
Qo(t)− Qo

)√
∑N

t=1 (Qm(t)− Qm)
2(Qo(t)− Qo

)2

2

(6)

RMSE =

√
∑N

i=1(Qo − Qm)
2

N
(7)

In Equations (5)–(7), Qm and Qo refer to modelled and observed flows, whereas Qm
and Qo correspond to mean modelled and observed flows, respectively. In Equation (7),
i and N represent variable i and the number of non-missing data points respectively. E
and R2 take values in the range of 0–1 and high values of E and R2 indicate the high
performance of the models. The RMSE, ranging between 0–∞, is used as a measure of the
spread of the observed values over the modelled values.

Observed climate and streamflow data between 17 October 1995 and 25 August 2009
was used for calibration of the model parameters, and the remaining data were used for
model validation.

4. Results and Discussion
4.1. Performance of IHACRES Model

As explained in the Methodology section, the IHACRES model was used to simulate
streamflows in the UCC. Figure 2 indicates time series plots of modelled and observed
monthly streamflow over 1981–2010 for model calibration (a) and validation (b) periods,
whereas Figure 3 shows scatter plots between observed and modelled monthly flows. As
can be seen from Figures 2 and 3, there is a strong agreement between modelled and
simulated streamflows suggesting the high performance of models for both validation
and calibration periods. Figure 2 shows that modelled streamflows are slightly less than
observed flows for two peaks that occurred in July 1995 and October 2000 during the
calibration period. Also, observed flow is underestimated for a few cases in the valida-
tion period.

E and R2 were used for IHACRES performance evaluation in addition to visual
assessment through time series and scatter plots. E was 0.91 and 0.84 for calibration and
validation periods, respectively, while R2 was 0.96 and 0.93 for calibration and validation
periods respectively. Additionally, the RMSE was found to be 1829 ML/month for the
calibration period and 5508 ML/month for the validation period. Performance evaluation
parameters showed that calibrated IHACRES model was very successful to simulate
monthly streamflows in the UCC.
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4.2. Future Rainfall and Temperature Projections
4.2.1. Rainfall Projections

As mentioned before, the rainfall and temperature values for the near future (2035–2064)
and the far future (2075–2104) were predicted using both high and medium emission
scenarios. Observed and projected monthly rainfall values are tabulated in Table 2. Also,
percentage increase (+%) and decrease (−%) of projected monthly rainfall in comparison to
observed rainfall are shown in brackets in Table 2.

Table 2. Observed and projected monthly total rainfall (mm).

MIROC Projected Rainfall CSIRO Projected Rainfall
Near Future Rainfall

(mm)
Far Future Rainfall

(mm)
Near Future Rainfall

(mm)
Far Future Rainfall

(mm)

Month Observed Monthly Rainfall (mm) RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

Jan 41 40 (0%) 34 (−16%) 37 (−8%) 34 (−16%) 37 (−10%) 45 (12%) 48 (19%) 42 (3%)
Feb 36 29 (−20%) 36 (−1%) 33 (−9%) 35 (−4%) 32 (−11%) 22 (−40%) 28 (−24%) 16 (−55%)
Mar 37 22 (−39%) 30 (−20%) 20 (−47%) 24 (−35%) 61 (64%) 32 (−13%) 33 (−10%) 30 (−20%)
Apr 45 48 (7%) 42 (−6%) 35 (−22%) 31 (−31%) 51 (15%) 37 (−17%) 55 (23%) 33 (−26%)
May 62 59 (−4%) 46 (−26%) 55 (−12%) 55 (−11%) 88 (43%) 79 (28%) 71 (15%) 45 (−26%)
Jun 91 100 (10%) 66 (−27%) 79 (−13%) 64 (−30%) 97 (7%) 94 (4%) 91 (0%) 63 (−30%)
Jul 81 63 (−21%) 60 (−26%) 67 (−17%) 56 (−30%) 73 (−9%) 73 (−9%) 78 (−3%) 54 (−33%)

Aug 84 97 (16%) 70 (−16%) 72 (−14%) 57 (−32%) 64 (−24%) 75 (−10%) 64 (−24%) 43 (−48%)
Sep 74 60 (−19%) 53 (−28%) 59 (−20%) 34 (−54%) 66 (−11%) 46 (−38%) 52 (−30%) 40 (−46%)
Oct 63 59 (−6%) 54 (−14%) 50 (−20%) 50 (−21%) 47 (−26%) 51 (−19%) 53 (−17%) 48 (−24%)
Nov 63 61 (−3%) 48 (−24%) 54 (−14%) 55 (−13%) 63 (0%) 56 (−11%) 53 (−16%) 33 (−47%)
Dec 53 87 (64%) 74 (40%) 58(10%) 81 (53%) 70 (32%) 58 (10%) 68 (29%) 53 (0%)

The information given in Table 2 is also graphically shown in Figure 4.
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As can be seen from Table 2 and Figure 4, the projected rainfall in RCP8.5 is lower than
that based on RCP4.5. In addition, the far future rainfall is generally lower than the near
future rainfall. According to the MIROC model results for the near future, projected rainfall
is less than observed rainfall in January, February, March, May, July, September, October,
and November without a clear pattern except the spring season (September, October, and
November) according to the RCP4.5 scenario. The RCP8.5 scenario results for near future
rainfall projection show that projected rainfall is less than the observed rainfall for all
months except December.

In near future, the percentage decrease in projected rainfall relative to the observed
rainfall is the highest in March by 39% and September by 28% according to the MIROC-
RCP4.5 and MIROC-RCP8.5 projections, respectively, whereas the percentage increase in
projected rainfall is the highest in December by 64% and 40% for MIROC-RCP4.5 and
RCP8.5, respectively as shown in Table 2.

In the far future, MIROC-RCP4.5 and MIROC-RCP8.5 projected rainfalls are less than
observed rainfall in all months except December. The highest decrease in projected far
future rainfall is found in March by 47% and in September by 54% based on MIROC-RCP4.5
and RCP8.5 projections, respectively. Also, the increase in far future rainfall is only in
December by 10% and 53% in terms of MIROC-RCP4.5 and RCP8.5 projections, respectively.

Similar to MIROC model results, the CSIRO model rainfall projections for near and far
futures are mostly less than the observed rainfall. According to the CSIRO-RCP4.5 model,
monthly projected rainfall is higher than the observed rainfall from March to June and
December for the near future, and from April to June, January, and December for the far
future. Additionally, the CSIRO-RCP8.5 model projected higher rainfall values than the
observed ones in January, May, June, and December for the near future. The CSIRO-RCP8.5
rainfall for the far future was projected to be lower than the observed rainfall in all months
excluding January and December.

The highest decrease in projected far future rainfall is found in September by 30% and
in February by 55% based on MIROC-RCP4.5 and RCP8.5 projections, respectively. Also,
the increase in far future rainfall is in December by 29% and in January by 3% in terms of
MIROC-RCP4.5 and RCP8.5 projections, respectively.

The projected annual rainfall for MIROC-RCP4.5 is found to decrease by 1% and 15%
in comparison to the observed annual rainfall for near and far future periods respectively.
The annual MIROC-RCP8.5 projected rainfall decrease is higher than MIROC-RCP4.5 with
14% and 19% for the near and far future, respectively. On the other hand, the annual total
CSIRO-RCP4.5 projected rainfall increased by 6% and dropped by 3% with respect to the
observed annual rainfall for near and far futures respectively. Similar to the MIROC-RCP8.5
forecasting, the CSIRO-RCP8.5 annual rainfall estimations are decreased by 9% in the near
future and by 29% for the far future compared to observed annual rainfall. In addition to
monthly and annual rainfall changes, seasonal projected rainfall variations were studied
in this study. Seasonal rainfall variations are shown in Table 3. In Australia, the summer
season consists of December, January, and February months, the autumn season includes
the March, April, and May months, the winter season refers to June, July, and August
months, and the spring season consists of September, October, and November months.

Table 3. Seasonal rainfall changes.

Season
Near Future (2035–2064) Far Future (2075–2104)

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5
CSIRO MIROC CSIRO MIROC CSIRO MIROC CSIRO MIROC

Spring −12% −10% −22% −20% −24% −18% −40% −36%
Summer 4% 15% 1% −20% 1% −11% −22% −14%

Fall 40% −12% −23% −9% −4% −26% −34% −23%
Winter −9% 1% 7% −26% 4% −14% −30% −24%
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As can be seen in Table 3, rainfall decreases are projected by both models (with all
scenarios and periods) in the spring season. The highest rainfall decrease in the spring
season is predicted by CSIRO-RCP8.5 far future model at a rate of 40%. Also, there is
a consensus between the models regarding the projected rainfall drop in the fall season
except the CSIRO-RCP4.5 near future model. In the summer season, slight rainfall increase
is projected in the near future (except MIROC-RCP8.5 model); however, all models except
CSIRO-RCP4.5 projected summer rainfall decreases in far future with the highest decrease
of 22% by CSIRO-RCP8.5 model. Similar to other seasons, mostly decreases in winter
rainfall are projected by the models.

4.2.2. Temperature Projections

The projected monthly average temperature for near and far futures along with the
observed monthly average temperatures are tabulated in Table 4. In addition, Table 4
includes the temperature changes based on the difference between the projected and
observed average temperature values. The temperature differences with respect to the
observed temperature are given in brackets. As can be seen in Table 4, projected average
temperature values in future are always greater than observed temperature values. As
expectedly, the far future temperatures are higher than the near future ones, and projected
temperature values based on RCP8.5 is greater than that of based on RCP4.5 scenario.

Table 4. Observed and projected monthly average temperature (◦C).

MIROC Projected Temperature CSIRO Projected Temperature
Near Future Far Future Near Future Far Future

Month Observed Monthly Temperature (◦C) RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

Jan 18.9 20.3 (1.4) 21.1 (2.2) 20.8 (1.9) 22.5 (3.6) 20.8 (1.9) 21.2 (2.3) 21.2 (2.3) 23.6 (4.7)
Feb 19.0 20.0 (1.0) 20.4 (1.4) 20.8 (1.8) 21.5 (2.5) 20.7 (1.7) 20.7 (1.7) 20.9 (1.9) 22.9 (3.9)
Mar 16.7 17.8 (1.0) 18.0 (1.2) 18.7 (2.0) 20.1 (3.4) 17.2 (0.5) 18.0 (1.3) 18.2 (1.5) 20.5 (3.7)
Apr 12.8 13.6 (0.7) 13.7 (0.9) 14.3 (1.4) 16.1 (3.3) 13.5 (.07) 14.5 (1.7) 14.5 (1.7) 16.8 (4.0)
May 9.8 10.3 (0.5) 10.6 (0.8) 11.0 (1.2) 12.6 (2.8) 10.4 (0.6) 11.1 (1.3) 11.2 (1.4) 12.9 (3.1)
Jun 7.1 8.1 (1.0) 8.5 (1.4) 8.5 (1.4) 9.8 (2.7) 7.8 (0.7) 8.4 (1.3) 8.7 (1.6) 10.3 (3.2)
Jul 6.3 7.1 (0.8) 7.5 (1.2) 7.6 (1.3) 9.0 (2.6) 7.6 (1.2) 7.9 (1.5) 8.1 (1.7) 9.5 (3.1)

Aug 7.3 8.5 (1.1) 8.5 (1.2) 8.9 (1.6) 10.3 (3.0) 8.7 (1.4) 9.4 (2.1) 9.4 (2.1) 11.2 (3.9)
Sep 9.3 10.9 (1.6) 11.5 (2.3) 11.7 (2.4) 13.5 (4.3) 11.6 (2.3) 11.6 (2.4) 12.0 (2.8) 14.5 (5.2)
Oct 11.8 13.5 (1.7) 14.3 (2.5) 14.2 (2.4) 16.0 (4.3) 14.1 (2.3) 15.0 (3.3) 15.1 (3.3) 17.5 (5.7)
Nov 14.7 16.6 (1.9) 17.8 (3.1) 17.8 (3.0) 19.5 (4.8) 16.9 (2.2) 18.2 (3.5) 18.1 (3.4) 20.2 (5.5)
Dec 16.8 19.2 (2.4) 19.6 (2.8) 19.7 (2.9) 21.2 (4.4) 18.5 (1.7) 19.7 (2.9) 19.6 (2.8) 22.0 (5.2)

The variation between observed and projected average temperature is also presented
in Figure 5.

Based on the MIROC model, the highest temperature rise is expected in November in
the far future for the RCP8.5 scenario. On the other hand, the lowest temperature rise is
projected to happen in May in near future based on the MIROC-RCP4.5 model.

According to the MIROC-RCP4.5 model, the lowest increase (0.5 ◦C) in near future is
projected to occur in May, whereas the highest temperature increase by 2.4 ◦C is projected
to be in December in the near future. The MIROC-RCP8.5 model projected the highest
near future temperature increase in November by 3.1 ◦C, while it predicted the lowest
near future temperature increase in May by 0.8 ◦C. On the other hand, MIROC-RCP4.5
estimated the lowest far future temperature increase to be at 1.2 ◦C in May and the highest
to occur in November by 3.0 ◦C. The MIROC-RCP8.5 model’s lowest far future increase
estimation is 2.5 ◦C in February and the highest far future temperature increase projection
is 4.8 ◦C in November.

The CSIRO-RCP4.5 model predicted a temperature increase in the near future in a
range of 0.5 ◦C (in March) and 2.3 ◦C (in September and October). The CSIRO-RCP8.5
model temperature increase projection in near future is in a range of 1.3–3.5 ◦C. Moreover,
the CSIRO-RCP4.5 model projected a temperature increase of 1.4 ◦C (in May) to 3.4 ◦C (in
November) in the far future, whereas the temperature increase in a range of 3.1 ◦C (in May
and July) to 5.7 ◦C (in October) is projected by the CSIRO-RCP8.5 model for far future. It is
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worth noting that in general the MIROC model tends to underestimate the temperature
rise in comparison with the CSIRO model.
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At the annual time scale, the MIROC-RCP4.5 and MIROC-RCP8.5 models projected
temperature increase of 1.3 ◦C and 1.7 ◦C respectively in the near future, while temperature
increases associated with the MIROC-RCP4.5 and MIROC-RCP8.5 models in the far future
were found to be 2.0 ◦C and 3.5 ◦C, respectively. The CSIRO-RCP4.5 and CSIRO-RCP8.5
models’ predictions for annual average temperature increase are 1.4 ◦C and 2.1 ◦C in the
near future, and 2.2 ◦C and 4.3 ◦C in the far future respectively.

Table 5 represents the seasonal variation of the temperature in the near and far futures
for all the models. According to this table, temperature is projected to rise in all seasons
for both the models and RCPs. Table 5 indicates that temperature increases are less in the
fall and winter seasons in comparison with the spring and summer seasons. The highest
temperature change is associated with the CSIRO-RCP8.5 model in the far future for the
spring season by 5.5 ◦C, while the least temperature increase is projected to occur in near
future during the fall season by 0.6 ◦C according to the CSIRO-RCP4.5 model. Similar to
the monthly and annual time scales, the CSIRO model tends to project higher temperatures
than the MIROC model at seasonal scale.
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Table 5. Projected seasonal temperature increases.

Season
Near Future (2035–2064) Far Future (2075–2104)

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5
CSIRO MIROC CSIRO MIROC CSIRO MIROC CSIRO MIROC

Spring 2.3 1.7 3.0 2.6 2.7 2.6 5.5 4.4
Summer 1.8 1.6 2.3 2.1 2.9 2.2 4.6 3.5

Fall 0.6 0.8 1.4 1.0 1.7 1.5 3.6 3.2
Winter 1.1 1.0 1.6 1.3 1.6 1.4 3.4 2.7

4.3. Streamflow Projections

The streamflow values in the UCC were simulated for the 1981–2010 period using
the observed rainfall and temperature data in the IHACRES model. Then, streamflow
projections over near and far future periods were generated using rainfall and temperature
outputs of MIROC and CSIRO models under RCP4.5 and RCP8.5 scenarios in calibrated
IHACRES model. The observed and projected monthly streamflows as well as the per-
centage differences (in brackets) between observed and projected streamflow values are
tabulated in Table 6. As can be seen in Table 6, monthly streamflow values were projected
to decrease considerably in the future periods, with higher declines from the models using
climate data under the RCP8.5 scenario. As discussed before, the rainfall reductions along
with a remarkable increase in the temperature are the main reasons for decreases in the
streamflows. Table 6 results are graphically presented in Figure 6.

Table 6. Observed and projected monthly total streamflow (ML/month).

MIROC Projected Streamflow CSIRO Projected Streamflow
Near Future Far Future Near Future Far Future

Month Observed Monthly
Streamflow (ML/Month) RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

Jan 413 7
(−98%)

15
(−96%)

0
(−100%)

0
(−100%)

0
(−100%)

0
(−100%)

0
(−100%)

0
(−100%)

Feb 102 0
(−100%)

0
(−100%)

0
(−100%)

0
(−100%)

0
(−100%)

0
(−100%)

0
(−100%)

0
(−100%)

Mar 156 0
(−100%)

0
(−100%)

0
(−100%)

0
(−100%)

18
(−89%)

0
(−100%)

0
(−100%)

0
(−100%)

Apr 177 0
(−100%)

0
(−100%)

0
(−100%)

0
(−100%)

0
(−100%)

0
(−100%)

0
(−100%)

0
(−100%)

May 663 0
(−100%)

0(
−100%)

0
(−100%)

0
(−100%) 1303 (97%) 161

(−76%)
32

(−95%)
0

(−100%)

Jun 4924 4281
(−13%)

476
(−90%)

1293
(74%)

957
(−81%) 6356 (29%) 2949

(−40%)
1978(
−60%)

1
(−100%)

Jul 12297 4600
(−63%)

1043
(−92%) 2319 (81%) 684

(−94%)
9121

(−26%)
5587

(−55%)
5453

(−56%)
68

(−99%)

Aug 15663 11403
(−27%)

4891
(−69%) 3969 (75%) 875

(−94%)
7207

(−54%)
7113

(−55%)
4539

(−71%)
315

(−98%)

Sep 14893 7458
(−50%)

4219
(−72%) 3538 (76%) 71

(−100%)
7372

(−51%)
3065

(−79%)
2821

(−81%)
137

(−99%)

Oct 8224 3648
(−56%)

1352
(−84%) 1364 (83%) 0

(−100%)
1718

(−79%)
991

(−88%)
1241

(−85%)
0

(−100%)

Nov 4321 1419
(−67%)

201
(−95%)

704
(84%)

563
(87%)

699
(−84%)

1026
(−76%)

1302
(−70%)

0
(−100%)

Dec 2261 2381
(6%)

3690
(63%)

41
(98%)

6423
(72%)

424
(−81%)

10
(−100%)

88
(−96%)

0
(−100%)

Both Table 6 and Figure 6 indicate that streamflow is projected to decrease in future
for all models in both future periods except the MIROC model for December in near future.
This exception is due to projected rainfall increases in December as shown in Table 2. The
CSIRO model streamflow projections are always greater than the MIROC model projections.
The streamflow drop in future is more remarkable for the projections under the RCP8.5
scenario. The MIROC-RCP4.5 model results in the most optimistic scenario (with the
highest monthly streamflow projections) in near future. Even with the most optimistic
projection (MIROC-RCP4.5 model in near future), the river will completely dry out from
January to May. The highest streamflow was projected in August in near future by the
MIROC-RCP4.5 model with 11403 ML that is 27% less than the August streamflow of
the observed period (1981–2010). The worst scenario with the lowest streamflow values
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was generated by the CSIRO-RCP8.5 model in the far future. According to this scenario,
streamflow will occur only three months (July, August, and September) throughout the
year with the highest streamflow in August with 315 ML, which is 98% less than August
streamflow in the observed period.
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Figure 6. Observed and projected monthly streamflow: (a) MIROC-RCP4.5 model; (b) MIROC-RCP8.5 model; (c) CSIRO-
RCP4.5 model; (d) CSIRO-RCP8.5 model.

When the streamflow values for the future periods were compared with the observed
period at the annual scale, it was found that the MIROC-RCP4.5 scenario leads to average
annual decreases of 64% and 89% for the near and far futures respectively. As anticipated,
the MIROC-RCP8.5 scenario resulted in a sharper annual drop in streamflows for the future
periods with 78% and 94%. Likewise, the CSIRO-RCP4.5 model produced streamflow
values to drop by 53% and 84% for near and far futures respectively with respect to the
streamflow values in the observed period, whereas the CSIRO-RCP8.5 model resulted in
streamflow values, which are 81% and 100% less than observed streamflow values at the
annual scale.

Furthermore, streamflow variation in the UCC was investigated at a seasonal scale in
this study. Table 7 shows the seasonal streamflow differences between future and observed
periods in the UCC.
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Table 7. Seasonal streamflow changes in future with reference to observed streamflow.

Season
Near Future (2035–2064) Far Future (2075–2104)

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5
CSIRO MIROC CSIRO MIROC CSIRO MIROC CSIRO MIROC

Spring −71% −58% −74% −75% −79% −78% −99% −98%
Summer −94% −64% −88% −96% −85% −92% −100% −93%

Fall −31% −100% −100% −100% −100% −100% −100% −100%
Winter −17% −34% −57% −94% −70% −85% −100% −92%

As shown in Table 7, the highest overall streamflow decrease is found to occur in the
fall season, whereas the lowest streamflow decrease is estimated for the winter season.
Near and far futures are showing almost the same pattern (highest decrease in fall and
lowest in winter).

As mentioned in the introduction section, CSIRO [19] projected streamflows in future
in the Campaspe River Basin and reported an annual streamflow drop in a range of 8–28%
according to CSIRO and MIROC models under low and high emission scenarios. The
current study projected lower streamflow values in future for the study area in comparison
to the study by CSIRO [19]. It would not be wrong to expect more reliable streamflow
projections from this study (in comparison to CSIRO [19]) since better climate data set with
a higher spatial resolution under the most current emission scenarios (RCPs) are employed
in this study. Moreover, the future period studied in CSIRO [19] is around the year 2030,
whereas this study provides projections for both near and far future periods.

As explained earlier, UCC provides inflow to the Lake Eppalock reservoir, which
supplies irrigation, stock and domestic water to Campaspe irrigation district as well as
urban water to Bendigo, Heathcote, and Ballarat [27]. The Lake Eppalock reservoir is fed by
three basins: Upper Campaspe, Coliban, and Wild Duck Creek. Among these three, UCC
was studied in this paper as it provides a significant portion of the total inflow to Lake
Eppalock with an annual average flow of 59.8 GL [28]. UCC is an ephemeral catchment
and there are very low (even zero flows in some years) from January to April. In the low
flow months, irrigation withdrawals are restricted according to the license provided by the
government authority, which limits the irrigation withdrawal in dry months according to
the available water in the reservoir. Water is mainly used for residential supply in low flow
months using the water stored in the wet months (from June to December).

The above-explained decreases in streamflow from the UCC indicated a significant
reduction in the security of water supply from Lake Eppalock. Also, operation rules for
Lake Eppalock reservoir will be influenced substantially by the reduction in streamflows in
future. In this study, inflows only from UCC to Lake Eppalock were investigated. There is
a need for further studies investigating the same for the other sub-basins inflowing to the
Lake Eppalock reservoir to analyze climate change effects on the reservoir operation and
water allocation to the end-users. It is also important to note that lowered streamflows will
lead to water quality problems and will affect the ecosystems significantly in the study area.

5. Conclusions

In this study, climate change impacts on streamflows in the near (2035–2064) and
far (2075–2104) future were examined in the Upper Campaspe Catchment (UCC) using
future climate projections from CSIRO and MIROC models (derived under RCP4.5 and
RCP8.5 scenarios) in calibrated IHACRES model. Also, the capability of the IHACRES
model to simulate streamflows at UCC was studied in this paper. The followings are the
main conclusions from this study:

• The IHACRES model was found to be very successful to simulate monthly streamflows
in the UCC.

• The MIROC model projected annual rainfall decrease in a range of 1–19% while the
CSIRO model predicted annual rainfall change with respect to the observed rainfall
from +6% to −29%.
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• In general, monthly rainfall decreases were projected by both MIROC and CSIRO
models except December. Both models resulted in increases in December rainfall.

• Expectedly, both MIROC and CSIRO models (under both RCP4.5 and RCP8.5 scenario)
projected temperature increases at all time scales (monthly, seasonal, and annual).

• Annual temperature increase in the UCC is projected to be in a range of 1.3–2.1 ◦C for
the near future, and 2–4.3 ◦C for the far future.

• Higher temperature increases were projected in spring and summer seasons in com-
parison to fall and winter seasons.

• Remarkable streamflow reductions were projected by both models. The highest stream-
flow values were projected by the MIROC-RCP4.5 model in near future. According
to this most optimistic scenario, the river will completely dry out from January to
May. The CSIRO-RCP8.5 model in the far future resulted in the lowest streamflows
occuring only for three months (July, August, and September) throughout the year.
The annual streamflow drop projection varies between 53–81% for the near future and
84–100% for the far future.

• Significant decreases in streamflow will have substantial adverse effects on agricultural
and residential water supply in the study area.

This paper aims to pioneer further studies about climate change effects on water
security in Campaspe River Basin. Lake Eppalock is a critical reservoir in the Campaspe
River Basin, and it is vital to understand climate change impacts on reservoir inflow,
operation and water allocation in the area. In future, this study will be expanded to the
other sub-catchments feeding the Lake Eppalock for a better understanding of climate
change effects on water supply from the Lake Eppalock reservoir. It is recommended to
employ more climate models’ (in addition to two models adopted in this study) data for
more reliable streamflow projections. Also, studies investigating the relationship between
climate change and water demand (urban and agricultural) in Campaspe River Basin is
required to develop sustainable water management and climate change adaptation policies.
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